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Abstract

Human observers have the remarkable ability to efficiently prioritize task-relevant over task-

irrelevant  visual  information.  Yet,  a  fundamental  question  remains  whether  this  ability  is

limited  to  a  single  task  relevant  item,  or  whether  multiple  items  can  be  prioritized

simultaneously.  The  answer  to  this  question  depends  on  1)  whether  observers  can

concurrently  prepare and maintain  multiple  top-down templates for  more than one target

object, and 2) whether those templates can then, in parallel, bias selection towards more

than one target in the visual input. Here we disentangle these two processes for the first time.

We measured electroencephalographic (EEG) responses while observers searched for two

color-defined targets among distractors.  Crucially, we not only varied the number of target

colors that observers anticipated (thus determining the number of target templates), but also

the number of colors used to distinguish the two target objects present in the search display

(thus  determining  the  number  of  templates  required  to  engage  in  actual  selection).

Multivariate classification of the EEG pattern allowed us to track the attentional enhancement

of  each  target  separately  across  time.  Both  behavioral  and  electrophysiological  results

revealed  only  a  small  cost  associated  with  preparing  two  versus  one  color  template.  In

contrast,  substantial  costs  arose  when  two  templates  had  to  be  engaged  in  the  actual

selection  of  search  targets.  Furthermore,  the  results  indicate  that  this  cost  is  based  on

limitations  of  parallel  processing,  rather  than  a  serial  bottleneck.  These  findings  bridge

currently diverging theoretical perspectives on capacity limitations of feature-based attention.
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Significance Statement

Attention to the visual environment is by definition limited. Scientific debate has centered on

how  many  objects  human  observers  can  look  for  at  once.  Using  a  novel

electroencephalography approach we concurrently tracked attention to multiple visual target

objects.  We are  the first  ones to  show that  the  process of  attending to  multiple  objects

involves two components: One where observers prepare for the selection of multiple objects,

and one where observers actually engage in selecting those objects from the sensory input.

The selection bottleneck is clearly in the latter stage, while there is relatively little cost in

preparing for more than one target. The findings unite different theoretical stances in the field.
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Introduction

Adaptive,  goal-driven behavior  demands the selection  of  relevant  objects  from the visual

environment while irrelevant information is being ignored. This requires the activation of task-

relevant representations in memory – often referred to as attentional templates – which then

bias selection towards matching sensory input through top-down recurrent feedback (1–5). A

fundamental  yet  unresolved  question  is  whether  multiple  attentional  templates  can  be

deployed concurrently – a question that has recently generated considerable controversy,

with arguments both for (6–15) and against (16–21) a strong bottleneck.

We provide electrophysiological evidence showing that the real bottleneck is not so

much in the number of different templates that can be concurrently active in anticipation of a

visual task, but in the number of matching sensory representations in the incoming signal that

can subsequently be prioritized by those templates. Crucially,  for the selection of multiple

targets to be truly simultaneous, two requirements have to be met. First, attentional templates

need to be set up for each anticipated target feature, presumably in visual working memory

(VWM). Although it is uncontroversial that VWM can hold multiple representations (22), in

order to be able to bias selection, each of these representations also needs to be in a state in

which it can eventually engage, through recurrent feedback, with matching sensory signals

(which is not the same as merely remembering; see refs. 23–27). Second, to simultaneously

select  multiple  targets,  the  visual  system  must also  be  able  to  concurrently  use  those

templates to prioritize multiple matching representations in the incoming sensory signal. In

other words, multiple feedback loops must be able to engage concurrently. It is important to
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point out that template activation and template-guided prioritization are distinct (cf., ref. 28): It

may  be  that  at  any  moment  multiple  templates  are  ready  to  potentially  engage  in  the

prioritization of visual input, but that only one can actually do so following visual stimulation.

So far, studies of multiple-target selection have only focused on the limits in the readiness to

engage in selection, and ignored potential limits in the selection itself.

To resolve this, we recorded electroencephalograms (EEG) from the scalp of healthy

human individuals  while  they were presented with heterogeneous visual  search displays,

from which they always had to select two target objects (see Fig. 1A). Crucially, we varied the

number of unique target features (one or two colors) that the observer had to prepare for, and

the number of unique features that they would need to select from the search display. This

allowed us to disentangle the contribution of multiple template preparation on the one hand,

and multiple template engagement on the other.  A bottleneck could either  emerge when

going from one to two unique templates (reflecting a limit in the readiness to engage), from

one to two unique targets (reflecting a limit in the engagement itself), or both.

Traditionally,  visual  target  selection  is  assessed  using  the N2pc,  an event-related

potential  (ERP)  that  is  characterized  by  increased  negativity  over  posterior  electrodes

contralateral to the hemifield in which the target is located (29, 30). However, because the

N2pc  can  only  distinguish  between  the  left  versus  right  hemifield,  it  is  not  able  to

simultaneously track the selection of multiple targets at different locations in more complex

visual search displays. To overcome this limitation, we used multivariate decoding, which has

been proven to successfully track the spatiotemporal dynamics of feature-based attentional
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selection at any location in a search display (31). This allowed us to independently track

attentional selection over time for multiple concurrent targets at once, and also to investigate

the parallel versus serial nature of these selection processes.

Results

Twenty-four participants performed a visual search task for which they were always required

to find two color-defined target characters presented among an array of distractor characters,

and determine whether these two targets belonged to the same alphanumeric category (see

Fig.  1A).  The  task-relevant  colors  were  cued  prior  to  a  block  of  trials.  To  assess  if

prioritization of multiple targets is limited in terms of the number of attentional templates that

can be simultaneously set up, limited in the number of templates that can be simultaneously

engaged  in  the  selection  of  target  features  in  the  display,  or  both,  we  independently

manipulated 1) how many colors were task-relevant and 2) how many of these target colors

actually  appeared  in  the  search  display.  Specifically,  in  1TMP–1TGT (one  template,  one

target feature) blocks, only one color was task-relevant, so that both targets had the same

color and thus participants knew beforehand which color  template to prepare.  In  2TMP–

1TGT (two  templates,  one  target  feature)  blocks,  two  unique  colors  were  cued  as  task-

relevant, but per display only one of these was used to distinguish the two targets present

(i.e., both targets had the same color). Because participants could not predict which of the

two target colors would be present, they had to keep both templates active, even though only

one of them was then required for selecting the actual targets. Finally, in  2TMP-2TGT (two
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templates, two target features) blocks, again two unique colors were cued as task-relevant,

but now both these colors also had to be used to select  the two target  objects from the

search display, since one of the targets carried one color, and the other target carried the

other color.  Note again that in all  conditions, subjects had to select two targets, only the

number of  target-defining features would vary across conditions.  This controlled for  other

task-related  factors  such  as  the  number  of  characters  that  had  to  be  identified  and  the

alphanumeric comparison that had to be performed on them.
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Figure 1. Design and behavioral results. In all conditions, observers were required to select

two target characters and determine whether they were of the same (i.e., both letters or both

digits)  or  different  category  (i.e.,  letter  and  digit).  (A)  Task  design.  Depending  on  the

condition, either one or two colors were cued to be task-relevant in the beginning of a block

(creating one vs. two unique templates). Similarly, whenever two colors were cued, search

displays could contain either one of them, or both (one vs. two unique target features). Thus,
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in the one-template-one-target-feature condition (1TMP–1TGT) one color was cued, and both

targets  carried  this  color  in  the  search  display,  in  the  two-templates-one-target-feature

condition (2TMP–1TGT) two colors were cued but only one of these colors was present in the

search display with both targets carrying that color, and in the two-template-two-target-feature

condition (2TMP–2TGT) two colors were cued and both colors were present in the search

displays. One target always appeared on the horizontal meridian (above or below fixation),

and the other target  on the vertical  meridian (to the left  or  right  of  fixation).  (B) and (C)

Behavioral results. The violin plots depict the distribution of (B) accuracy and (C) response

times  across  participants,  separately  for  the  1TMP-1TGT,  2TMP-1TGT,  and  2TMP-2TGT

conditions.  The  horizontal  lines  in  the  box  plots  represent  quartiles.  The  vertical  line

represents the minimum (lower  quartile  -  1.5 *  interquartile  range)  and maximum (upper

quartile + 1.5 * interquartile range) while single dots beyond that range indicate individual

outliers.

Behavioral results

Fig. 1B and 1C show mean accuracy scores and mean response times (RTs) as a function of

experimental  condition  (1TMP-1TGT,  2TMP-1TGT,  and  2TMP-2TGT).  Performance

differences were assessed using pairwise, Bonferroni-corrected (to  α = 0.025) classical  t-

tests and Bayesian  t-tests on both measures. Any performance costs for the 2TMP-1TGT

relative  to  the  1TMP-1TGT condition  reflect  the  cost  of  preparing  for  multiple  templates

compared to a single template (preparation cost). Any performance cost in the 2TMP-2TGT
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relative  to  the  2TMP-1TGT  condition  represents  the  cost  of  having  to  engage  multiple

templates to select targets (engagement cost). We found evidence for both, with engagement

costs being most prominent. Specifically, there was an effect of the number of templates on

both accuracy and response times, with performance being reliably slower and slightly more

error-prone  in the 2TMP-1TGT condition than in the 1TMP-1TGT condition (RT: 731 ms vs.

679 ms, t(23) = 5.03, p < .001, Cohen’s d = 0.64, BF = 572; accuracy: 95.4% vs. 96.5%, t(23)

= 2.76, p = .01, Cohen’s d = 0.61, BF = 4.4). Even stronger costs were observed when the

number  of  uniquely  colored  targets  in  the  display  was  increased  from one  to  two,  with

performance being substantially slower  and more error-prone) in the 2TMP-2TGT condition

than in the 2TMP-1TGT condition (RT: 916 ms vs. 731 ms, t(23) = 9.05, p < .001, Cohen’s d =

1.63, BF = 2.5 x 106; accuracy: 91.4% vs. 95.4%, t(23) = 5.90, p < .001, Cohen’s d = 1.48,

BF = 3.9). Indeed, when we directly compared these two sources of multiple-target cost to

each other, the engagement cost was greater than the preparation cost on both measures

(accuracy: 4.0% vs. 1.2%, t(23) = 3.36, p = .03, Cohen’s d = 1.03, BF = 14.8; RT: 185 ms vs.

52 ms, t(23) = 5.00, p < .001, Cohen’s d = 1.67, BF = 540).

Note further that in the 2TMP-1TGT condition, the actual target color in the display

could repeat or switch from trial to trial. Previous work has shown switch costs, in which

selection is slower after the target color changes from one trial to the next trial, compared to

when the target color stays the same (7, 8, 32–34). A closer analysis of the current data also

revealed that  search suffered from switches, in terms of  RTs (repeat trials:  M = 704 ms,

switch trials: M = 754 ms; t(23) = 8.1, p < .001, Cohen’s d = 0.56, BFswitchcosts = 4.2 x 105), and
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accuracy (repeat trials: M =  95.8%, switch trials: M = 94.9%; t(23) = 2.7, p = .01, Cohen’s d =

0.40, BFswitchcosts = 4.0). 

The behavioral data thus reveal that multiple target search comes with costs, and that

these costs come in two forms. First, keeping two templates in mind results in relatively small

but reliable costs compared to keeping only one template. This effect is strongest when the

actual  target  color  in  the  display  has switched,  suggesting  a shift  in  weights on specific

templates from trial to trial. Second, considerably larger costs emerge when the observer not

only  maintains  two  different  templates,  but  also  has  to  engage  both  of  them in  biasing

selection towards the two corresponding targets. Note that this is not the result of the number

of  target  objects  per  se,  as  participants  had  to  select  and  compare  two  targets  in  all

conditions, but it is caused by the number of unique features defining these targets. Selecting

two objects by a single feature is thus more efficient and more accurate than selecting two

objects using two different features. 

Decoding of target positions based on the raw EEG

Next, to determine whether the behavioral costs indeed reflected deficits in the selection of

the  different  targets,  we  used  EEG  to  track  the  strength  and  dynamics  of  attentional

enhancement of the different target positions. To this end, one target was always placed on

the vertical meridian, and the other target always on the horizontal meridian, so that we could

train separate linear  discriminant  classifiers  (with electrodes as  features)  for  each of  the

spatial target dimensions  to distinguish left from right targets and top from bottom targets,
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separately for each condition and time sample (see SI Methods for details). We reasoned

that any inefficiencies associated with setting up multiple unique templates (i.e., 1TMP vs. 2

TMP conditions) and/or with actually using those templates to select multiple unique targets

(i.e., 1TGT vs. 2TGT conditions) should result in decoding to suffer in terms of relative delays,

strength, or both. Fig. 2A shows decoding performance for each of the conditions (1TMP-

1TGT, 2TMP-1TGT, and 2TMP-2TGT),  separately for  the horizontal  (left  versus right) and

vertical meridian (top versus bottom). Fig. 2B shows the topographical patterns associated

with the forward-transformed classifier weights over time, which are interpretable as neural

sources (see ref. 38 and SI Methods). As a general finding, we were able to track attentional

selection  on  both  the  horizontal  and  vertical  meridian,  with  comparable  decoding

performance. Decoding performance was tested against chance for every sample, corrected

for multiple comparisons using cluster-based permutation testing (43, also see SI Methods).

After cluster-based permutation, we observed clear significant clusters in each of the three

conditions, with significant decoding emerging at different moments in time. For the left-right

distinction, the topographical pattern during the early time window (200–350 ms) resembles

that of the N2pc, while for later time windows (350–700 ms) it resembles SPCN or CDA-like

patterns (39–41). As shown in Figure S1 (and the SI Results), more traditional event-related

analyses  indeed  revealed  N2pc  and  SPCN components,  which  likely  contributed  to  the

classifiers’ performance. For vertically positioned targets a gradient from frontal to posterior

channels spread along the midline, similar to recent results from our labs (31, 42). The fact

that the decoding approach picks up on information related to attentional selection also on
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the vertical midline is testament to its power over conventional ERP methods, and allowed us

to simultaneously track attentional selection of both targets over time. However, as there were

no main or interaction effects involving the meridian in any of the comparisons, we averaged

decoding performance across the spatial dimensions. 
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Figure  2. MVPA  decoding  performance  for  target  position.  A)  Decoding  performance

expressed as Area Under the Curve (AUC) for target position on the horizontal (left vs. right)

and on the vertical meridian (top vs. bottom) separately, as a function of number of templates
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and number of target features. B) Topographical activation maps for horizontal and vertical

position decoding averaged over the typical N2pc time window (200-350 ms) and the typical

SPCN/CDA time  window  (350-700  ms).  C)  Decoding  performance  collapsed  across  the

horizontal and vertical dimensions, comparing the 1TMP-1TGT and 2TMP-1TGT conditions,

with the difference score thus showing the effect of the number of templates. D) The same,

now comparing  the  2TMP-1TGT and  2TMP-2TGT conditions,  thus  showing  the  effect  of

multiple different target features in the display. The shaded area represents 1 SEM above

and below the mean for  every time point.  Thick lines as well  as horizontal  bars indicate

significant  clusters  (at  α = .05)  as produced by  cluster-based permutation  testing  (5000

permutations). For visualization purposes only, the classification scores over time were fitted

with  a  cubic  spline  (λ=15,  comparable  to  a  30  Hz  low-pass  filter)  to  achieve  temporal

smoothing. Note the statistical analyses and estimation of the onset latencies were done on

unsmoothed data. The marked time points indicate the latency of 50% maximum amplitude

as estimated using a jackknife approach, as a measure of the onset of selection (35–37).

If there is a limit on how many templates can be prepared for, we should find reduced

and/or  delayed  classification  for  the  2TMP-1TGT condition  compared  to  the  1TMP-1TGT

condition (Fig. 2C). If the limitation is on how many templates can be engaged in selection,

the cost should emerge in the comparison of the 2TMP-2TGT and 2TMP-1TGT conditions

(Fig.  2D).  Indeed,  we  observed  reliable  differences  for  both  comparisons  that  directly

resembled the behavioral pattern. First, we compared the latencies at which target positions
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became decodable, thus providing a window on any delays in attentional selection. Because

differences  in  onset  of  significant  clusters  cannot  be  reliably  interpreted  as  reflecting

differences in onsets of the underlying neurophysiological processes (44), we instead used a

jackknife-based  approach  to  quantify  the  latency  of  the  50% maximum amplitude  in  the

decoding window (35–37, see SI Methods). This revealed a reliable onset difference between

the 1TMP-1TGT (M = 216 ms) and 2TMP-1TGT (M = 235 ms) conditions (M = 20 ms, tc(23) =

2.97, p = .007; Fig. 2C), indicating that attentional selection is delayed as a result of having to

prepare for two different target colors compared to having to prepare for only a single target

color.  Comparing the onsets between the 2TMP-1TGT (M = 235 ms) and 2TMP-2TGT (M =

263 ms) conditions yielded a further delay of  25 ms associated with having to engage in

selecting two target colors compared to selecting a single target color (tc(23) = 2.35, p = .02;

Fig.  2D).  Finally,  and  also  similar  to  the  behavioral  responses,  the  onset  of  the

neurophysiological response in the 2TMP-1TGT condition was delayed by  23 ms  when the

target color switched from one trial to the next, compared to when it repeated (tc(23) = 4.34, p

< .001; see Fig. S2). 

Next, we assessed the strength of classification over time by testing AUC values of

the  the  relevant  conditions  against  each  other  using  paired  t-tests  and  cluster-based

permutation testing to correct for multiple comparisons (see SI  Methods).  This procedure

revealed  an  early  and short-lasting  difference  of  the  number  of  templates  (i.e.,  between

1TMP-1TGT and 2TMP-1TGT conditions; see Fig. 2C), with stronger classification for  the

single template condition that reflects the onset latency difference reported above. Again in
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line with the behavioral  results,  more substantial  cost  in  decoding performance emerged

when the number of target features in the displays increased from one to two (i.e., between

the 2TMP-2TGT and 2TMP-1TGT conditions; see Fig. 2D).

Thus,  both  the  onset  latency  and  strength  of  decoding  performance  show  clear

deficits in attentional selection when observers need to select two different targets from a

display (i.e., engage two templates in selection) compared to when they have to select two

targets based on the same target color (i.e., engage one template in selection). In contrast,

having to set up two templates instead of one came with only minor onset latency differences

and no overall differences in decoding strength. This clearly points to a deficit when multiple

templates need to be engaged simultaneously rather than when multiple templates need to

be prepared simultaneously.

Sample-wise correlation of classifier confidence across trials as a measure of inter-

target dependency

While  the  previous  section  showed  a  clear  impairment  when  two  templates  need  to  be

engaged in selection, it  leaves unanswered whether selection is hindered by limitations in

parallel processing or by a serial bottleneck. That is, engaging two templates during search

may prioritize both unique targets in parallel but in a mutually competitive manner (45), or the

two  templates  may  only  be  engaged  (and  thus  the  corresponding  targets  prioritized)

sequentially, possibly in continuously alternating fashion (e.g., ref. 7). 
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To  investigate  these  competing  hypotheses,  we  assessed  performance  for  each

target dimension separately (horizontal and vertical). A serial model predicts that attention to

a target on one dimension should go at the expense of attention to the target on the other

dimension, and thus decoding performance for the vertical and horizontal axes to correlate

negatively.  In  case  of  parallel,  independent  selection,  there  should  be  no  systematic

relationship  between  classification  confidence  for  one  dimension  and  classification

confidence for the other dimension, as selection of one target is impervious to the selection

of the other target.  A positive correlation would arise from a common mechanism driving

selection of two different targets. Note that these possibilities are difficult to assess at the

group level as individuals may have different serial strategies. For example, one observer

may prefer to first select targets from the horizontal axis, while another may prefer the vertical

axis first,  such that any existing correlation (if  present)  might  cancel out.  Hence, we first

plotted average performance over time separately for each individual and separately for the

horizontal  and  vertical  axis.  Then,  to  reveal  whether  consistent  temporal  dependencies

existed for any given participant, we correlated classification performance over time in the

150 ms to  700 ms post  stimulus  window.  Although  this  revealed incidental  positive  and

negative  correlations  for  individual  participants,  there  was  no  systematically  positive  or

negative relationship (average correlation ρ = 0.11; min-max range: -0.37-0.63; see Fig. S3). 

However, even individual participants themselves may not behave consistently across

trials, and, while selection is still serial, which axis is preferred may also vary from trial to trial.

Selection therefore needs to be assessed at the trial level. To this end, we extracted the
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classifier  confidence  scores  for  each  dimension  (horizontal  and  vertical),  per  individual

participant, trial and time point (see SI Methods for details, and also ref. 46), and correlated

the two dimensions across trials using Spearman’s ρ. Classifier confidence, expressed as the

distance  from the decision  boundary,  can  be  interpreted  as  the  representativeness  of  a

certain instance of a particular class, in this case how strongly a particular pattern resembles

the typical EEG pattern across electrodes for a target being present at a specific location. We

reasoned  that  if  prioritization  is  limited  to  a  single  target  at  a  time,  a  classifier  cannot

simultaneously  have  high  confidence  about  both  targets,  and  thus  confidence  should

correlate  negatively.  The  correlations  between  the  confidence  scores  on  the  two  spatial

dimensions  are  plotted  in  Fig.  3A.  As  can  be  seen,  there  was  again  no  systematic

relationship between decoding the locations of the two targets, in any of the conditions. Apart

from a short-lasting  positive  correlation  around the 500 ms time point  in  the  2TMP-2TG

condition which is likely to be spurious, correlations for all time points were close to zero. 

However, given that this is a null result, we sought to make sure that our approach is

in principle sensitive to existing correlations. To this end, we simulated a data set with the

same overall characteristics as the recorded data, but with either positive, negative, or no

correlations injected, under various signal to noise ratios (see SI Methods for details). The

results of this simulation are summarized in Fig. S4 of the SI Results and demonstrate that

with  sufficiently  high  decoding  AUC  values  (>  approx.  0.55-0.60),  correlations  (whether

positive or negative) between the horizontal and vertical position classifiers can, in principle,

be reliably detected. However, because group classification performance in our dataset did
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not  exceed 0.59 (in  the 1TMP-1TGT condition),  we instead assessed for  each individual

observer  the  correlation  between  target  dimensions  for  those  time  points  at  which

classification performance reached its maximum. As Fig. 3B shows, even for individuals with

relatively  high classification scores,  there was no evidence for  a correlation between the

classification  confidence  between  the  two  target  dimensions.  The  absence  of  such  a

correlation in our data is thus most consistent with a limited parallel independent selection

model, rather than a serial model or a parallel model operating under a common mechanism.
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Figure 3. Correlation of classifier confidence scores. A) For each condition, and trial,  the

classification confidence scores per time point and subject were extracted for horizontal and
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vertical classifiers and then correlated (Spearman’s ρ) between these dimensions, across

trials. B) To examine whether a non-zero correlation would be present for individuals who

show high AUC scores, we plotted the individual correlation scores for those time points at

which individual  classification was maximal,  separately  for  the horizontal  dimension (less

saturated dots) and the vertical dimension (more saturated dots). The curves represent the

correlation  strengths  that  can  be  expected  for  a  certain  decoding  strength  (AUC,

corresponding  to  SNR)  as  based  on  our  simulated  data  set  (the  simulated  negative

correlation being the mirrored version of the positive correlation). 

Discussion

Selection of  task-relevant  information from complex visual  environments is  limited,  and a

central  question  in  attention  research  has  been  whether  observers  can  simultaneously

prepare for and select multiple different target objects. The current results provide evidence

that these limitations do not so much reside at the level of template preparation (i.e., the

number of target representations set up prior to the task), but at the extent to which templates

can then be concurrently engaged in selecting matching information from the sensory input.

By systematically varying not only the number of different target features observers had to

prepare for,  but  also the number of  different  target  features they would encounter  in  the

displays, we were able to, for the first time, dissociate limitations in template preparation from

limitations in  template engagement.  Specifically,  we observed relatively  small  but  reliable

costs on both behavioral and EEG classification performance when two templates needed to
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be activated instead of one, suggesting a reliable but relatively minor bottleneck at this stage

of  processing.  In  contrast,  substantial  costs  emerged  on  both  behavioral  and  EEG

performance measures when two templates had to be prepared, and both of these templates

(rather than just one) had to be engaged in driving the selection of two different targets.

We propose a model which extends existing frameworks that assume a crucial role for

top-down biased competition (2–4,  46).  According to these frameworks,  the activation  of

target  templates  in  working  memory  involves  the  pre-activation  or  biasing  of  associated

sensory features. The presence of such features in the input will then trigger a long-range

recurrent  feedback  loop,  leading  the  enhancement  of  the  target  representation  in  VWM

(including its location), and thus making it available for other cognitive processes such as

response  selection  (processes  which  are  themselves  limited,  cf.  refs.  47–49).  Our  data

indicates that while multiple top-down feedback connections may be prepared at once, there

is  a  limitation  in  how  these  feedback  loops  are  engaged  by  matching  input.  Figure  4

illustrates  how  we  believe  the  existing  framework  should  be  extended.  Specifically,  we

propose that multiple templates may hold each other in a mutually competitive relationship

within VWM, most likely through laterally suppressive connections (50). Figure 4A depicts the

situation when just one of the target features is then encountered in the sensory input. The

corresponding  feedback  loop  is  triggered,  leading  to  an  enhanced  target  representation

within  VWM.  If  only  one  target  feature  is  present,  the  corresponding  template  will

automatically win the competition. Although two templates can be maintained in parallel, the

mutual  competition between them is  slightly  disadvantageous.  This  will  lead to the initial

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/653030doi: bioRxiv preprint 

https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/


RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

delay in target selection that we observed in the data when two templates instead of just one

were activated. Moreover, the selective enhancement of one representation over another may

carry over to the next trial, thus resulting in the target switch costs that we also observed both

in behavior and EEG performance measures.

The crucial situation occurs when the visual input contains multiple target features

and thus multiple feedback loops are being triggered, as is shown in Figure 4B. Because of

the mutually suppressive relationship, strengthening one feedback loop will automatically go

at  the  expense  of  the  other.  Although  both  loops  are  triggered  in  parallel,  the  mutually

aversive relationship results in slower and weaker accumulation of evidence for either of the

targets, consistent with what we observed in the data. In theory, the system may resolve such

competition in two ways. The first is to keep selection of both targets running in parallel, and

accept the slower evidence accumulation. The second option is to impose a serial strategy in

which selection  is  first  biased in  favor  of  one target,  and then switched to the other  (or

alternate between the two). Our data provides no evidence for the serial model. First, the

average group data nor the average individual subject data showed any systematic pattern of

switching between the two target positions (i.e., differences in classification performance for

left-right  versus  top-bottom).  Second,  also  a  trial-based  correlation  analysis  of  classifier

confidence  scores  showed  the  absence  of  a  negative  correlation  between  the  target

positions. Our findings are therefore most consistent with a limited-capacity parallel model, in

which observers maintain two templates active during search,  but  with mutually  aversive

consequences. However, we point out that our data do not exclude the possibility of seriality.
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First, while there may have been little seriality in selecting the targets from the displays on the

basis of color,  there may have been a serial  component in accessing their  alphanumeric

identity – a component to which our classifier was not sensitive. Moreover, there is still  a

distinct  possibility that  imposing seriality is a valid strategy that  observers may deploy to

resolve competition between different target features, but that such choices depend on tasks,

context, or instructions (51, 52). For example, we previously observed evidence for serial

switching in  a  different  paradigm when observers  had  to  select  only  one  of  two  targets

present,  and were instructed to switch at least a few times during a block (15,  53).  The

current results indicate that the process can occur in parallel, not that it must.
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Figure  4. A  limited  parallel  model.  Attentional  templates  in  working  memory  engage  in

recurrent  feedback  loops  with  matching  sensory  representations,  resulting  in  target

enhancement. Multiple templates can be activated in parallel and may be equally active prior

to search, but they compete through mutual suppression, which has consequences during

search. (A) The presence of a single target feature in the sensory input will unequivocally

trigger one of the active templates, eventually resulting in as strong selection as when there

is  only  one template  (not  shown),  albeit  at  a  short  delay.  (B)  When both  templates  are

activated  the  mutual  suppression  will  prevent  strong  activation  of  either,  resulting  in

substantially weakened and delayed selection of  both targets. 

We believe the distinction between template preparation and template engagement in

selection has great potential for resolving the current debate on whether observers can look

for more than a single target at the same time (7, 8, 13, 16, 17, 19, 21). Studies central to this

debate have largely focused on how many templates can be prepared in anticipation for a

search,  rather  than  how many  of  these  templates  can  then  be  concurrently  engaged  in

selection without costs. From our data, the answer to the question then appears to be yes,

observers may look for multiple targets simultaneously at little cost, but it is  selecting those

targets that runs into real limitations. 

Although we found the costs of going from one to two templates to be relatively small,

this leaves open the question whether costs will increase more strongly with more templates

being added.  Given the capacity  limits  of  VWM, this  is  to  be expected,  merely  because
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memory  itself  will  start  to  fail.  Interestingly  though,  work  by  Wolfe  (54)  has  shown that

observers can successfully search for tens of different target objects if given the opportunity

to first commit these objects to long term memory. In fact, given that in our experiment the

target template remained the same for a block of trials, observers may have at least partly

relied  on  long  term  memory  here,  too  (but  see  ref.  18  for  evidence  that  measures  of

attentional selection, i.e., the N2pc, are not affected by whether targets are stored in long-

term  memory  or  working  memory).  The  question  of  capacity  is  also  important  when

considering that current limitations were found when both target features were drawn from

the same dimension (color). There is evidence that different dimensions may to some extent

independently store (e.g., ref. 55), or guide attention towards (56, 57), target features. Our

methods may therefore prove useful in assessing the exact limitations of selecting targets

defined along different dimensions.

To sum up, we propose that models of visual selection need to consider the difference

between preparing for  selection and engaging in  selection  of  multiple  visual  targets.  We

demonstrate  that  whereas  the  first  process  comes  at  little  cost,  the  true  bottleneck  of

multiple-target selection is in engaging multiple template representations. 

Acknowledgments

This work was supported by Open Research Area Grant 464-13-003 from the Netherlands

Organization for Scientific Research and by European Research Council Consolidator Grant

ERC-2013-CoG-615423 to C. N. L. Olivers. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/653030doi: bioRxiv preprint 

https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/


RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

References

1. Baldauf D, Desimone R (2015) Neural mechanisms of object-based attention. Cereb 
Cortex 25(4):1080–1092. 

2. Desimone R, Duncan J (1995) Neural Mechanisms of Selective Visual Attention. Annu
Rev Neurosci 18(1):193–222.

3. Duncan J, Humphreys GW (1989) Visual search and stimulus similarity. Psychol Rev 
96(3):433–458.

4. Hamker FH (2004) A dynamic model of how feature cues guide spatial attention. 
Vision Res 44(5):501–521.

5. Eimer M (2014) The neural basis of attentional control in visual search. Trends Cogn 
Sci 18(10):526–535.

6. Dombrowe I, Donk M, Olivers CNL (2011) The costs of switching attentional sets. 
Attention, Perception, Psychophys 73:2481–2488.

7. Ort E, Fahrenfort JJ, Olivers CNL (2017) Lack of Free Choice Reveals the Cost of 
Having to Look for More Than One Object. Psychol Sci 28(8):1137–1147.

8. Ort E, Fahrenfort JJ, Olivers CNL (2018) Lack of free choice reveals the cost of 
multiple-target search within and across feature dimensions. Attention, Perception, 
Psychophys (80):1904–1917.

9. van Moorselaar D, Theeuwes J, Olivers CNL (2014) In competition for the attentional 
template: Can multiple items within visual working memory guide attention? J Exp 
Psychol Hum Percept Perform 40:1450–64.

10. Liu T, Jigo M (2017) Limits in feature-based attention to multiple colors. Attention, 
Perception, Psychophys 79:2327–2337.

11. Olivers CNL, Peters J, Houtkamp R, Roelfsema PR (2011) Different states in visual 
working memory: When it guides attention and when it does not. Trends Cogn Sci 
15(7):327–334.

12. Kristjánsson Á, Campana G (2010) Where perception meets memory: A review of 
repetition priming in visual search tasks. Atten Percept Psychophys 72(1):5–18.

13. Menneer T, Cave KR, Donnelly N (2009) The cost of search for multiple targets: effects
of practice and target similarity. J Exp Psychol Appl 15(2):125–139.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/653030doi: bioRxiv preprint 

https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/


RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

14. Houtkamp R, Roelfsema PR (2009) Matching of visual input to only one item at any 
one time. Psychol Res 73:317–326.

15. van Driel J, Ort E, Fahrenfort JJ, Olivers CNL (2019) Beta and theta oscillations 
differentially support free versus forced control over multiple-target search. J Neurosci. 
39(9):1733–1743.

16. Beck VM, Hollingworth A, Luck SJ (2012) Simultaneous Control of Attention by 
Multiple Working Memory Representations. Psychol Sci 23(8):887–898.

17. Beck VM, Hollingworth A (2017) Competition in saccade target selection reveals 
attentional guidance by simultaneously active working memory representations. J Exp 
Psychol Hum Percept Perform 43(2):225–230.

18. Grubert A, Carlisle NB, Eimer M (2016) The Control of Single-color and Multiple-color 
Visual Search by Attentional Templates in Working Memory and in Long-term Memory.
J Cogn Neurosci 28(12):1947–1963.

19. Irons JL, Folk CL, Remington RW (2012) All set! Evidence of simultaneous attentional 
control settings for multiple target colors. J Exp Psychol Hum Percept Perform 
38(3):758–775.

20. Kristjánsson T, Kristjánsson Á (2017) Foraging through multiple target categories 
reveals the flexibility of visual working memory. Acta Psychol (Amst) 183(December 
2017):108–115.

21. Grubert A, Eimer M (2015) Rapid Parallel Attentional Target Selection in Single-Color 
and Multiple-Color Visual Search. J Exp Psychol Hum Percept Perform 41(1):86–101.

22. Cowan N (2001) The magical number 4 in short-term memory: a reconsideration of 
mental storage capacity. Behav Brain Sci 24(1):87–114; discussion 114-185.

23. Chatham CH, Badre D (2015) Multiple gates on working memory. Curr Opin Behav Sci
1:23–31.

24. Kiyonaga A, Egner T, Soto D (2012) Cognitive control over working memory biases of 
selection. Psychon Bull Rev 19(4):639–46.

25. van Driel J, Gunseli E, Meeter M, Olivers CNL (2017) Local and interregional alpha 
EEG dynamics dissociate between memory for search and memory for recognition. 
Neuroimage 149:114–128.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/653030doi: bioRxiv preprint 

https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/


RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

26. Carlisle NB, Arita JT, Pardo D, Woodman GF (2011) Attentional templates in visual 
working memory. J Neurosci 31(25):9315–9322.

27. Olivers CNL, Eimer M (2011) On the difference between working memory and 
attentional set. Neuropsychologia 49(6):1553–1558.

28. Huang L, Pashler H (2007) A Boolean map theory of visual attention. Psychol Rev 
114(3):599–631.

29. Eimer M (1996) The N2pc component as an indicator of attentional selectivity. 
Electroencephalogr Clin Neurophysiol 99:225–234.

30. Luck SJ, Hillyard SA (1994) Electrophysiological correlates of feature analysis during 
visual search. Psychophysiology 31:291–308.

31. Fahrenfort JJ, Grubert A, Olivers CNL, Eimer M (2017) Multivariate EEG analyses 
support high-resolution tracking of feature-based attentional selection. Sci Rep 7(1):1–
15.

32. Maljkovic V, Nakayama K (1994) Priming of pop-out: I. Role of features. Mem Cognit 
22(6):657–672.

33. Monsell S (2003) Task switching. Trends Cogn Sci 7(3):134–140.

34. Found A, Müller HJ (1996) Searching for unknown feature targets on more than one 
dimension: investigating a “dimension-weighting” account. Percept Psychophys 
58(1):88–101.

35. Liesefeld HR (2018) Estimating the Timing of Cognitive Operations With MEG/EEG 
Latency Measures: A Primer, a Brief Tutorial, and an Implementation of Various 
Methods. Front Neurosci 12:1–11.

36. Luck SJ (2014) An introduction to the event-related potential technique ed Press M 
(MIT Press, Cambridge).

37. Miller J, Patterson T, Ulrich R (1998) Jackknife-based method for measuring LRP 
onset latency differences. Psychophysiology 35(1):99–115.

38. Haufe S, et al. (2014) On the interpretation of weight vectors of linear models in 
multivariate neuroimaging. Neuroimage 87:96–110.

39. Vogel EK, Machizawa MG (2004) Neural activity predicts individual differences in 
visual working memory capacity. Nature 428(6984):748–51.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/653030doi: bioRxiv preprint 

https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/


RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

40. Grubert A, Eimer M (2013) Qualitative differences in the guidance of attention during 
single-color and multiple-color visual search: behavioral and electrophysiological 
evidence. J Exp Psychol Hum Percept Perform 39(5):1433–42.

41. Mazza V, Turatto M, Umiltà C, Eimer M (2007) Attentional selection and identification 
of visual objects are reflected by distinct electrophysiological responses. Exp Brain 
Res 181(3):531–536.

42. Grubert A, Fahrenfort JJ, Olivers CNL, Eimer M (2017) Rapid top-down control over 
template-guided attention shifts to multiple objects. Neuroimage 146:843–858.

43. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-
data. J Neurosci Methods. 164:177–190.

44. Sassenhagen J, Draschkow D (2019) Cluster-based permutation tests of MEG/EEG 
data do not establish significance of effect latency or location. 
Psychophysiology:e13335.

45. Barrett DJK, Zobay O (2014) Attentional control via parallel target-templates in dual-
target search. PLoS One 9(1):1–9.

46. Bundesen C, Habekost T, Kyllingsbæk S (2005) A neural theory of visual attention: 
Bridging cognition and neurophysiology. Psychol Rev 112(2):291–328.

47. Baars BJ (2005) Global workspace theory of consciousness: Toward a cognitive 
neuroscience of human experience. Prog Brain Res. 150:45–53.

48. Dehaene S, Kerszberg M, Changeux JP (1998) A neuronal model of a global 
workspace in effortful cognitive tasks. Proc Natl Acad Sci USA. 95:14529–14534.

49. Lamme VAF (2003) Why visual atention and awareness are different. Trends CognSci 
7(1):12–18.

50. Manohar SG, Zokaei N, Fallon SJ, Vogels TP, Husain M (2019) Neural mechanisms of
attending to items in working memory. Neurosci Biobehav Rev. 

51. Stroud MJ, Menneer T, Kaplan E, Cave KR, Donnelly N (2019) We can guide search 
by a set of colors, but are reluctant to do it. Attention, Perception, Psychophys. 

52. Cave KR, Menneer T, Nomani MS, Stroud MJ, Donnelly N (2018) Dual target search is
neither purely simultaneous nor purely successive. Q J Exp Psychol. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/653030doi: bioRxiv preprint 

https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/


RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

53. Ort E, Fahrenfort JJ, Reeder R, Pollmann S, Olivers CNL (2019) The Role of Proactive
and Reactive Cognitive Control for Target Selection in Multiple-Target Search. bioRxiv. 
doi:http://dx.doi.org/10.1101/559500.

54. Wolfe JM (2012) Saved by a Log: How Do Humans Perform Hybrid Visual and 
Memory Search? Psychol Sci 23(7):698–703.

55. Wang B, Cao X, Theeuwes J, Olivers CNL, Wang Z (2017) Separate capacities for 
storing different features in visual working memory. J Exp Psychol Learn Mem Cogn 
43(2):226–236.

56. Jenkins M, Grubert A, Eimer M (2017) Target objects defined by a conjunction of 
colour and shape can be selected independently and in parallel. Attention, Perception,
Psychophys 79:2310–2326.

57. Wolfe JM (1994) Guided Search 2.0 A revised model of visual search. Psychon Bull 
Rev 1(2):202–238.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/653030doi: bioRxiv preprint 

https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/


RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

Supporting Information

Supplemental Methods

Participants. Thirty-two participants naive to the purpose of  the experiment were

recruited at the Vrije Universiteit Amsterdam and were compensated with money or course

credit. Eight were excluded due to poor behavioural performance in at least one experimental

condition (a predefined cutoff of accuracy <85% was used, see below) to ensure sufficient

numbers of correct trials for the EEG analyses. The remaining twenty-four participants (age:

19-30 years, M = 22.0; 17 females, 7 males) had normal or corrected-to-normal visual acuity

and color vision. All participants gave written informed consent in line with the Declaration of

Helsinki. The study was approved by the Scientific and Ethics Review Board of the Faculty of

Behavioural and Movement Sciences at the Vrije Universiteit Amsterdam.

Stimuli & Procedure. Displays consisted of eight colored alphanumerical characters

evenly spaced on an imaginary annulus with a radius of 2.5 dva, centered at the middle of

the screen (Fig. 1A). The characters were uppercase letters (K, H, M and T) and digits (7, 6,

3 and 4, each spanning approximately 1.2 degree visual angle (dva) vertically and between

0.8 and 1.0 dva horizontally. In total, eight colors were used in the experiment: Red (RGB-

values: 224, 0, 38), green (0, 155, 0),  blue (55, 110, 255), and yellow (160, 95, 5) were

potential  target  colors  (all  approximately  isoluminant,~21  cd/m2,  min-max  range:  19-25

cd/m2), whereas purple (145, 30, 180), cyan (70, 240, 240), pink (250, 0, 179) and gray (130,

130, 130) were always used as distractor colors (M = 35 cd/m2, min-max range: 16-63 cd/m2).

The stimuli were presented on a black background (0, 0, 0). 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/653030doi: bioRxiv preprint 

https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/


RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

Participants were instructed to find two color-defined target characters on each trial,

and indicate whether or not these belonged to the same alphanumerical category (i.e., letters

or numbers). Response keys were counterbalanced across participants. In the beginning of a

block, the task-relevant colors were shown to the participants as two target-colored disks

(spanning 1.2 dva each), for 2000 ms. Depending on the experimental condition (see below)

either one colored disk was presented in the middle of the screen, or 1.0 dva to the left and

right of the center, respectively. The target colors were valid for a block of 64 trials after which

new colors were shown. Throughout the trial a white fixation cross remained visible in the

middle of the screen which participants were required to keep fixating. The trial sequence

began with a fixation screen presented for 850 to 950 ms (randomly selected from a uniform

distribution),  followed by  a search display  for  50 ms* and another  fixation  screen until  a

response was given or a 2000 ms timeout. Finally, a written message (“correct” or “wrong”)

presented for 500 ms indicated whether the response was correct or not. In case participants

did not respond before the timeout, the experiment was paused for ten seconds to encourage

them to respond quicker henceforth. After every block, participants received feedback on

accuracy. 

One target color was always presented on the horizontal axis (left or right of fixation),

while the other was always presented on the vertical  axis (above or below fixation),  with

color-position assignment  randomly chosen but  occurring equally  often.  Participants were

* For the first two participants presentation time was two display frames (~16.67 ms) shorter than for
the rest of the sample. To facilitate good behavioral performance, we increased presentation time from
the third participant onwards. However, as these two participants performed well, even with 16.7 ms
presentation rates (and thus met our inclusion criteria), we decided to keep them in the sample.
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informed  that  targets  would  appear  only  on  the  cardinal  axes  of  the  search  array.  The

irrelevant items on the diagonals were added to the search display to increase competition,

increase color heterogeneity, and to prevent participants from looking for any color duplicates

rather than for the specific target color, whenever both target objects of a search array shared

the same color (as was the case in the one target feature conditions). To this end, on half of

the trials, one color of the distractor items on the diagonals was duplicated, so that participant

could not merely select whichever items shared the same color. One target color was always

presented  on  the  horizontal  axis  (left  or  right  of  fixation),  while  the  other  was  always

presented  on  the  vertical  axis  (above  or  below  fixation),  with  color-position  assignment

randomly chosen but occurring equally often. The alphanumerical identity of each search

item was chosen randomly with the restriction that the two target objects belonged as often to

the same category (both letters or both digits) as to different categories (one letter and one

digit).  Consequently,  alphanumerical  category  and  positions  of  both  targets  were  fully

counterbalanced within a block.

Design.  Across blocks, we introduced three experimental conditions that differed in

(1) how many colors were task-relevant (i.e., the number of templates, TMP) and (2) how

many target colors appeared in a single search display (i.e., the number of different target

features, TGT). In 1TMP–1TGT blocks, only one color was task-relevant, so that both target

characters had the same color and participants knew beforehand which color they would

need to select. In the 2TMP–1TGT block type, two colors were cued as task-relevant, but only

one of the two target colors would actually appear in a search display, as was randomly
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determined from trial to trial (with equal numbers for each target color). Participants could not

predict which of the two target colors would be present in a specific search display, therefore

they had to keep two templates active,  even though only a single color  was required for

selecting the actual targets. Finally,  in the  2TMP-2TGT block type, again two colors were

cued as task-relevant, but now both these target colors also appeared in each search display,

so  that  both  colors  were  required  for  selection.  Each  condition  was  repeated  eight

consecutive times. When only one color was task-relevant (1TMP-1TGT), each of the four

colors would thus serve as the target color twice, whereas in blocks in which two colors were

task-relevant (2TMP-1TGT and 2TMP-2TGT), observers would look for the combinations red

and green or blue and yellow, each four times. We chose these color combinations as they

are not  linearly separable in color  space and thus prevented participants from potentially

setting up a single template encompassing both target features. The order of conditions was

counterbalanced  across  participants.  Prior  to  the  start  of  the  experiment,  participants

received instructions  and practiced all  conditions  in  increasing order  of  difficulty  (1TMP–

1TGT, 2TMP–1TGT, 2TMP–2TGT). During practice, participants repeated blocks of 32 trials

for each condition as often as necessary to reach an accuracy of 85%, but at least three

times. Note, even if participants had initially reached this inclusion criterion, they might still

have  performed below  85% during  the experiment.  Therefore,  eight  participants  with  an

accuracy below 85% were excluded from the analysis.

Apparatus & EEG Acquisition. The experiment was designed and run using the

OpenSesame software package (version 3.2.2; ref. 1). Stimuli were presented on a 22-inch
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Samsung Syncmaster 2233 monitor, with a resolution of 1680 x 1050 pixels at a refresh rate

of 120hz. Participants were seated in a dimly lit, sound-attenuated room in a distance from

the screen of approximately 70 cm and the eyes aligned with the center of the screen. A

QWERTY PS/2 keyboard was placed in the lap of each participant. They were instructed to

place left and right index fingers on the z and m keys to indicate whether targets were of the

same or different category. Further, they were asked to refrain from excessive blinking and

motion during the experiment. The experimenter received real-time feedback on behavioral

performance and quality of EEG recording in an adjacent room. 

We used the BioSemi ActiveTwo system (Biosemi, Amsterdam, The Netherlands) to

record from 64 AG/AgCl EEG channels, four EOG channels and two reference channels at a

sampling rate of 512 Hz. EEG channels were placed according to the 10-20 system. EOG

channels were placed one cm outside the external canthi of each eye to measure horizontal

eye movements and two cm above and below the right eye, respectively to measure vertical

eye movements and blinks. Reference electrodes were placed on the left and right mastoids.

EEG Preprocessing. All EEG preprocessing and analyses were performed offline in

Matlab (2014b, The Mathworks) and Python (2.7, www.python.org), using a combination of

EEGLAB (2), the Amsterdam Decoding And Modeling toolbox (ADAM, version: 1.07-beta, (3)

and  custom  scripts  (freely  accessible  at  https://osf.io/3bn64).  EEG  data  were  first  re-

referenced to the average of the left and right mastoids. No offline filters were applied to the

data. Next, the continuous signal was split into epochs from 300 ms before until 800 ms after

search display onset. Epochs were baseline corrected by removing the average activity in a
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pre-stimulus window between -100 and 0 ms from each time point.  All  epochs in  which

participants  failed  to  respond  correctly,  or  response  times  were  lower  than  200  ms

(anticipatory errors) or greater than three standard deviations above the block mean were

removed from further analyses (mean exclusion: 6.6%, min-max range across participants:

4.4% - 9.7%). To make sure that the EEG would not be contaminated by eye movements, we

scanned epochs for horizontal eye movements within the first 500 ms after stimulus onset

(amplitude threshold: 30 μV, window length: 100 ms, step size: 50 ms) and removed epochs

containing such. This resulted in an exclusion of on average 2.4% (min-max range: 0.0% -

16.8%) of all epochs. Noise due to muscle activity was removed using an automatic trial-

rejection procedure. To specifically capture EMG, we used a 110 - 140 Hz band-pass filter,

and allowed for variable z-score cut-offs per participant based on the within-subject variance

of z-scores, resulting in the exclusion of on average 7.1% (min-max range: 1.8% - 13.1%).

Next, all epochs were visually inspected for any obviously contaminated trials that have been

missed by the automatic trial-rejection procedure (mean exclusion: 0.4%, min-max range:

0.0% - 0.9%).  To identify and remove components related to blinks,  we used EEGLAB’s

implementation of independent component analysis (ICA). In total, 15.6% (min-max range:

8.1% - 34.2%) of all epochs were removed during preprocessing.

Decoding of Target Locations. The main analyses decoded target positions based

on the raw EEG of all 64 channels, using the ADAM toolbox (3). To that end, we used a 10-

fold cross-validation scheme by splitting the data of individual participants into ten equal-

sized folds after randomizing the order in which trials occurred in the experiment. A linear
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discriminant classifier was then trained on the data of nine folds and tested on the data of the

tenth one. This procedure was repeated ten times until each fold served as a test set once.

Finally,  the  classifier  performance  was  averaged  across  all  individual  folds.  For  each

condition, we trained one classifier to differentiate trials on which one of the targets was

presented on the left versus the right position, and another classifier to differentiate the same

trials as to whether the other target was presented on the top versus the bottom position.

Furthermore, to account for minor incidental imbalances with respect to the trial count per

class introduced by the trial rejection procedure, we performed within-class and between-

class balancing. For within-class balancing, we undersampled trials to match the number of

trials  in  which  the  target  appeared  on  the  irrelevant  dimension  within  each  class.  For

example, when training a classifier to differentiate trials in which the target appeared on the

left versus right position, we made sure that each class (e.g., left targets) contained the same

number of trials in which the second target appeared on the top or the bottom position by

removing  trials  of  the  more  frequent  trial  type.  Between-class  balancing  entailed  the

oversampling of trials (generating synthetic samples based on the existing data; see ref. (4)

belonging to the less frequent class, so that the classifier would not become biased toward

the more frequent class. As performance measure we used the Area Under the Curve (AUC,

ref. 5), which is an unbiased measure that is based in signal detection theory and describes

the area under the receiver-operator curve when plotting hit rate over false alarm rate. The

decoding performance for single conditions was statistically tested against chance level (AUC

= 0.5) by running two-sided one-sample t-tests across participants for every time point, or by
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testing AUCs against each other when comparing conditions directly. To correct for multiple

comparisons, we used cluster-based permutation tests (5000 permutations) on adjacent time

points  with  the  alpha  level  set  to  α =  .05  (6).  Next,  to  examine  the  topography  of  the

activations, we multiplied the classifier weights across all channels with the data covariance

matrix, yielding activation maps that can directly be interpreted as neural sources (7). 

Estimating and Statistically Testing Onset Latency and Amplitude Difference To

estimate the onset  latencies at  which target  location became decodable,  we used an

approach in which we combined computing the fractional peak latency with a jackknife-based

approach (8–10). Group-averaged classification scores were repeatedly computed over all

but one participant, until each participant was left out once. For each of these averages, we

estimated its onset latency by identifying the peak amplitude in the window of 150 to 700 ms

after search display onset and defined the onset as the first point in that time window in which

the classification scores exceeded 50% of the peak score. To mitigate the influence of high-

frequency noise on the latency estimation, for every time point we averaged the amplitude of

that time point and the two adjacent time points for peak and onset latency estimation. To

statistically test for potential differences in onset latencies across experimental conditions, we

followed Miller et al. (10) and computed t-statistics for the pairwise comparisons between the

1TMP-1TGT  and  2TMP-1TGT  condition,  and  between  the  2TMP-1TGT and  2TMP-2TGT

condition. The procedure corrects for the artificially reduced error term due to the jackknifing

by effectively dividing the t-statistic by the degrees of freedom. 
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 Finally, the 2TMP–1TGT condition (when two target colors were cued but only one of

them was present in any one search display) allowed us to asses intertrial switch costs (11–

15),  by  splitting  the  2TMP–1TGT  condition  into  repeat  and  switch  trials  and  to  run  all

analyses separately for these two trial types.

Correlating classification confidence.  Another useful feature of the AUC measure

is that it considers the confidence that a classifier has about class membership of a particular

instance at  every time point.  Confidence is  expressed as the distance from the decision

boundary  and  can  be  interpreted  as  the  representativeness  of  a  certain  instance  (EEG

activity  across all  channels for  a given time point)  of  that  class (16,  17).  Applied to the

present paradigm, we assumed that the more strongly prioritized a particular target position,

the  higher  the  classifier’s  confidence  scores.  Based  on  this  logic,  we  reasoned  that  if

prioritization is limited to a single target at a time, a classifier cannot simultaneously have

high confidence about both targets, and thus confidence should correlate negatively. To test

this hypothesis,  we extracted the confidence scores of both classifiers (left-right and top-

bottom) and correlated these across trials (Spearman’s ρ), separately for each time point and

condition. If prioritization is limited to a single item for certain time points, we would expect a

moderately negative correlation between left-right and top-bottom classifiers for those points,

because whenever the classifier has high confidence in one dimension, it will have low or

random confidence in the other dimension, and vice versa. If on the other hand, prioritization

occurs  in  parallel  and selection  strength  is  driven by  a  common mechanism,  one would

expect a positive correlation at those time points. Finally, if prioritization occurs in parallel but
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selection strength is driven by independent mechanisms, one would expect zero correlation.

To assess these competing hypotheses, correlations were statistically tested against zero by

running two-sided one-sample  t-tests across participants at every time point, using cluster-

based permutation tests (5000 permutations, α = .05) to correct for multiple comparisons (6).

Supplemental Results

Figure  S1. Average N2pc  difference  waves  for  targets  on  the  horizontal  (left  vs.  right)

meridian as  a  function of  number of  templates  and number of  target  features. N2pc

components  were  computed  using  the  electrodes  PO7  and  PO8,  by  subtracting  ERPs
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ipsilateral  to  the visual  field of  lateral  targets from contralateral  ERPs.  The shaded area

represents 1 SEM above and below the mean for every time point. Thick lines and horizontal

bars  indicate  significant  clusters  (at  α = .05)  as  produced by  cluster-based  permutation

testing (5000 permutations). For visualization purposes only, the classification scores over

time were fitted with a cubic spline (λ=15, comparable to a 30 Hz low-pass filter) to achieve

temporal smoothing.  Note the statistical analyses and estimation of the onset latencies

were  done  on  unsmoothed data.  The  marked  time  points  indicate  the  latency  of  50%

maximum amplitude as estimated using a jackknife approach, as a measure of the onset of

selection (8–10).

N2pc Analysis

Even  though  the  backward  decoding  approach  would  already  show  whether  and  when

location-specific information would be present in the raw EEG, for the sake of comparison to

the existing N2pc literature, we also conducted a more common event-related potential (ERP)

analysis to examine latency and amplitude of the N2pc component. First, to identify N2pc

components,  we computed ERPs locked to  stimulus  onset  at  electrodes PO7 and PO8.

ERPs at the ipsilateral electrode relative to the horizontal target position (i.e., PO7 for targets

on the left, PO8 for targets on the right), were subtracted from ERPs at the contralateral

electrode, collapsed over the vertical target position, but separately for each participant and

condition. The resulting difference wave forms were then statistically tested against zero with

two-sided one-sample  t-tests  at  each time point.  A cluster-based permutation  test  (5000
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permutations,  α = .05)  was  performed on contiguous time points  to  correct  for  multiple

comparisons (6). To quantify amplitudes and onset latency the same approach as for the

classification scores was used, with the exception that we did not use the entire epoch when

looking for the peak, but only the window of 200 – 350 ms post stimulus, as this is the time

window in which the N2pc is typically observed (e.g., refs. 18, 19). 

Reliable  N2pc  components  were  identified  in  all  three  conditions (see  Fig.  S2).

Furthermore, also the sustained posterior contralateral negativity (SPCN) was observed. This

component is thought to reflect visual working memory processes (20–23). In the 1TMP–

1TGT and 2TMP–1TGT conditions the N2pc merged directly into the SPCN, while in the

2TMP–2TGT condition the N2pc first disappeared, before the SPCN emerged later in the

trial.

Onset Latency To examine potential differences regarding the onset of N2pc waves,

we  ran  pairwise  t-tests  between  the  1TMP–1TGT  and  2TMP–1TGT  conditions  and  the

2TMP–1TGT and 2TMP–2TGT conditions on the jackknife-estimated onset latencies (50%

fractional peak latency). For the comparisons 1TMP–1TGT vs. 2TMP–1TGT, we found N2pc

latencies for the 2TMP-1TGT (M = 237 ms) condition to be significantly delayed relative to the

1TMP–1TGT (M = 214 ms) condition (M = 23 ms, tc(23) = 3.5, p = .002). Unexpectedly,

N2pcs in the 2TMP-1TGT condition were also significantly delayed relative to the 2TMP–

2TGT (M = 225 ms) condition (M = 12 ms, tc(23) = 2.2, p = .04). Finally, to assess the

strength of the N2pc over time, we took the difference between the N2pcs in the 1TMP–

1TGT  and  2TMP–1TGT  conditions  and  between  the  2TMP–2TGT  and  2TMP–1TGT
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conditions and compared them against zero, by running a one-sampled t test with cluster-

based permutation test (5000 permutations). This analysis suggested that the N2pcs in the

1TMP–1TGT and the 2TMP–1TGT conditions rose to a similar level, whereas the N2pc in the

2TMP–2TGT condition was significantly smaller in large parts of the N2pc window, as well as

the SPCN window. Overall  the N2pc results are similar to the findings of the multivariate

decoding approach, though the latter is likely to pick up on additional information as it is not

limited by choice of electrode and time window. 

Figure S2.  MVPA decoding performance for  target  position separately for  switch and

repeat trials in the 2TMP-1TGT condition. The shaded area represents 1 SEM above and
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below the mean for  every  time point.  Thick lines as well  as horizontal  bars  indicate

significant clusters (at α = .05) as produced by cluster-based permutation testing (5000

permutations). For visualization purposes only, the classification scores over time were

fitted  with  a  cubic  spline  (λ=15,  comparable  to  a  30  Hz  low-pass  filter)  to  achieve

temporal smoothing. Note the statistical analyses and estimation of the onset latencies

were done on  unsmoothed data. The marked time points indicate the latency of 50%

maximum amplitude as estimated using a jackknife approach (8–10).
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Figure S3. Individual MVPA decoding performance for target positions on the horizontal (left

vs. right, less saturated red line) and on the vertical meridian (top vs. bottom, more saturated

red  line)  in  the  2TMP-2TGT condition  (which  is  the  condition  where  we  expected  serial

processing, if any, to be most prominent). For each individual, we computed Spearman’s  ρ
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correlation between the classifier performances in the time window from 150 ms to 700 ms

post stimulus (the values of which are shown in each plot).  For visualization purposes only,

the classification scores over time were fitted with a cubic spline (λ=15, comparable to a 30

Hz low-pass filter) to achieve temporal smoothing. Note the correlations were performed on

unsmoothed data.

Correlation  of  confidence  scores  on  simulated  data  with  known  underlying

correlational structure

To investigate  whether  the  impairment  of  participants  when  they  needed  to  engage  two

templates in selection was due to limitations in parallel processing or a serial bottleneck, we

computed Spearman’s ρ correlation between the classifier confidence scores for targets

on the horizontal and vertical dimension across trials, separately for each time point, and

condition. A negative correlation would provide evidence in favor of a serial bottleneck,

while uncorrelated confidence scores would suggest parallel  processing. However,  an

uncorrelated signal would also be expected if decoding strength was simply too weak due

to  an  insufficient  signal-to-noise  ratio  (SNR)  in  the  data.  As  we  did  observe  a  null

correlation, we wanted to make sure that we had enough statistical power to detect a

correlation  if  it  was  actually  present.  To  that  end,  we  ran  a  simulation  in  which  we

embedded  a  signal  in  noise  and  systematically  manipulated  the  noise  levels,  to

determine at which decoding strength (i.e., SNR) a known correlation could be extracted.

This simulation was set up in such a way so that the exact same analysis pipeline could
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be applied as for the actual data. Specifically, we replaced the data of eight channels with

simulated data in which we injected either a positive, negative or null correlation between

horizontal and vertical targets and varied the overall noise level. The data were created

by generating half a cycle of a sine wave with an amplitude of 1 μV, extending over 400

ms  (200  –  600  ms  post  stimulus)  and  assigned  to  a  subset  of  channels  to  reflect

attentional selection. To create location-specific effects (i.e.,  contra vs. ipsilateral),  we

injected  the  same  ERP  with  a  negative  amplitude  on  an  orthogonal  subset  of  the

channels. Therefore, attentional selection was simulated with a positive ERP on half the

channels  and a negative  ERP on the  other  half.  Importantly,  attentional  selection of

vertical and horizontal targets was simulated independently, by using an orthogonal split

of the channels into contra- and ipsilateral. For every correlation pattern we simulated

512 trials, the same number as in the real experiment. For the positive correlation, we

injected the ERP for both vertical and horizontal targets on half of the simulated trials,

and no ERP on the other half, reflecting either both targets to be selected simultaneously,

or none of them (parallel selection). For the negative correlation, the ERP was either

injected for vertical targets or for horizontal targets (each half of the trials), but never in

both, reflecting the selection of either one or the other target (serial selection). For the

null correlation, per trial, we randomly chose whether an ERP was present for one of the

targets, both, or none. Next, we added random noise for all trials. Critically, the SNR was

parametrically manipulated, relative to the (constant) amplitude of the ERP. For example,
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a SNR of 4 means the peak ERP amplitude was four times as high as the maximum

noise amplitude. In total, we used SNRs of 4, 2, 1.33, 1, 0.67, 0.5, 0.33, 0.25, 0.2, 0.17,

0.14, 0.13, 0.11, 0.1, 0.07, 0.05, and 0.04. Once the simulated dataset was created, the

same  backward  decoding  model  (see  SI  Methods)  was  used  to  decode  the  target

location, separately for the vertical and horizontal target, the injected correlation and the

SNR. Similarly, the classifiers’ confidence scores were correlated between vertical and

horizontal targets, as was done for the actual data. Fig. S4A demonstrates that location-

specific  information  could  be  decoded  above  chance  for  all  SNRs,  but  that  the

classification performance declined with decreasing SNRs. Fig.  S4B then shows that

whether  or  not  the  injected  correlation  could  be  retrieved  from  the  data  strongly

depended on the SNR. For example, at an SNR of 0.1 the injected correlations between

horizontal and vertical targets could not be retrieved, despite classification performance

being reliably above chance. Notably, peak classification at that SNR is comparable to

the average group classification scores we observed in our data, suggesting that if there

were a correlation present in the actual data, the SNR may have been too low for our

analyses to detect it. To overcome this problem, we leveraged the individual subject data,

as this showed a considerable variability. Specifically, we extracted the peak AUC score

per classifier (top-bottom and left-right) for each individual within the 150-700 ms time

window, and then assessed the correlation between these dimensions for  these time

points. Figure 3B in the main text shows these individual maximum AUC scores plus the
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associated correlations. Maximum classification performance of several individuals was

well above the threshold at which correlations should become decodable (AUC > 0.6).

Importantly, no correlations in decoding strength between target locations was observed

for any of those participants, whether positive or negative. This is consistent with the idea

that the absence of correlations in the actual dataset reflects limited parallel processing.

Figure S4. Results of location decoding and correlation analysis of  a simulated datasets

across several signal-to-noise ratios (SNRs). We simulated ERPs, for targets at all four target

positions. These artificial ERPs were either positively, negatively, or not correlated between

vertical  and  horizontal  target  position.  The  SNR  of  the  simulated  dataset  was  then

manipulated by adding random noise of various levels (relative to the peak amplitude of the

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/653030doi: bioRxiv preprint 

https://doi.org/10.1101/653030
http://creativecommons.org/licenses/by/4.0/


RUNNING TITLE: COMPETITION IN MULTIPLE TARGET SELECTION

ERP) to the data. A) AUC scores (color coded) are shown for a location decoding analysis,

separately for the injected correlation and SNR across time. B) Spearman’s  ρ correlation

(color coded) between confidence scores of the vertical and horizontal classifiers, separately

for the injected correlation and SNR across time. For both A and B, only those timepoints

were colored, that survived cluster-based permutation testing (α = 0.05, 5000 permutations).

Dashed vertical lines indicate the time window in which the ERP was injected. 
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