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ABSTRACT 1 

 We read words and even jubmled wrods effortlessly, but the neural 2 

representations underlying this remarkable ability remain unknown. We hypothesized 3 

that word processing is driven by a visual representation that is compositional i.e. with 4 

string responses systematically related to letters. To test this hypothesis, we devised 5 

a model in which neurons tuned to letter shape respond to longer strings by linearly 6 

summing letter responses. This letter model explained human performance in both 7 

visual search as well as word reading tasks. Brain imaging revealed that viewing a 8 

string activates this compositional letter code in the lateral occipital (LO) region, and 9 

that subsequent comparisons to known words are computed by the visual word form 10 

area (VWFA). Thus, seeing a word activates a compositional letter code that enables 11 

efficient reading.  12 

  13 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2020. ; https://doi.org/10.1101/653048doi: bioRxiv preprint 

https://doi.org/10.1101/653048
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 3 of 47 

 

INTRODUCTION 14 

 Reading is a recent cultural invention, yet we are remarkably efficient at reading 15 

words and even jmulbed wrods (Figure 1A). What makes a jumbled word easy or hard 16 

to read? This question has captured the popular imagination through demonstrations 17 

such as the Cambridge University effect (Rawlinson, 1976; Grainger and Whitney, 18 

2004), depicted in Figure 1A. Reading a word or a jumbled word can be influenced by 19 

a variety of factors (Norris, 2013; Grainger, 2018). Word reading is easy when similar 20 

shapes are substituted (Perea et al., 2008; Perea and Panadero, 2014), when the first 21 

and last letters are preserved (Rayner et al., 2006), when there are fewer 22 

transpositions (Gomez et al., 2008) and when word shape is preserved (Norris, 2013; 23 

Grainger, 2018). Word reading is also easier for words with frequent bigrams or 24 

trigrams, for frequent words and for shuffled words that preserve intermediate units 25 

such as consonant clusters or morphemes (Norris, 2013; Grainger, 2018). Despite 26 

these insights, it is not clear how these factors combine, what their distinct 27 

contributions are, and more generally, how word representations relate to letter 28 

representations.  29 

 Here, we hypothesized that word reading is enabled by a purely visual 30 

representation. To probe purely visual processing, we devised a visual search task in 31 

which subjects had to find an oddball target among distractors. This task does not 32 

require any explicit reading and is driven by shape representations in visual cortex 33 

(Sripati and Olson, 2010a; Zhivago and Arun, 2014). An example visual search array 34 

containing two oddball targets is shown in Figure 1B. It can be seen that finding 35 

OFRGET is easy among FORGET whereas finding FOGRET is hard (Figure 1B). This 36 

difference in visual similarity (Figure 1C) explains why transposing the middle letters 37 

renders a word easier to read than transposing its edge letters. This example suggests 38 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2020. ; https://doi.org/10.1101/653048doi: bioRxiv preprint 

https://doi.org/10.1101/653048
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 4 of 47 

 

that word reading could be explained by purely visual processing as indexed by visual 39 

search. However, subjects may have been reading during visual search, thereby 40 

activating non-visual lexical or linguistic factors.  41 

 To overcome this confound, we asked whether visual search involving letter 42 

strings can be explained using a neurally plausible model containing only visual 43 

factors. We drew upon two well-established principles of object representations in 44 

high-level visual cortex. First, images that are perceptually similar elicit similar activity 45 

in single neurons (Op de Beeck et al., 2001; Sripati and Olson, 2010a; Zhivago and 46 

Arun, 2014). Accordingly we used visual search for single letters to create artificial 47 

neurons tuned for single letters. Second, the neural response to multiple objects is an 48 

average of the response to the individual objects, a phenomenon known as divisive 49 

normalization (Zoccolan et al., 2005; Ghose and Maunsell, 2008; Zhivago and Arun, 50 

2014). Accordingly, we created neural responses to letter strings as a linear sum of 51 

single letter responses. In contrast to an influential proposal that requires neurons 52 

tuned to letter combinations (Dehaene et al., 2005, 2010), our model only assumes 53 

neurons tuned for letter shape and retinal position, as observed in high-level visual 54 

cortex (Lehky and Tanaka, 2016). It does not capture any information about 55 

specialized detectors for longer strings, or about other lexical or linguistic factors. We 56 

used this model to explain human performance on visual search as well as word 57 

recognition tasks. Finally, using brain imaging, we identified the neural substrates for 58 

both the letter code as well as subsequent lexical decisions.  59 

 60 

  61 
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 62 

 63 
Figure 1. Reading jumbled words 64 

(A) We are extremely good at reading jumbled words, as illustrated by the popular 65 

Cambridge University effect.  66 

(B) Visual search array showing two oddball targets (OFRGET & FOGRET) among 67 

many instances of FORGET. OFRGET is easy to find but not FOGRET.  68 

(C) Schematic representation of these strings in visual search space, arranged such 69 

that similar items (corresponding to harder searches) are nearby. Thus, FOGRET 70 

is closer to FORGET compared to OFRGET (i.e. d1 > d2).   71 
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RESULTS 72 

 We performed five key experiments. In Experiment 1, subjects performed visual 73 

search involving single letters, and we used this to construct artificial neurons tuned 74 

for letter shape. In Experiments 2-4, we show that search for longer strings can be 75 

predicted using these artificial neurons with a simple compositional rule. In Experiment 76 

5, we show that this model also explains human performance on a commonly studied 77 

word recognition task. Finally, in Experiment 6, we measured brain activations during 78 

word recognition to elucidate the underlying neural representations.  79 

 80 

Experiment 1: Single letter searches 81 

 We recruited 16 subjects to perform an oddball visual search task involving 82 

uppercase letters (n = 26), lowercase letters (n = 26) and digits (n = 10). An example 83 

search is shown in Figure 2A. Subjects were highly consistent in their responses (split-84 

half correlation between average search times of odd- and even-numbered subjects: 85 

r = 0.87, p < 0.00005). We calculated the reciprocal of search times for each letter pair 86 

which is a measure of distance between them (Arun, 2012). These letter dissimilarities 87 

were significantly correlated with previously reported subjective dissimilarity ratings 88 

(Section S1). 89 

Since shape dissimilarity in visual search matches closely with neural 90 

dissimilarity in visual cortex (Sripati and Olson, 2010a; Zhivago and Arun, 2014), we 91 

asked whether these letter distances can be used to reconstruct the underlying neural 92 

responses to single letters. To do so, we performed a multidimensional scaling (MDS) 93 

analysis, which finds the n-dimensional coordinates of all letters such that their 94 

distances match the observed visual search distances. In the resulting plot for 2 95 

dimensions for uppercase letters (Figure 2B), nearby letters correspond to small 96 
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distances i.e. long search times. The coordinates of letters along a particular 97 

dimension can then be taken as the putative response of a single neuron. For example, 98 

the first dimension represents the activity of a neuron that responds strongest to the 99 

letter O and weakest to X (Figure 2C). Likewise the second dimension corresponds to 100 

a neuron that responds strongest to L and weakest to E (Figure 2C). We note that the 101 

same set of distances can be obtained from a different set of neural responses: a 102 

simple coordinate axis rotation would result in another set of neural responses with an 103 

equivalent match to the observed distances. Thus, the estimated activity from MDS 104 

represents one possible solution to how neurons should respond to individual letters 105 

so as to collectively produce behaviour.  106 

As expected, increasing the number of MDS dimensions led to increased match 107 

to the observed letter dissimilarities (Figure 2D). Taking 10 MDS dimensions, which 108 

explain nearly 95% of the variance, we obtained the single letter responses of 10 such 109 

artificial neurons. We used these single letter responses to predict their response to 110 

longer letter strings in all the experiments. Varying this choice yielded qualitatively 111 

similar results. Analogous results for all letters and numbers are shown in Section S1.  112 

  113 
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 114 
Figure 2. Single letter discrimination (Experiment 1) 115 

(A) Visual search array showing two oddball targets (W & T) among many Ns. It can 116 

be seen that finding W is harder compared to finding T. The actual experiment 117 

comprised search arrays with only one oddball target among 15 distractors.  118 

(B) Visual search space for uppercase letters obtained by multidimensional scaling of 119 

observed dissimilarities. Nearby letters represent hard searches. Distances in this 120 

2D plot are highly correlated with the observed distances (r = 0.82, p < 0.00005). 121 

Letter activations along the x-axis are taken as responses of Neuron 1 (blue), and 122 

along the y-axis are taken as Neuron 2 (red), etc. The tick marks indicate the 123 

response of each letter along that neuron.  124 

(C) Responses of Neuron 1 and Neuron 2 shown separately for each letter. Neuron 1 125 

responds best to O, whereas Neuron 2 responds best to L.  126 

(D) Correlation between observed distances and MDS embedding as a function of 127 

number of MDS dimensions. The black line represents the split-half correlation with 128 

error bars representing s.d calculated across 100 random splits.  129 

  130 
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Experiment 2: Bigram searches 131 

 Next we proceeded to ask whether searches for longer strings can be explained 132 

using single letter responses. In Experiment 2, we asked subjects to perform oddball 133 

searches involving bigrams. An example search is depicted in Figure 3A. It can be 134 

seen that, finding TA among AT is harder than finding UT among AT. Thus, letter 135 

transpositions are more similar compared to letter substitutions, consistent with the 136 

classic results on reading (Norris, 2013; Grainger, 2018). To characterize the effect of 137 

bigram frequency, we included both frequent bigrams (e.g. IN, TH) and infrequent 138 

bigrams (e.g. MH, HH). As before, subjects were highly consistent in their performance 139 

(split-half correlation between odd and even numbered subjects across all bigrams: r 140 

= 0.82, p < 0.00005).  141 

 Next we asked whether bigram search performance can be explained using 142 

neurons tuned to single letters estimated from Experiment 1. The essential principle 143 

for constructing bigram responses is depicted in Figure 3B. In monkey visual cortex, 144 

the response of single neurons to two simultaneously presented objects is an average 145 

of the single object responses (Zoccolan et al., 2005; Zhivago and Arun, 2014; Pramod 146 

and Arun, 2018). This averaging can easily be biased through changes in divisive 147 

normalization (Ghose and Maunsell, 2008). Therefore we took the response of each 148 

neuron to a bigram to be a weighted sum of its responses to the constituent letters 149 

(Figure 3B). Specifically, the response of a neuron to the bigram AB is given by rAB = 150 

w1rA + w2rB, where rAB is the response to AB, rA and rB are its responses to the 151 

constituent letters A & B, and w1, w2 are the summation weights reflecting the 152 

importance of letters A & B in the summation. Note that if w1 = w2, the bigram response 153 

to AB and BA will be identical. Thus, discriminating letter transpositions necessarily 154 

requires asymmetric summation in at least one of the neurons.  155 
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 To summarize, the letter model for bigrams has two unknown spatial weighting 156 

parameters for each of the 10 neurons, resulting in 2 x 10 = 20 free parameters. To 157 

calculate dissimilarities between a pair of bigrams, we calculated the Euclidean 158 

distance between the 10-dimensional response vectors corresponding to the two 159 

bigrams. The data collected in the experiment comprised dissimilarities (1/RT) from 160 

1,176 searches involving all possible pairs of 49 bigrams. To estimate the model 161 

parameters, we optimized them to match the observed bigram dissimilarities using 162 

standard nonlinear fitting algorithms (see Methods).  163 

 This letter model yielded excellent fits to the observed data (r = 0.85, p < 164 

0.00005; Figure 3C). To assess whether the model explains all the systematic 165 

variance in the data, we calculated an upper bound estimated from the inter-subject 166 

consistency (see Methods). This consistency measure (rdata = 0.90) was close to the 167 

model fit, suggesting that the model captured nearly all the systematic variance in the 168 

data. As predicted in the schematic figure (Figure 3B), the estimated spatial 169 

summation weights were unequal (absolute difference between w1 and w2, mean ± sd: 170 

0.07 ± 0.04). To assess whether this difference is statistically significant, we randomly 171 

shuffled the observed dissimilarities and estimated these weights. The absolute 172 

difference between shuffled weights was significantly smaller than for the original 173 

weights (average absolute difference: 0.03 ± 0.02; p < 0.005, sign-rank test across 10 174 

neurons).  175 

According to an influential account of word reading, specialized detectors are 176 

formed for frequently occurring combinations of letters (Dehaene et al., 2005). If this 177 

were the case, searches involving frequent bigrams (e.g. TH, ND) or two letter words 178 

(e.g. AN, AM) should produce larger model errors compared to infrequent bigrams, 179 

since our model does not incorporate any bigram-selective units. Alternatively, if 180 
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bigram discrimination was driven entirely by single letters, we should find no difference 181 

in errors.  In keeping with this latter prediction, we observed no visually obvious 182 

difference in model fits for frequent bigram pairs or word-word pairs compared to other 183 

bigram pairs (Figure 3C). To quantify this observation, we asked whether the model 184 

error for each bigram pair, calculated as the absolute difference between observed 185 

and predicted dissimilarity, covaried with the average bigram frequency of the two 186 

bigrams (for both frequent bigrams and words). This revealed a weak negative 187 

correlation whereby frequent bigram pairs showed smaller errors (r = -0.06, p = 0.04 188 

across 1176 bigram pairs). This is the opposite of what would be expected if there 189 

were specialized detectors. To further investigate possible bigram frequency effects, 190 

we compared the model error for the 20 bigram pairs with the largest mean bigram 191 

frequency with the 20 pairs with the lowest mean bigram frequency. This too revealed 192 

no systematic difference (mean ± sd of residual error: 0.10 ± 0.08 for the 20 most 193 

frequent bigrams and words; 0.11 ± 0.09 for 20 least frequent bigrams; p = 0.80, rank-194 

sum test). Thus, model errors are not systematically different for frequent compared 195 

to infrequent bigram pairs. We conclude that bigram search can be explained entirely 196 

using single neurons tuned to single letters.  197 

 198 

Experiment 3: Upright versus inverted bigrams 199 

In the letter model described above, the response to bigrams is a weighted sum 200 

of the single letter responses. As detailed earlier, a critical prediction of this model is 201 

that the response to transposed bigrams such as AB & BA will be different only if the 202 

summation weights are unequal. By contrast, repeated letter bigrams such as AA & 203 

BB will remain discriminable regardless of the nature of summation, since their 204 

response will be proportional to the respective single letter responses. Since reading 205 
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expertise can modulate sensitivity to letter transpositions, we reasoned that familiarity 206 

might modulate the summation to make it more asymmetric. We therefore predicted 207 

that this would make transposed letter searches (with AB as target and BA as 208 

distractor, or vice-versa) easier to discriminate in a familiar upright orientation 209 

compared to the (unfamiliar) inverted orientation. By contrast, searches involving 210 

repeated letter bigrams (with AA as target and BB as distractor), which also have a 211 

change in two letters, will remain equally easy in both upright and inverted orientations.  212 

We tested this prediction in Experiment 3 by asking subjects to perform 213 

searches involving upright and inverted bigrams. The essential findings are 214 

summarized in Figure 3D. As predicted, subjects discriminated repeated letter bigrams 215 

(AA-BB searches) equally well at both upright and inverted orientations, but were 216 

substantially faster at discriminating transposed letter pairs (AB-BA searches) in the 217 

upright orientation (Figure 3D; for detailed analyses see Section S2). We obtained 218 

similar results on comparing upright and inverted trigrams as well (Section S2).  219 

We conclude that familiarity leads to asymmetric spatial summation.  220 

 221 

 222 

 223 

  224 
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 225 
 226 

Figure 3. Discrimination of strings is explained using single letters (Expts 2-4) 227 

(A) Example search array with two oddball targets (UT & TA) among the bigram AT. It 228 

can be seen that UT is easier to find than TA, showing that letter substitution 229 

causes a bigger visual change compared to transposition.  230 

(B) Schematic diagram of how the bigram response is obtained from letter responses. 231 

Consider two neurons selective to single letters A, T & U. These letters can be 232 

represented in a 2D space in which the response to each neuron lies along one 233 

axis. For each neuron, we take the response to a bigram to be a weighted sum of 234 

the single letter responses. Thus, the bigram response lies along the line joining 235 

the two stimuli. Note that the bigrams AT and TA can be distinguished only if there 236 

is unequal summation. In the schematic, the first position is taken to have higher 237 

magnitude, as a result of which the response to AT is closer to A than to T.  238 

(C) Observed dissimilarities between bigram pairs plotted against predictions of the 239 

letter model for word-word pairs (red diamonds), frequent bigram pairs (blue 240 

circles) and all other bigram pairs (gray dots), for Experiment 2. Model correlation 241 

is shown at the top left, along with the data consistency for comparison. Asterisks 242 

indicate the statistical significance of the correlations (**** is p < 0.00005).  243 

(D) Average observed search reaction time for upright (dark) and inverted (pale) 244 

bigram searches for repeated letter pairs (AA-BB pairs) and transposed letter pairs 245 

(AB-BA pairs) in Experiment 3. Asterisks indicate statistical significance of the main 246 

effect of orientation in an ANOVA (see text for details; **** is p < 0.00005).  247 

(E) Mean modulation index of the summation weights, calculated as |w1-w2|/|w1+w2|, 248 

where w1 and w2 are the bigram summation weights, averaged across the 10 249 

neurons in the letter model for upright (dark) and inverted (pale) bigrams. The 250 

asterisk indicates statistical significance calculated on a sign-rank test comparing 251 

the modulation index across 10 neurons (* is p < 0.05).  252 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2020. ; https://doi.org/10.1101/653048doi: bioRxiv preprint 

https://doi.org/10.1101/653048
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 14 of 47 

 

(F) Observed dissimilarities between 6-letter strings in visual search (Experiment 4) 253 

plotted against predicted dissimilarities from the single letter model for word-word 254 

pairs (red dots) and all other pairs (gray dots). Model correlation is shown at the 255 

top left with data consistency for comparison. Asterisks indicate statistical 256 

significance of the correlations (**** is p < 0.00005).  257 

(G) Cross-validated model correlation for the letter model (dark) and the Orthographic 258 

Levenshtein distance (OLD) model (light). For each model, the cross-validated 259 

correlation is the correlation between model predictions trained on one half of the 260 

data and the observed response times from the other half. The upper bound on 261 

model fits is the split-half correlation (rsh) shown in black with shaded error bars 262 

representing standard deviation across 1000 random splits. The asterisk indicates 263 

statistical significance of the comparison obtained by estimating the fraction of 264 

bootstrap samples in which the observed difference was violated (** is p < 0.005).  265 

(H) Cross-validated letter model correlation for word-word pairs and nonword-nonword 266 

pairs.  267 

 268 

Generalization to longer strings 269 

To investigate whether these results would generalize to longer strings which 270 

can contain frequent words, we performed several additional visual search 271 

experiments using 3, 4, 5 and 6-letter uppercase strings (Section S4). In Experiment 272 

4, subjects performed visual search involving six-letter strings that were either valid 273 

compound words (e.g. FORGET, TEAPOT) or pseudowords (FORPOT, TEAGET). 274 

The single letter model yielded excellent fits to the data (Figure 3F). These fits were 275 

superior to a widely used measure of string similarity, the Orthographic Levenshtein 276 

Distance (OLD) model (Figure 3G). Importantly, the letter model fits were equivalent 277 

for both word-word pairs and nonword-nonword pairs (Figure 3H). These and other 278 

analyses are described in Section S3.  279 

The letter model also yielded excellent fits across all string lengths tested. We 280 

also tested lowercase and mixed-case strings because word shape is thought to play 281 

a role when letters vary in size or have upward and downward deflections (Pelli and 282 

Tillman, 2007). Even here, the letter model, without any explicit representation of 283 

overall word shape, was able to accurately predict most of the search performance. 284 

These results are detailed in Section S4.  285 
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The letter model described is neurally plausible and compositional, but is based 286 

on dissimilarities between letters presented in isolation. It could be that the 287 

representation of a letter within a bigram, although compositional, differs from its 288 

representation when seen in isolation. To explore these possibilities we developed an 289 

alternate model in which bigram dissimilarities can be predicted using a sum of 290 

(unknown) part dissimilarities at different locations. The resulting model, which we 291 

denote as the part sum model, yielded comparable fits to the data. It is completely 292 

equivalent to the letter model under certain conditions. Unlike the letter model which 293 

is nonlinear and could suffer from multiple local minima, the part sum model is linear 294 

and its parameters can be estimated uniquely using standard linear regression. Its 295 

complexity can be drastically reduced using simplifying assumptions without affecting 296 

model fits. These results are detailed in Section S5.  297 

 298 

Experiment 5: Lexical decision task  299 

 The above experiments show that discrimination of strings in visual search can 300 

be explained by neurons tuned for single letter shape with letter responses that 301 

combine linearly. Could the same shape representation drive reading behaviour? We 302 

evaluated this possibility through two separate word recognition experiments.  303 

In Experiment 5, we used a widely used paradigm for word recognition, a lexical 304 

decision task (Norris, 2013; Grainger, 2018). Subjects had to indicate whether a string 305 

of letters is a word or not using a keypress. The words comprised 4, 5 or 6-letter words 306 

and the nonwords consisted of random strings and jumbled words. Subjects were 307 

highly accurate in responding to both words and nonwords (mean ± sd: 96 ± 2% for 308 

words, 95 ± 3% for nonwords). Importantly, their response times across words and 309 

nonwords were consistent as evidenced by a significant split-half correlation 310 
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(correlation between odd- and even-numbered subjects: r = 0.59 for words, r = 0.73 311 

for nonwords, p < 0.00005). Since responses in lexical decision tasks are thought to 312 

depend on accumulation of evidence towards or against word status (Ratcliff et al., 313 

2004; Ratcliff and McKoon, 2008), we hypothesized that looking at a string of letters 314 

will activate the compositional neural code for the string which is then compared to 315 

stored patterns corresponding to known words.  316 

We started by characterizing response times for words. To depict the 317 

systematic variation in word response times, we plotted them in descending order 318 

(Figure 4A). Subjects took longer to respond to infrequent words like MALICE 319 

compared to frequent words like MUSIC. If the string is a word, the response time will 320 

depend on the strength of the stored pattern, which in turn would depend on lexical 321 

factors such as word frequency (Ratcliff et al., 2004; Ratcliff and McKoon, 2008). 322 

Indeed, response times for words showed a negative correlation with log word 323 

frequency (r = -0.5, p < 0.00005 across 450 words). We also estimated other lexical 324 

factors such as the logarithm of the letter frequency (averaged across letters of the 325 

string), logarithm of the bigram frequency (averaged across all bigrams in the string), 326 

and the number of orthographic neighbours (i.e. number of nearby words), which are 327 

all standard measures in linguistic corpora (see Methods).  328 

To avoid overfitting, we trained a model based on each factor on one half of the 329 

subjects and tested it on the other half. This cross-validated performance is shown for 330 

all lexical factors in Figure 4B. It can be seen that the word frequency is the best 331 

predictor of word response times (Figure 4B). To assess whether all lexical factors 332 

together predict word response times any better, we fit a combined model in which the 333 

word response times are modelled as a linear sum of the four factors. The combined 334 

model performance was comparable to the performance of the word frequency model 335 
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alone (Figure 4B). To assess the statistical significance of these results, we performed 336 

a bootstrap analysis. On each trial, we trained all models on the dissimilarity obtained 337 

from considering only one randomly chosen half of subjects. We calculated the 338 

correlation between each model’s predictions on the other half of the data, and 339 

repeated this procedure 1000 times. Across these samples, the word frequency model 340 

performance rarely fell below all other individual models (p < 0.005). We conclude that 341 

word response times are determined primarily by word frequency.  342 

Next we investigated the factors determining the nonword response times. The 343 

nonword responses are plotted in descending order in Figure 4C. Subjects took longer 344 

to respond to jumbled words like PENICL (original word: PENCIL) with fewer 345 

transpositions compared to VTAOCE (original word: OCTAVE) with more 346 

transpositions. We hypothesized that, if a string is a nonword, the response will be 347 

slow if there is a nearby stored pattern corresponding to a word, and fast otherwise 348 

(Dufau et al., 2012; Yap et al., 2015). Likewise the response is likely to be faster if the 349 

nearest word is highly familiar (i.e. frequent in the lexicon). Specifically, nonword 350 

response times will be inversely proportional to the dissimilarity of the nonword to the 351 

nearest word (Figure 4D), and also inversely proportional to the frequency of the 352 

nearest word (Figure 4D).  353 

To test this prediction, we took the letter model with 10 neurons with single letter 354 

tuning and optimized the spatial summation weights to match the reciprocal of the 355 

nonword responses for each word length. The model yielded excellent fits to the data 356 

(r = 0.70, p < 0.00005; Figure 4E). This model fit was comparable to the data 357 

consistency (rdata = 0.84). Importantly, this model was able to explain classic 358 

phenomena in orthographic processing. Specifically, subjects took longer to respond 359 

to nonwords obtained by transposing a letter of a word, compared to nonwords 360 
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obtained through letter substitution – these trends were present in the model 361 

predictions as well (Figure 4F). Likewise, subjects took longer when the middle letters 362 

were transposed compared to when the edge letters were transposed – as did the 363 

model predictions (Figure 4F). These effects replicate the classic orthographic 364 

processing effects reported across many studies (Grainger et al., 2012; Norris, 2013; 365 

Ziegler et al., 2013; Grainger, 2018).  366 

Next we asked whether a widely used measure of orthographic distance could  367 

explain the same data. We selected the Orthographic Levenshtein Distance (OLD), in 368 

which the net distance between two strings is calculated as the minimum number of 369 

letter additions, transpositions and deletions required to transform one string into 370 

another. The OLD model yielded relatively poorer predictions of the data (r = 0.36, p 371 

< 0.00005; Figure 4G).  372 

We compared the letter model with two alternate models: the OLD model and 373 

a model based on lexical factors. The OLD model is as described above. In the lexical 374 

model, the nonword response time is modelled as a linear sum of log word frequency, 375 

log mean bigram frequency of words, log mean bigram frequency of nonwords, # 376 

orthographic neighbours, log letter frequency. Since all three models have different 377 

numbers of free parameters, we compared their performance using cross-validation: 378 

we trained each model on one-half of the subjects and evaluated it on the other half 379 

of the subjects. The resulting cross-validated model fits are shown in Figure 4H. The 380 

letter model outperformed both the OLD model and the lexical model (model 381 

correlations: r = 0.56 ± 0.02, 0.33 ± 0.01 and 0.35 ± 0.01 for the neural, OLD and 382 

lexical models; fraction of bootstrap samples with neural <  other models: p < 0.005; 383 

Figure 4H). To be absolutely certain that the superior fit of the letter model was not 384 

simply due to having more free parameters, we compared the lexical model with a 385 
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reduced version of the letter model with only 5 free parameters (SID model; Section 386 

S5). Even this reduced model yielded fits were better than the lexical model (SID 387 

model correlation: r = 0.48 ± .02). Finally, a combined model – in which the neural and 388 

lexical model predictions were linearly combined – proved to explain more variance 389 

than either model (Figure 4H).  390 

In sum, we conclude that word response times are explained by word frequency 391 

and nonword response times are explained by the distance between the nonword and 392 

the nearest word calculated using the compositional neural code. As a further test of 393 

the ability of this compositional code to explain word reading, we performed an 394 

additional experiment in which subjects had to recognize the identity of a jumbled 395 

word. Here too, response times were explained best by the letter model compared to 396 

lexical and OLD models (Section S6).  397 

 398 

  399 
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 400 
Figure 4. Lexical decision task behaviour (Experiment 5) 401 

(A) Response times for words in the lexical decision task, sorted in descending order. 402 

The solid line represents the mean categorization time for words and the shaded 403 

bars represent s.e.m. Some example words are indicated using dotted lines. The 404 

split-half correlation between subjects (rsh) is indicated on the top.   405 

(B) Cross-validated model correlation between observed and predicted word response 406 

times across all words for various models: log word frequency (blue), number of 407 

orthographic neighbours (orange), log mean bigram frequency (purple), log mean 408 

letter frequency (cyan) and a combined model containing all these factors (red). 409 

Shaded error bars indicate mean ± sd of the correlation across 1000 random splits 410 

of the observed data. The asterisk indicates statistical significance of the 411 

comparison obtained by estimating the fraction of bootstrap samples in which the 412 

observed difference was violated (* is p < 0.05, ** is p < 0.005). 413 

(C) Response times for nonwords in the lexical decision task, sorted in descending 414 

order. Conventions as in (A).  415 

(D) Schematic of visual word space, with one stored word (PENCIL) and two nonwords 416 

(PENICL & EPNCIL). We hypothesize that subjects would take longer to categorize 417 

a nonword when it is similar to a word, i.e. RT for PENICL would be larger than for 418 

EPNCIL. Thus, 1/RT would be proportional to this dissimilarity, and also to word 419 

frequency.  420 

(E) Observed reciprocal response times for nonwords in the lexical decision task 421 

plotted against letter model predictions fit to the full dataset (450 nonwords). Some 422 

example nonwords are depicted.  423 

(F) Percent change in response time (nonword-RT – word-RT)/word-RT for middle & 424 

edge letter transpositions and for middle & edge substitutions for observed data 425 

(left) and for letter model predictions (right). MS: middle substitution. In both cases, 426 

asterisks represent statistical significance comparing the means of the 427 

corresponding groups using a rank-sum test (* is p < 0.05, ** is p < 0.005, etc.). 428 
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(G) Observed reciprocal response times plotted against the Orthographic Levenshtein 429 

Distance (OLD), a popular model for edit distance between strings.   430 

(H) Cross-validated model correlation between observed and predicted nonword RTs 431 

for the letter model, OLD model, lexical model and the combined neural+lexical 432 

model. Conventions are as in (B).  433 

 434 

Brain activations during lexical decisions (Experiments 6-7) 435 

 The above results show that visual discrimination of strings can be explained 436 

using a letter-based compositional neural code, and that dissimilarities calculated 437 

using this code can explain human performance on reading tasks. Here, we sought to 438 

uncover the brain regions that represent this code and guide eventual lexical 439 

decisions.  440 

 In Experiment 6, we recorded neural activations using fMRI while subjects 441 

performed a lexical decision task. Since lexical decision times for nonwords can be 442 

predicted using visual dissimilarity, we performed a separate experiment to directly 443 

estimate visual dissimilarities using visual search (Experiment 7; see Methods). 444 

Additionally, we estimated the semantic dissimilarity between words in order to 445 

compare visual and semantic representations in different ROIs (see Methods). 446 

Importantly, the visual search and semantic dissimilarities were uncorrelated (r = 0.03, 447 

p = 0.55), thereby allowing us to identify regions with distinct or overlapping 448 

visual/semantic representations. The visual and semantic representations are 449 

visualized in Section S7.  450 

 We identified several possible regions of interest (ROIs) using a combination of 451 

functional localizers and anatomical considerations (see Methods). These included the 452 

early and mid-level visual areas (V1-V3 & V4), the object-selective lateral occipital 453 

region (LO), and two language areas: the visual word form area (VWFA) which 454 

selectively responds to words and a broad region in the temporal gyrus reading 455 
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network (TG). The flattened brain map of a representative subject with these ROIs is 456 

shown in Figure 5A.  457 

For the main event-related block, subjects had to make a response on each 458 

trial to indicate whether a string displayed on the screen was a word or not. The stimuli 459 

consisted of 5-letter words, nonwords. Subjects also viewed single letters, to which 460 

they had to make no response. Subjects were highly accurate (mean ± std of accuracy: 461 

94 ± 4%) and showed consistent response time variations (split-half correlation 462 

between odd and even subjects: rsh = 0.54 & 0.79 for words and nonwords, p < 463 

0.00005). As before, the lexical decision time for words was negatively correlated with 464 

word frequency (r = -0.42, p < 0.05). Likewise, the lexical decision times for nonwords 465 

were strongly correlated with the word-nonword dissimilarity measured in visual 466 

search in Experiment 7 (r = -0.68, p < 0.00005). These results reconfirm the findings 467 

of the previous experiment performed outside the scanner.  468 

 We first compared the overall brain activation levels for words, nonwords and 469 

letters in each ROI. While V4 showed greater activation for words compared to 470 

nonwords, VWFA and TG regions showed greater activation to nonwords compared 471 

to words, presumably reflecting greater engagement to discriminate nonwords that are 472 

highly similar to words (Section S7). Although the visual regions did not show 473 

differential overall activations, there could still be differential activation at the 474 

population level for words and nonwords. To assess this possibility, we built linear 475 

classifiers to discriminate words from nonwords using the voxel population activity in 476 

each ROI. This revealed above-chance classification in all ROIs. Further, 477 

discriminating words from nonwords was significantly easier for nonwords that were 478 

obtained by substituting letters compared to those obtained by transposing letters 479 

(Section S7). Correspondingly, in behaviour, subjects were faster at responding to 480 
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substituted nonwords compared to transposed nonwords (response times, mean ± sd: 481 

1.03 ± 0.08 s for 16 substituted nonwords, 1.20 ± 0.15 s for 16 transposed nonwords, 482 

p < 0.005, rank-sum test comparing average response times). A detailed analysis of 483 

these results is presented in Section S7.  484 

 485 

Neural correlates of the compositional letter code  486 

Next we sought to compare the neural representations in each ROI with visual 487 

search and semantic representations. The visual search and semantic representations 488 

can be quite distinct, as depicted in Figure 5B: in visual search space, TRAIL and 489 

TRIAL can be quite similar since one is obtained from the other by transposing letters, 490 

but the word PATH is quite distinct. By contrast, in semantic space, TRAIL and PATH 491 

have similar meanings and usage whereas TRIAL is quite distinct. Indeed, visual 492 

search and semantic dissimilarities across words were uncorrelated for the words in 493 

experiment (r = 0.03, p = 0.55).  494 

To investigate these issues, we calculated the neural dissimilarity between 495 

each stimulus pair in a given ROI as the cross-validated Mahalanobis distance 496 

between the voxel-wise activations evoked by the two stimuli. We then averaged this 497 

dissimilarity across subjects to get an average neural dissimilarity for that ROI. We 498 

then compared this neural dissimilarity in each ROI with visual dissimilarities estimated 499 

from visual search. This match to visual search dissimilarity is shown in Figure 5C. 500 

Among the ROIs tested, only the LO dissimilarities showed a significant correlation 501 

(correlation between 1024 pairwise dissimilarities involving 32C2 words, 32C2 502 

nonwords, and 32 word-nonword pairs: r = 0.16, p < 0.00005; Figure 5C). A searchlight 503 

analysis confirmed that the match to visual search dissimilarities was strongest in a 504 

region centred around the bilateral LO region (Section S7). Thus, neural dissimilarity 505 
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in the LO region match best with the visual dissimilarities observed in visual search. 506 

We therefore conclude that LO is the likely neural substrate for the compositional letter 507 

code.  508 

To further investigate the link between the compositional letter code and the LO 509 

representation, we performed several additional analyses. First, we asked whether the 510 

neural activation of each voxel in LO could be explained using a linear sum of the 511 

single letter activations. Importantly, these model fits were equally good for words and 512 

nonwords. This parallels our finding that dissimilarity in visual search was predicted 513 

equally well for word-word and nonword-nonword pairs (Figure 3H). Both these results 514 

suggest that there are no specialized detectors for letter combinations (Section S7). 515 

Second, we confirmed that both the neural tuning for single letters, and the summation 516 

weights estimated from the behavioural data in the letter model were qualitatively 517 

similar to the observed tuning for single letters and summation weights observed in 518 

the voxel activations for the LO region (Section S7).  519 

In sum, we conclude that the LO region is the likely neural substrate for the 520 

compositional letter code predicted from behaviour.  521 

 522 

Neural basis of semantic space 523 

Next we compared neural representations in each ROI to semantic space. The 524 

match to semantic space was significant only in the LO and TG regions (correlation 525 

between 496 pairwise dissimilarities between words: r = 0.18 ± 0.05 for LO, 0.22 ± 526 

0.04 for TG; Figure 5D).  527 

The above analysis shows that neural activations in LO are correlated with both 528 

visual search and semantic dissimilarities, but these correlations cannot be directly 529 

compared since they are based on different pairs of stimuli. To investigate whether the 530 
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neural representation in LO matches better with visual search or with semantic space, 531 

we compared the match for word-word pairs alone. This revealed no significant 532 

difference between the two correlations (r = 0.16 ± .04 for LO with visual search, r = 533 

0.16 ± 0.05 for LO with semantic space; p = 0.49 across 1000 bootstrap samples). We 534 

conclude that both LO and TG regions represent semantic space.  535 

 536 

Neural basis of lexical decisions 537 

 If the LO region represents each string (word or nonword) using a compositional 538 

code, then according to the preceding experiments, lexical decisions for words and 539 

nonwords must involve some comparison with stored word representations. Recall 540 

that lexical decision times for words are correlated with word frequency, and lexical 541 

decision times for nonwords are correlated with word-nonword dissimilarity. We 542 

therefore asked whether these lexical decision times are correlated with the average 543 

activity (across voxels & subjects) in  a given ROI. The resulting correlations are shown 544 

in Figure 5F. Across the ROIs, only the VWFA showed a consistently positive 545 

correlation with lexical decision times for both words and nonwords (Figure 5E). A 546 

searchlight analysis confirmed that there was indeed a peak in the correlation with 547 

lexical decision times centred on the VWFA, with additional peaks in the parietal and 548 

frontal regions (Section S7). This is consistent with word frequency effects observed 549 

in these regions (Kronbichler et al., 2004), but we have observed similar effects for 550 

nonwords as well. We conclude that lexical decisions are driven by the VWFA.  551 

 552 

  553 
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 554 
Figure 5. Lexical task fMRI (Experiment 6) 555 

(A) ROIs for an example subject, showing V1–V3 (cyan), V4 (blue), LO (yellow), VWFA 556 

(red) and TG (maroon). 557 

(B) Example difference between perceptual and semantic spaces. In perceptual 558 

space, the representation of TRAIL is closer to its visual similar counterpart TRIAL, 559 

whereas in semantic space, its representation is closer to its synonym PATH.  560 

(C) Correlation between neural dissimilarity in each ROI with behavioural dissimilarity 561 

for strings (Experiment 7). Error bars indicate standard deviation of the correlation 562 

between the group behavioural dissimilarity and ROI dissimilarities calculated 563 

repeatedly by resampling of dissimilarity values with replacement across 1000 564 

iterations. Asterisks along the length of each bar indicate statistical significance of 565 

the correlation between group behaviour and group ROI dissimilarity (** is p < 566 

0.005 across 1000 bootstrap samples). Horizontal lines indicate the fraction of 567 

bootstrap samples in which the observed difference was violated (* is p < 0.05, ** 568 

is p < 0.005, etc.). All significant comparisons are indicated. 569 

(D) Correlation between neural dissimilarity in each ROI with semantic dissimilarity for 570 

words. Other details are same as in (C).  571 

(E) Correlation between mean VWFA activity (averaged across subjects and voxels) 572 

with mean lexical decision time for both words (purple circles) and nonwords (green 573 

squares). Each point corresponds to one string and example word and nonword is 574 

highlighted. Asterisks indicate statistical significance (**** is p < 0.00005). 575 

(F) Correlation between lexical decision time and mean activity within each ROI 576 

separately for words and nonwords. Error bars indicate standard deviation across 577 

1000 bootstrap splits. Asterisks indicate statistical significance (** is p < 0.005).  578 
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DISCUSSION 579 

 Our main finding is that viewing a string activates a compositional letter code, 580 

consisting of neurons tuned to single letters whose response to longer strings is a 581 

linear sum of single letter responses. This code accurately explains human 582 

performance on visual search as well as word reading tasks. It is encoded by the LO 583 

region in the high-level visual cortex, and subsequent comparisons required for lexical 584 

decisions are computed in the VWFA. Below we discuss these findings in relation to 585 

the existing literature.   586 

 587 

Relation to models of reading  588 

Our compositional letter code stands in stark contrast to existing models of 589 

reading. Existing models of reading assume explicit encoding of letter position and do 590 

not account for letter shape (Gomez et al., 2008; Davis, 2010; Norris and Kinoshita, 591 

2012; Norris, 2013). By contrast, our model encodes letter shape explicitly and position 592 

implicitly through asymmetric spatial summation. The implicit coding of letter position 593 

avoids the complication of counting transpositions (Yarkoni et al., 2008; Yap et al., 594 

2015). Our model can thus easily be extended to any language by simply estimating 595 

letter dissimilarities and then estimating the unknown summation weights.  596 

Unlike existing models of reading, our compositional letter code is neurally 597 

plausible and grounded in well-known principles of object representations. The first 598 

principle is that images that elicit similar activity across neurons in high-level visual 599 

cortex will appear perceptually similar (Op de Beeck et al., 2001; Sripati and Olson, 600 

2010a; Zhivago and Arun, 2014). This is non-trivial because it is not necessarily true 601 

in lower visual areas or in image pixels (Ratan Murty and Arun, 2015). We have turned 602 

this principle around to construct artificial neurons whose shape tuning matches visual 603 
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search. The second principle is that the neural response to multiple objects is typically 604 

the average of the individual object responses (Zoccolan et al., 2005; Sripati and 605 

Olson, 2010b) that can be biased towards a weighted sum (Ghose and Maunsell, 606 

2008; Bao and Tsao, 2018). Finally, we note that our letter code assumes no explicit 607 

calculations of letter position in a word, since the neurons in our model only need to 608 

be tuned for retinal position. We speculate that these neurons may be tuned not only 609 

to retinal position but to the relative size and position of letters, as observed in high-610 

level visual cortex (Sripati and Olson, 2010a; Vighneshvel and Arun, 2015).   611 

 612 

Relation to theories of word recognition  613 

We have found that lexical decisions for nonwords are driven by the dissimilarity 614 

between the viewed string and the nearest word. This idea is consistent with the well-615 

known Interactive Activation model (McClelland and Rumelhart, 1981; Rumelhart and 616 

McClelland, 1982), where viewing a string activates the nearest word representation. 617 

However, the Interactive Activation model does not explain lexical decisions or 618 

scrambled word reading, and also does not integrate letter shape and position into a 619 

unified code. Our findings are consistent with previous work showing that nonword 620 

responses are influenced by the number of orthographic neighbours (Yap et al., 2015). 621 

Likewise, we found word frequency to be a major factor influencing lexical decisions, 622 

in keeping with previous work (Ratcliff et al., 2004; Dufau et al., 2012; Yap et al., 2015). 623 

We have gone further to demonstrate a unified letter-based code that integrates letter 624 

shape and position, and localized the underlying neural substrates of the letter code 625 

to the LO region, and the comparison process to the VWFA. We propose that the 626 

compositional shape code provides a quick match to unscramble a word, failing which 627 

subjects may initiate more detailed symbolic manipulation.  628 
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 The success of our letter code challenges the widely held belief that reading 629 

expertise should lead to the formation of specialized bigram detectors (Dehaene et al., 630 

2005, 2015; Grainger, 2018). The presence of these specialized detectors should have 631 

caused larger model errors for valid words and frequent n-grams, but we observed no 632 

such trend (Figure 3). So what happens to visual letter representations upon expertise 633 

with reading? Our comparison of upright and inverted bigrams suggests that reading 634 

should increase letter discrimination and increase the asymmetry of spatial summation 635 

(Figure 3D,E). This is consistent with differences in letter position effects for symbols 636 

and letters (Chanceaux and Grainger, 2012; Scaltritti et al., 2018). We propose that 637 

both processes may be driven by visual exposure: repeated viewing of letters makes 638 

them more discriminable (Mruczek and Sheinberg, 2005), while viewing letter 639 

combinations induces asymmetric spatial weighting. Whether these effects require 640 

active discrimination such as letter-sound association training or can be induced even 641 

by passive viewing will require comparing letter string discrimination under these 642 

paradigms.  643 

 644 

Neural basis of word recognition  645 

Our brain imaging results further elucidate the neural basis of lexical decisions. 646 

We have shown that viewing a string activates this compositional letter code in the LO 647 

region, and that subsequent comparisons to stored words is driven by the VWFA. We 648 

have found that lexical decision response times for both words and nonwords are 649 

strongly predicted by the VWFA activity. Since lexical decision times for words are 650 

linked to word frequency, this finding implies that VWFA is sensitive to word frequency. 651 

This has been confirmed by previous studies (Kronbichler et al., 2004; Dehaene et al., 652 

2015). We have also found that VWFA activity is strongly predictive of nonword 653 
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response times, which in turn are modulated by the dissimilarity of the nonword to the 654 

nearest word. This finding is somewhat surprising because of VWFA’s status as a 655 

word processing area, but consistent with previous suggestions that it stores word 656 

representations (Vinckier et al., 2007) and is modulated by orthographic similarity 657 

(Baeck et al., 2015). Our results suggest that VWFA might be involved in comparing 658 

viewed strings with known words. We speculate that differences in this comparison 659 

process could explain the contradictory findings about VWFA activation to words and 660 

nonwords (Baeck et al., 2015).  661 

 662 

Does the compositional letter code explain orthographic processing?  663 

Our letter code explains many orthographic processing phenomena reported in 664 

the literature. Its integrated representation of both letter shape and position explains 665 

both letter transposition and substitution effects and their relative importance (Figure 666 

4F). Its asymmetric spatial weighting favouring the first letter (Section S3), explains 667 

the first-letter advantage observed previously (Scaltritti et al., 2018). It also explains 668 

why increasing letter spacing can benefit reading in poor readers, presumably 669 

because it increases asymmetry in spatial summation (Zorzi et al., 2012).  670 

To elucidate how various jumbled versions of a word are represented according 671 

to this neural code, we calculated responses of the letter model trained on data from 672 

Experiment 4, and visualized the distances using multidimensional scaling (Figure 6A). 673 

It can be seen transposing the edge letters (OFRGET) results in a bigger change than 674 

transposing the middle letters (FOGRET), thus explaining many transposed letter 675 

effects (Norris, 2013). Likewise, it can be seen that substituting a dissimilar letter 676 

(FORXET) leads to a large change compared to substituting a similar letter (FORCET). 677 

Replacing G with C in FORGET leads to a smaller change than replacing with X, thus 678 
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explaining how priming is stronger when similar letters are substituted (Marcet and 679 

Perea, 2017). Finally, the letter subset FRGT is closer to FORGET than the same 680 

letters reversed (TGRF), thereby explaining subset priming (Grainger and Whitney, 681 

2004; Dehaene et al., 2005).  682 

Finally, as a powerful demonstration of this code, we used it to arbitrarily 683 

manipulate reading difficulty along a sentence (Figure 6B), or across multiple 684 

transpositions and even number substitutions (Figure 6C). We propose that this 685 

compositional neural code can serve as a powerful baseline for the purely visual 686 

shape-based representation triggered by viewing words, thereby enabling the study of 687 

higher order linguistic influences on reading processes.  688 

 689 

Relation between word recognition and reading sentences 690 

 We have shown that word recognition can be explained using a compositional 691 

visual code based on single letters. While this is an important first step in 692 

understanding how we read single words, reading sentences involves sampling many 693 

words with each eye movement (Rayner, 1998). Our ability to sample multiple letters 694 

or words at a single glance is limited by two factors. The first is our visual acuity, which 695 

reduces with eccentricity. The second is crowding, by which letters become 696 

unrecognizable when flanked by other letters – this effect increases with eccentricity 697 

(Pelli and Tillman, 2008).  698 

 The visual search experiments in our study involved searching for an oddball 699 

target (consisting of multiple letters) among multiple distractors. This would most 700 

certainly have involved detecting and making saccades to peripheral targets. By 701 

contrast, the word recognition tasks in our study involved subjects looking at words 702 

presented at the fovea. Our finding that visual search dissimilarity explains word 703 
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recognition then implies that shape representations are qualitatively similar in the 704 

fovea and periphery. Furthermore, the structure of the letter model suggests a possible 705 

mechanistic explanation for crowding. Neural responses might show greater sensitivity 706 

to spatial location at the fovea compared to the periphery, leading to more 707 

discriminable representations of multiple letters. Alternatively, neural responses to 708 

multiple letters might be more predictable from single letters at the fovea but not in the 709 

periphery. Both possibilities would predict reduced recognition with closely spaced 710 

flankers. Distinguishing these possibilities will require testing neural responses in 711 

higher visual areas to single letters and multi-letter strings of both familiar and 712 

unfamiliar scripts. Ultimately understanding reading fully will require not only asking 713 

how letters combine to form words, but how words combine to form larger units of 714 

meaning (Pallier et al., 2011; Nelson et al., 2017).  715 

  716 
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 717 
 718 

Figure 6. Predicting reading difficulty using the letter model  719 

(A) Visual word space predicted by the letter model for a word (FORGET) and its 720 

jumbled versions. Letter model predictions were based on training the model on 721 

compound words (Experiment 4). The plot was obtained by performing 722 

multidimensional scaling on the pairwise dissimilarities between strings predicted 723 

by the letter model. It can be seen that classic features of orthographic processing 724 

are captured by the letter model, including priming effects such as FRGT (green) 725 

being more similar to FORGET than TGRF (red).  726 

(B) The letter model can be used to sort jumbled words by their reading difficulty, 727 

allowing us to create any desired reading difficulty profile along a sentence. Top 728 

row: Sentence with increasing reading difficulty. Middle row: sentence with 729 

fluctuating reading difficulty. Bottom row: sentence with decreasing reading 730 

difficulty.  731 

(C) The letter model yields a composite measure of reading difficulty that combines 732 

letter substitution and transposition effects. Sentences with digit substitutions 733 

(second row) can thus be placed along a continuum of reading difficulty relative to 734 

other sentences (first, third and fourth rows) with increasing degree of scrambling.  735 

  736 
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METHODS 737 

  All subjects had normal or corrected-to-normal vision and gave informed 738 

consent to an experimental protocol approved by the Institutional Human Ethics 739 

Committee of the Indian Institute of Science. All subjects were fluent English-speaking 740 

students at the institute, where English is the medium of instruction. All subjects were 741 

multi-lingual and knew at least one other Indian language apart from English.   742 

 743 

Experiment 1 – Single letter searches 744 

Procedure. A total of 16 subjects (8 males, 24.4 ± 2.5 years) participated in this 745 

experiment. Subjects were seated comfortably in front of a computer monitor placed 746 

~60 cm away under the control of custom programs written in Psychtoolbox (Brainard, 747 

1997) and MATLAB. In all experiments, we selected sample sizes based on our 748 

previous studies which yielded highly consistent data (Agrawal et al., 2019).  749 

Stimuli. Single letter images were created using the Arial font. There were 62 stimuli 750 

in all comprising 26 uppercase letters (A-Z), 26 lowercase letters (a-z), and 10 digits 751 

(0-9). Uppercase stimuli were scaled to have a height of 1°.  752 

Task. Subjects were asked to perform an oddball search task without any constraints 753 

on eye movements. Each trial began with a fixation cross shown for 0.5 s followed by 754 

a 4x4 search array (measuring 40° by 25°). The search array always contained only 755 

one oddball target with 15 identical distractors. Subject were instructed to locate the 756 

oddball target as quickly and as accurately as possible, and respond with a key press 757 

(‘Z’ for left, ‘M’ for right). A red line divided the screen in two halves. The search display 758 

was turned off after the response or after 10 seconds, whichever was sooner. All 759 

stimuli were presented in white against a black background. Incorrect or missed trials 760 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2020. ; https://doi.org/10.1101/653048doi: bioRxiv preprint 

https://doi.org/10.1101/653048
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 35 of 47 

 

were repeated after a random number of other trials. Subjects completed a total of 761 

3,782 correct trials (62C2 letter pairs x 2 repetitions with either letter as target once). 762 

For each search pair, the oddball target appeared equally often on the left and right 763 

sides so as to avoid creating any response bias. Only correct responses were 764 

considered for further analysis. The main experiment was preceded by 20 practice 765 

trials involving unrelated stimuli. 766 

Data Analysis. Subjects were highly accurate on this task (mean ± std: 98 ± 1%). 767 

Outliers in the reaction times were removed using built-in routines in MATLAB (isoutlier 768 

function, MATLAB R2018a). This function removes any value greater than three 769 

scaled absolute deviations away from the median, and was applied to each search 770 

pair separately. This step removed 6.8% of the response time data.   771 

 772 

Estimation of single letter tuning using multidimensional scaling  773 

To estimate neural responses to single letters from the visual search data, we 774 

used a multidimensional scaling (MDS) analysis. We first calculated the average 775 

search time for each letter pair by averaging across subjects and trials. We then 776 

converted this search time (RT) into a distance measure by taking its reciprocal (1/RT). 777 

This is a meaningful measure because it represents the underlying rate of evidence 778 

accumulation in visual search (Sunder and Arun, 2016), behaves like a mathematical 779 

distance metric (Arun, 2012) and combines linearly with a variety of factors (Pramod 780 

and Arun, 2014, 2016; Sunder and Arun, 2016). Next we took all pairwise distances 781 

between letters and performed MDS to embed letters into n dimensions, where we 782 

varied n from 1 to 15. This yielded n-dimensional coordinates corresponding to each 783 

letter, whose distances matched best with the observed distances. We then took the 784 
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activation of each letter along a given dimension as the response of a single neuron. 785 

Throughout we performed MDS embedding into 10 dimensions, resulting in single 786 

letter responses of 10 neurons. We obtained qualitatively similar results on varying 787 

this number of dimensions.   788 

 789 

Estimation of data reliability 790 

 To obtain upper bounds on model performance, we reasoned that any model 791 

can predict the data as well as the consistency of the data itself. Thus, a model trained 792 

on one half of the subjects can only predict the other half as well as the split-half 793 

correlation rsh. This process was repeated 100 times to obtain the mean and standard 794 

deviation of the split-half correlation. However when a model is trained on all the data, 795 

the upper bound will be larger than the split-half correlation. We obtained this upper 796 

bound, which represents the reliability of the entire dataset (rdata) by applying a 797 

Spearman-Brown correction on the split-half correlation, as given by rdata = 2rsh/(rsh+1).  798 

 799 

Experiment 2 – Bigram searches 800 

 A total of 8 subjects (5 male, aged 25.6 ± 2.9 years) took part in this experiment. 801 

We chose seven uppercase letters (A, D, H, I, M, N, T) and combined them in all 802 

possible ways to obtain 49 bigram stimuli. These letters were chosen to maximise the 803 

number of two-letter words e.g.  HI, IT, IN, AN, AM, AT, AD, AH, and HA. Letters 804 

measured 3° along the longer dimension. Subjects completed 2352 correct trials (49C2 805 

search pairs x 2 repetitions). All other details were identical to Experiment 1. 806 

Letter/Bigram frequencies were obtained from an online database 807 

(http://norvig.com/mayzner.html).  808 
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Data Analysis. Subjects were highly accurate on this task (mean ± std: 97.6 ± 1.8%). 809 

Outliers in the reaction times were removed using built-in routines in MATLAB (isoutlier 810 

function, MATLAB R2018a). This step removed 8% of the response time data.  811 

 812 

Estimating letter model parameters from observed dissimilarities 813 

The total dissimilarity between two bigrams in the letter model is calculated by 814 

calculating the average dissimilarity across all neurons. For each neuron, the 815 

dissimilarity between bigrams AB & CD is given by:  816 

𝑑(𝐴𝐵, 𝐶𝐷) = |𝑟𝐴𝐵 − 𝑟𝐶𝐷| = |(𝑤1𝑟𝐴 + 𝑤2𝑟𝐵) − (𝑤1𝑟𝐶 + 𝑤2𝑟𝐷)| 817 

where 𝑟𝐴, 𝑟𝐵, 𝑟𝐶  𝑎𝑛𝑑 𝑟𝐷 are the responses of the neuron to individual letters A, B, 818 

C and D respectively (derived from single letter dissimilarities), and 𝑤1, 𝑤2 are the 819 

spatial summation weights for the first and second letters of the bigram. Note that 820 

𝑤1, 𝑤2 are the only free parameters for each neuron.  821 

To estimate the spatial weights of each neuron, we adjusted them so as to 822 

minimize the squared error between the observed and predicted dissimilarity. This 823 

adjustment was done using standard gradient descent methods starting from randomly 824 

initialized weights (nlinfit function, MATLAB R2018a). We followed a similar approach 825 

for experiments involving longer strings.  826 

 827 

Experiment 3 – Upright and inverted bigrams  828 

Methods. A total of 8 subjects (6 males, aged 24 ± 1.5 years) participated in this 829 

experiment. Six uppercase letters: A, L, N, R, S, and T were combined in all pairs to 830 

form a total of 36 stimuli. These uppercase letters were chosen because their images 831 
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change when inverted (as opposed to letters like H that are unaffected by inversion), 832 

and were chosen to maximize the occurrence of frequent bigrams. The same stimuli 833 

were inverted to create another set of 36 stimuli. Detailed analyses for this experiment 834 

are presented in Section S2.  835 

 836 

Experiment 4 – Compound words 837 

 A total of 8 subjects (4 female, aged 25 ± 2.5 years) participated. Twelve 3-838 

letter words were chosen: ANY, FOR, TAR, KEY, SUN, TEA, ONE, MAT, GET, PAD, 839 

DAY, POT. Each word was jumbled to obtain twelve 3-letter nonwords containing the 840 

same letters. The 12 words were combined to form 36 compound words (shown in 841 

Section S3), such that they appeared equally on the left and right half of the compound 842 

words. Detailed analyses for this experiment are included in Section S3.  843 

Calculation of orthographic Levenshtein distance: For each search pair, we estimated 844 

the OLD metric using built-in MATLAB function “editdistance”. This function estimates 845 

the number of insertions, deletions, or substitutions are required to convert one string 846 

to other. In this study, the substitution cost has a value of 2. We obtained qualitatively 847 

similar results with other choices of substitution cost. 848 

   849 

Experiment 5 – Lexical decision task 850 

Procedure. A total of 16 subjects (9 male, aged 24.8 ± 2.1 years) participated in this 851 

task as well as the jumbled word task.  852 

Stimuli. The stimuli comprised 450 words + 450 nonwords. The nonwords were either 853 

random strings or made by modifying the 450 words in some way, as detailed in the 854 

table below. 855 
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 Variations of word ABCDE 4 
letter 
words 

5 
letter 
words 

6 
letter 
words 

Total 

1)  Edge transpositions: BACDE or ABCED 15 15 20 50 

2)  Middle transposition: ACBDE or ABDCE 15 15 20 50 

3)  2 step edge transposition: CBADE or ABEDC 0 20 30 50 

4)  2 step middle transposition: ADCBE 0 20 30 50 

5)  Random transposition: CDABE, ACDBE, etc. 25 35 40 100 

6)  Edge Substitution: MZCDE or ABCMZ 15 15 20 50 

7)  Middle Substitution: ABMZE 15 15 20 50 

8)  Random substitution and permutation:  
MACZE, AMDEZ, etc.  

15 15 20 50 

 Total 100 150 200 450 

Table 1: Non-word stimuli in lexical decision task (Experiment 5).  856 

 857 

Task. Each trial began a fixation cross shown for 0.75 s followed by a letter string for 858 

0.2 s after which the screen went blank. The trial ended either with the subject’s 859 

response or after at most 3 s. Subjects were instructed to press ‘Z’ for words and ‘M’ 860 

for nonwords as quickly and accurately as possible. All stimuli were presented at the 861 

centre of the screen and were white letters against a black background. Before starting 862 

the main task, subjects were given 20 practice trials using other words and nonwords 863 

not included in the main experiment. 864 

 865 

Data Analysis. Some nonwords were removed from further analysis due to low 866 

accuracy (n = 8, average accuracy <20%). Subjects made accurate responses for both 867 

words and nonwords (mean ± std of accuracy: 96 ± 2 % for words, 95 ± 3% for 868 

nonwords). Outliers in the reaction times were removed using built-in routines in 869 

MATLAB (isoutlier function, MATLAB R2018a).   870 

 871 

 872 

 873 

 874 

 875 
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Experiment 6 (Lexical Decision Task – fMRI) 876 

A total of 17 subjects (10 males, 25 ± 4.2 years) participated in this experiment. 877 

All subjects were screened for safety and comfort beforehand to avoid adverse 878 

outcomes in the scanner.  879 

Stimuli: The functional localizer block included English words, objects, scrambled 880 

words, and scrambled objects. In each run, 14 images were randomly selected from 881 

a pool of images. The English words list comprised of 90 five-letter words. Each word 882 

was divided into grids of dimension 9x3. Scrambled words were generated by 883 

randomly shuffling the grids. Object pool comprised of 80 man-made objects. To 884 

generate scrambled objects, the phase of the Fourier transformed images was 885 

scrambled and then reconstructed back using inverse Fourier transform. The object 886 

images were about 4.5° along the longer dimension and the height of the word stimuli 887 

subtended 2° of visual angle.  888 

The event block consisted of 10 single letters and 64 five-letter strings (32 889 

words and 32 nonwords formed using these single letters). The stimulus set comprised 890 

of 64 five-letter words and nonwords. The words were chosen from a wide range of 891 

frequency of occurrence and the nonwords were created by manipulating the chosen 892 

words i.e. They were: 1) 8-middle transposed version of words, 2) 8-edge transposed 893 

version of words, 3) 8-middle substituted version of words, and 4) 8-edge substituted 894 

version of words. The stimuli subtended 2° in height, which was the same as in the 895 

localizer block. All stimuli were presented as white against a black background. 896 

Procedure: In the localizer block, a total of 16 images were presented for 0.8 s with an 897 

inter stimulus interval of 0.2 s. There were 14 unique stimuli and 2 of them repeated 898 

at random time point, in which subjects performed one-back task. Each block ended 899 
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with a blank screen with fixation cross present for 4 s. Thus, each block lasted 20 s. 900 

Each block was repeated thrice in each run. 901 

In the event-related design block, an image was presented at the centre of the 902 

screen for 300ms followed by 3.7s of blank screen with a fixation cross. In a run, all 903 

74 stimuli were presented once along with 16 trials of fixation cross to jitter inter 904 

stimulus interval. Hence there were a total of 92 trials including 4s fixation trials at the 905 

start and end of each run. Each run lasted 376 s. Subjects performed lexical decision 906 

task only on strings and were instructed to not press any key for single letters. Overall, 907 

subjects completed 2 runs of localizer block, 8 runs of event block and a structural 908 

scan block.  909 

Data acquisition: Subjects viewed images in a mirror-based projection system. 910 

Functional MRI data was acquired using a 32-channel head coil on a 3T Siemens 911 

Skyra scanner at HealthCare Global Hospital, Bengaluru. Functional scans were 912 

performed using a T2*-weighted gradient-echo-planar imaging sequence with the 913 

following parameters: TR = 2s, TE = 28ms, flip angle = 79o, voxel size = 3x3x3 mm3, 914 

field of view = 192x192 mm2, and 33 axial-oblique slices covering the whole brain. 915 

Anatomical scans were performed using T1-weighted images with the following 916 

parameters: TR = 2.30s, TE = 1.99ms, flip angle = 9°, voxel size = 1x1x1 mm3, field 917 

of view = 256x256x176 mm3.   918 

Data preprocessing: All raw fMRI data were processed using custom built MATLAB 919 

scripts that depended on SPM 12 toolbox 920 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Raw images were realigned, 921 

slice-time corrected, co-registered with the anatomical image, segmented, and finally 922 

normalized to the MNI305 anatomical template. The results were qualitatively similar 923 
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without normalization. Smoothing operation was performed only on functional localizer 924 

blocks using a Gaussian kernel with FWHM of 5 mm. All SPM parameters were set to 925 

default and the voxel size after normalization was set to 3x3x3 mm3. Prior to 926 

normalization, the data was preprocessed using GLMdenoise v1.4 (Kay et al., 2013). 927 

This step improved the signal-to-noise ratio in the data by regressing out the noise 928 

pattern common across all the voxels in the brain. The noise pattern is estimated from 929 

voxels unrelated to the task. The activity corresponding to each condition was 930 

estimated by modelling the denoised data using a generalized linear model (GLM) in 931 

SPM after removing the low frequency drift using a high-pass filter with a cutoff at 932 

128s. The event block data was modelled using 89 regressors (74 stimuli + 1 fixation 933 

+ 6 motion regressors + 8 runs). The localizer block data was modelled using 13 934 

regressors (4 stimuli + 1 fixation + 6 motion regressors + 2 runs).  935 

ROI definitions: All the regions of interest (ROI) were defined using functional localizer 936 

while taking the anatomical location into consideration. Early visual area was defined 937 

as the region that responds more to the scrambled object than fixation cross. This 938 

functional region was further parsed into V1-V3 and V4 using an anatomical mask 939 

from SPM anatomy toolbox (Eickhoff et al., 2005). Lateral Occipital (LO) region was 940 

defined as a group of voxels that responded more to objects than scrambled objects. 941 

The voxels in the LO region was restricted to Inferior Temporal Gyrus, Inferior Occipital 942 

Gyrus, and Middle Occipital Gyrus. These anatomical regions were obtained from 943 

Tissue Probability Map (TPM) labels in SPM 12. Visual Word Form Area (VWFA) was 944 

defined as a region that responded more for words than scrambled words within 945 

fusiform Gyrus. The activity for known words was also higher in Superior and Middle 946 

Temporal regions. These groups of voxels were grouped under Temporal Gyrus (TG) 947 

label. For each contrast, voxel-level threshold of p < 0.001 (uncorrected) or cluster 948 
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level threshold p < 0.05 (FWE correction) was used to obtain a contiguous region. For 949 

one subject, very few VWFA voxels cross the pre-specified threshold. Hence, the 950 

threshold was lowered to p = 0.1 (uncorrected).  The VWFA voxels were restricted to 951 

top-40 voxels (based on T-value in the function localizer contrast). All these regions 952 

were visualized on the cortical surface using BSPMVIEW toolbox 953 

(http://www.bobspunt.com/bspmview/). 954 

 955 

Calculation of neural dissimilarity (fMRI). For each ROI and subject, the pair-wise 956 

dissimilarity between any two image pairs was computed using the cross-validated 957 

Mahalanobis distance in the RSA toolbox (Nili et al., 2014). Outliers in dissimilarity 958 

values across subjects were removed using built-in routines in MATLAB (isoutlier 959 

function, MATLAB R2018a). The median dissimilarity across all the subjects was 960 

considered for further analysis. We obtained qualitatively similar results for other 961 

distance measures.  962 

 963 

Calculation of semantic dissimilarity. The semantic distance between every pair of 964 

words was computed as the cosine distance between the GloVe (Pennington et al., 965 

2014) feature vectors activated by the two words, using the MATLAB function 966 

word2vec. These features are based on the co-occurrence statistics of words in a large 967 

text corpus, and therefore reflect semantic dissimilarity rather than visual dissimilarity.  968 

 969 

Experiment 7 (5-letter string searches) 970 

A total of 11 subjects (6 males, 26 ± 2.7 years) participated in this experiment, 971 

of which xx also participated in Experiment 6. Stimuli were identical to Experiment 6, 972 
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except that they were scaled down to a height of 1º to allow placement in a visual 973 

search array. Subjects performed a total of 2048 correct trials (32C2 search pairs x 2 974 

conditions (words and nonwords) + 32 word-nonword pairs x 2 repetitions). All trials 975 

were interleaved, and incorrect/missed trials appeared randomly later in the task but 976 

were not analyzed. All other details were identical to Experiment 1. 977 

 978 

Data Analysis. Subjects were highly accurate on this task (mean ± std: 98.6 ± 1%). 979 

Outliers in the reaction times were removed using built-in routines in MATLAB (isoutlier 980 

function, MATLAB R2018a). This step removed 7% of the response time data.  981 
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SECTION A1. ADDITIONAL ANALYSIS FOR EXPERIMENT 1 20 

 21 

The results in the main text were presented for uppercase English letters 22 

(Figure 2), but in Experiment 1 we also collected visual search data for all pairs of 23 

English letters and numbers (n = 62 characters in all, comprising 26 uppercase + 26 24 

lowercase + 10 numbers). We did so in order to predict the visual dissimilarity between 25 

letter strings containing both mixed case letters as well as numbers. 26 

To visualize the dissimilarity relations between the 62 characters used, we 27 

performed multidimensional scaling. In the resulting plot (Figure S1A), nearby 28 

characters represent hard searches. A number of interesting patterns can be seen: 29 

letters like C, G, Q, O are nearby which is expected given their shared curvatures. 30 

Letter pairs such as (M,W) and number pairs such as (6,9) are similar due to mirror 31 

confusion (Vighneshvel and Arun, 2013).  32 

Next, we investigated the degree to which the observed pairwise dissimilarities 33 

are captured by the multidimensional embedding as a function of the number of 34 

dimensions. In the resulting plot (Figure S1B), it can be seen that nearly 89% of the 35 

variance is captured by 10 dimensions as before, which reaches roughly the reliability 36 

of the dissimilarity data itself. For the analyses involving mixed case searches or fewer 37 

searches, we took a total of 6 neurons for the letter model, which explain 87.7% of the 38 

variance in the pairwise dissimilarities.  39 

 40 

 41 

 42 
Figure S1. Visual search space for letters and digits 43 

(A) Visual search space for letters (uppercase and lowercase) and digits obtained 44 

by multidimensional scaling of observed dissimilarities. Nearby letters 45 

represent hard searches. Distances in this 2D plot are highly correlated with the 46 

observed distances (r = 0.79, p < 0.00005).  47 

(B) Correlation between observed distances and MDS embedding as a function of 48 

number of MDS dimensions. The horizontal line represents the split-half 49 

correlation with error bars representing s.d calculated across 100 random splits.  50 

 51 

Can letter dissimilarity be predicted using low-level visual features?  52 

 To investigate whether single letter dissimilarity can be predicted using low-53 

level visual features, we attempted to predict letter dissimilarities using two models. In 54 

the first model, which we call the pixel model, we calculated the dissimilarity between 55 

letters to be the absolute difference in pixel intensities between the images of the two 56 
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letters. This pixel-based model showed a significant correlation (r = 0.50, p < 0.00005) 57 

but was far from the reliability of the data itself (rsh = 0.90; Figure S1B). In the second 58 

model, we calculated the dissimilarity between two letters as the vector distance 59 

between the responses evoked by a population of simulated V1 neurons (Ratan Murty 60 

and Arun, 2015). This V1 model also showed a significant correlation (r = 0.44, p < 61 

0.00005) but again far from the reliability of the data itself). We conclude that single 62 

letter dissimilarity can only be partially predicted by low-level visual features.  63 

 64 

Is visual search dissimilarity related to subjective dissimilarity?  65 

 In this study, we have used visual search as a natural and objective measure 66 

for visual dissimilarity. However previous studies have measured letter dissimilarity 67 

either through confusions in letter recognition, or through subjective dissimilarity 68 

ratings (Mueller and Weidemann, 2012; Simpson et al., 2013). We have previously 69 

shown that subjective dissimilarity for abstract silhouettes is strongly correlated with 70 

visual search dissimilarity (Pramod and Arun, 2016). This may not hold for letters since 71 

subjects can activate letter representations that are modified through extensive 72 

familiarity. To investigate how visual search dissimilarity compares with subjective 73 

similarity ratings for letters, we compared search dissimilarities for uppercase letters 74 

against two sets of previously reported similarity data. First, we compared visual 75 

search dissimilarities with subjective dissimilarity ratings (Simpson et al., 2013). This 76 

revealed a significant positive correlation (r = 0.69, p < 0.0005). Second, we compared 77 

visual search dissimilarities with letter confusion data (3). To convert letter confusion 78 

response times, which are a measure of similarity, into dissimilarities, we took their 79 

reciprocals, and then compared them with visual search dissimilarities. This revealed 80 

a significant positive, albeit weaker correlation (r = 0.34, p< 0.0005).  81 

82 
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SECTION A2. UPRIGHT AND INVERTED BIGRAMS AND TRIGRAMS 83 

 84 

It has been observed that readers are more sensitive to letter transpositions for 85 

letters of their familiar script. Since discrimination of letter transpositions in the letter 86 

model is a direct consequence of asymmetric spatial summation (main text, Figure 3), 87 

we predicted that readers should show more asymmetric spatial summation for familiar 88 

letters compared to unfamiliar letters. As a strong test of this prediction, we compared 89 

visual search performance on upright letters (which are highly familiar) with inverted 90 

letters (which are unfamiliar) across two experiments, one on bigrams and the other 91 

on trigrams.   92 

 The comparison of upright and inverted letter strings is also interesting for a 93 

second reason. If reading or familiarity with upright letters led to the formation of 94 

specialized detectors for longer strings, then we predict that the letter model (which 95 

assumes responses to be driven by single letters only) should yield worse fits for 96 

upright compared to inverted letters.  97 

We tested the above two predictions in the following two experiments.  98 

 99 

Experiment 3: Upright vs inverted bigrams  100 

 101 

Methods. A total of 8 subjects (6 males, aged 24 ± 1.5 years) participated in this 102 

experiment. Six uppercase letters: A, L, N, R, S, and T were combined in all pairs to 103 

form a total of 36 stimuli. These uppercase letters were chosen because their images 104 

change when inverted (as opposed to letters like H that are unaffected by inversion), 105 

and were chosen to maximize the occurrence of frequent bigrams. The same stimuli 106 

were inverted to create another set of 36 stimuli. Stimuli subtended ~4° along the 107 

longer dimension. Subjects performed all possible searches among the upright letters 108 

(36C2 = 630 searches) with two repetitions and likewise for inverted letters. All trials 109 

were interleaved. All other details were exactly as in Experiment 2.  110 

 111 

Results 112 

 We observed interesting differences in search difficulty depending on the nature 113 

of the bigrams. This pattern is illustrated in Figure S2A-B. When the target and 114 

distractors consisted of repeated letters (e.g. TT among AA in Figure S2A), search is 115 

equally easy when the array is upright or inverted. In contrast if the target and 116 

distractors are transposed versions of each other (e.g. TA among AT in Figure S2B), 117 

search is easier in the upright array compared to when it is inverted.  118 

 To confirm that this effect is present across all such pairs, we compared 119 

observed response times for these two types of searches between upright and 120 

inverted conditions (Figure S2C). Response times for the AA-BB searches were 121 

comparable for upright and inverted conditions (mean ± sd of RT: 0.66 ± 0.09 s for 122 

upright, 0.67 ± 0.1 s for inverted).  To assess the statistical significance of this 123 

difference, we performed an ANOVA with subject (8 levels), bigram (15 pairs) and 124 

orientation (upright vs inverted) as factors. We observed no significant difference in 125 

the response times between upright and inverted conditions for AA-BB searches (p = 126 

0.65 for main effect of orientation; p < 0.00005 for subject and bigram factors, p > 0.05 127 

for all interactions).  128 

 Next we compared transposed letter (AB-BA) searches. Here, subjects were 129 

clearly faster on the upright searches compared to inverted searches (mean ± sd of 130 

RT: 1.58 ± 0.25 s for upright, 3.12 ± 0.76 s for inverted). This difference was statistically 131 

significant (p < 0.00005 for main effect of orientation; p < 0.0005 for subject and p < 132 
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.05 for bigram factors, p < 0.05 for interactions between pairs and orientation. Other 133 

interaction effects were not significant).  134 

 To compare bigram dissimilarity between upright and inverted bigrams, we 135 

plotted one against the other. This revealed a highly significant correlation (r = 0.80, p 136 

< 0.00005; Figure S2D). Here too it can be seen that the transposed letter searches 137 

are clearly faster when they are upright whereas the repeated letter searches show no 138 

such difference.   139 

 Thus, inversion slows down transposed letter searches but not repeated letter 140 

searches.  141 

 142 

Explaining upright and inverted bigram dissimilarity using the letter model  143 

 We fit the letter model to both upright and inverted bigram searches using a 144 

total of 10 neurons with single letter responses derived from Experiment 1. The letter 145 

model yielded excellent fits on both upright and inverted bigrams. In both cases, the 146 

model fits approached the data consistency (Figure S2E), implying that the model 147 

explained nearly all the explainable variance in the data.  148 

To compare these model fits for upright vs inverted statistically, we performed 149 

a bootstrap analysis. Each time, we selected subjects with replacement and fit the 150 

letter model to the average dissimilarity computed for this random pool of subjects. 151 

Each time we calculated a normalized correlation measure that takes into account the 152 

difference in data reliability between upright and inverted trigram searches. This 153 

normalized correlation is simply the model correlation divided by the data consistency. 154 

To assess statistical significance, we calculated the fraction of times the normalized 155 

correlation in the upright samples was larger than the inverted samples. This analysis 156 

revealed significant difference in model performance between upright and inverted 157 

searches, but in the opposite direction (average model correlation: r = 0.92 for upright, 158 

0.9 for inverted; fraction of upright < inverted normalized model correlation: p = 0). 159 

Thus, upright searches are more predictable than inverted searches using the letter 160 

model.  161 

 Next we asked whether the letter model can explain the intriguing observation 162 

that inversion affects transposed letter searches but not repeated letter searches. This 163 

is easy to explain in the letter model: The response to repeated letter bigrams such as 164 

AA is unaltered (Figure 3B), and therefore the dissimilarity between AA and TT is 165 

unaffected by the asymmetry in spatial summation. By contrast, the dissimilarity 166 

between transposed letter pairs like AT & TA is directly driven by the asymmetry in 167 

spatial summation. We also note that the search TT among AA is much easier than 168 

the search for TA among AT. This is also explained by the letter model by the fact that 169 

the response to repeated letters is the same as the response to individual letters, 170 

leaving their discrimination unaltered. By contrast transposed letters are much more 171 

similar since their neural responses are much closer (Figure 3B).   172 

 To be sure that letter model predictions show the same pattern, we plotted the 173 

average response time predicted by the letter model for repeated letter (AA-BB) and 174 

transposed letter (AB-BA) searches. To assess the statistical significance, we 175 

performed a sign-rank test on the predicted RT. The letter model predictions were 176 

exactly as expected (Figure S2F).  177 

 Next we analysed the model parameters in the letter model to ascertain whether 178 

the spatial summation in the neurons was indeed different for upright and inverted 179 

bigrams. To quantify the degree of asymmetry, we calculated for each neuron a spatial 180 

modulation index of the form MI = abs(w1-w2)/(w1+w2) where w1 and w2 are the 181 

estimated weights for each letter in the bigram. To avoid unnaturally large modulation 182 
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indices, w1 and w2 values smaller than 0.01 were set to 0.01. The spatial modulation 183 

index for all 10 neurons for upright and inverted bigrams is shown in Figure S2G. It 184 

can be seen that the modulation index is larger in most cases for the upright bigrams. 185 

This difference was statistically significant, as assessed using a sign-rank test on the 186 

spatial modulation indices (Figure S2H).  187 

 188 

 189 

 190 
Figure S2. Letter model fits for upright and inverted bigrams 191 

(A) Example oddball search array for a repeated letter target (TT) among identical 192 

repeated-letter distractors (AA). It can be seen that inverting this search array 193 

does not affect search difficulty.  194 

(B) Example oddball search array for transposed letters (TA among AT). It can be 195 

seen by inverting this search array makes the search substantially more 196 

difficult.  197 

(C) Average search times in the oddball search task for repeated-letter searches 198 

(AA-BB) and transposed letter (AB-BA) searches. Error bars represent s.e.m 199 

calculated across subjects. Asterisks represent statistical significance (**** is p 200 

< 0.00005), as obtained using an ANOVA on the response times with subject, 201 

bigram and orientation as factors (see text).  202 

(D) Dissimilarity of inverted bigram pairs plotted against the dissimilarity of upright 203 

bigram pairs. Correlation is shown at the top left. Asterisks indicate statistical 204 

significance of the correlations (**** is p < 0.00005). 205 

(E) Cross-validated model correlation of the letter model for upright bigrams and 206 

inverted bigrams. Shaded gray bars represent the upper bound achievable in 207 

each case given the consistency of the data, calculated using the split-half 208 

correlation rsh.  209 

(F) Predicted RT from the letter model for repeated letter pairs and transposed 210 

letter pairs. Asterisks denote statistical significance as obtained using a sign-211 

rank test on the predicted RTs between upright and inverted conditions.   212 

(G) Spatial modulation index for each neuron in the letter model for upright and 213 

inverted bigrams.  214 
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(H) Average spatial modulation index for upright and inverted bigrams. Asterisks 215 

represent statistical significance (* is p < 0.05) obtained using a sign-rank test 216 

on the spatial modulation index across the 10 neurons.   217 

 218 

Experiment S1: Upright and inverted trigrams  219 

Here, we asked whether the above results would extend to trigrams. We tested 220 

two predictions. First, we predicted greater spatial modulation for upright compared to 221 

inverted trigrams, on the premise that better discrimination of trigram transpositions 222 

should be driven by asymmetric spatial summation. Second, if repeated viewing of a 223 

trigram or word led to the formation of specialized trigram detectors, then the letter 224 

model (which is based only on knowledge of single letters) should produce larger 225 

errors compared to other trigrams. We tested this prediction by comparing model fits 226 

for searches involving frequent trigrams and words compared to other searches.  227 

 228 

Methods. A total of 9 subjects (6 females, aged 24.5 ± 2.3 years) participated in the 229 

experiment. Six uppercase letters: A, G, N, R, T and Y were combined in all possible 230 

3-letter combination to form a total of 216 stimuli. These letters were chosen to include 231 

as many three-letter words as possible. In all, 15 three-letter words could be created 232 

using these letters (ANT, ANY, ART, GAG, GAY, NAG, NAY, RAG, RAN, RAT, RAY, 233 

TAG, TAN, TAR, and TRY).   234 

Since the total number of possible search pairs is large (216C2 = 23,220 pairs), 235 

we chose 500 search pairs such that the regression matrix of the part-sum model had 236 

full rank i.e. all the model parameters can be estimated reliably using linear regression. 237 

These 500 searches consisted of 368 random search pairs, 105 (15C2) word-word 238 

pairs, 15 (3!C2) transposed pairs of nonword comprised of letters G,N, and R. Further, 239 

another set of 15 (3!C2) transposed pairs were created using the word TAR. The search 240 

pairs formed using the words TAR, ART and RAT were presented only once (although 241 

they were counted as both word-word pairs and transposed pairs in the main analysis).  242 

Subjects performed the same searches using upright and inverted trigrams. 243 

Stimuli subtended ~5° along the longer dimension. All subjects completed 2000 244 

correct trials (500 searches x 2 orientations x 2 repetitions). All other details were 245 

identical to Experiment 1.  246 

 247 

Results 248 

An example oddball array in the trigram experiment is shown in Figure S3A. 249 

Note that it is no longer meaningful to compare repeated letter trigrams (AAA-BBB) 250 

with transposed trigrams (ABC-BCA) because the repeated letter pairs contain two 251 

unique letters whereas the transposed trigrams contain three unique letters. Subjects 252 

were highly consistent in both upright and inverted searches (split-half correlation 253 

between even and odd- subjects: r = 0.76 & 0.80, p < 0.00005). Upright and inverted 254 

dissimilarities were highly correlated (r = 0.80, p < 0.00005; Figure S3B), although 255 

upright searches had higher dissimilarity compared to inverted searches.  256 

Next we asked whether the letter model can predict dissimilarities between 257 

upright trigrams. As before, letter model predictions were highly correlated with the 258 

observed data (r = 0.79, p < 0.00005; Figure S3C) and this model fit approached the 259 

data consistency itself (rdata = 0.88). Model fits errors were acctually lower for 260 

transposed pairs compared to word-word pairs and other pairs (mean ± sd error: 0.1 261 

± 0.08 for word pairs; 0.07 ± 0.06 for transposed pairs; 0.11 ± 0.08 for other pairs; p = 262 

0.02, rank-sum test). The letter model was also able to predict dissimilarities between 263 

various trigram transpositions (r = 0.69, p < 0.00005; Figure S3C). Thus, trigram 264 
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dissimilarities can be predicted by the letter model regardless of word status or trigram 265 

frequency.  266 

We then compared model fits for upright and inverted trigrams. In both cases, 267 

the letter model predictions (r = 0.78 & 0.73 for upright and inverted) were close to the 268 

consistency of the data (rdata = 0.85 & 0.78; Figure S3D). To compare these model fits 269 

for upright vs inverted statistically, we performed a bootstrap analysis as before 270 

(Experiment 3). This analysis revealed no significant difference in model performance 271 

between upright and inverted searches (fraction of upright < inverted normalized 272 

model correlation: p = 0.07).  273 

Finally we asked whether the spatial summation weights of the letter model 274 

were systematically different between upright and inverted trigrams. Since there are 275 

three spatial modulation weights for each neuron, we calculated the spatial modulation 276 

index for all possible pairs of weights (Figure S3 E,F,G). The spatial modulation ratio 277 

was larger for upright compared to inverted trigrams in two of the three pairs, and this 278 

difference attained statistical significance for the first and third letters in the trigram 279 

(Figure S3F). We conclude that the spatial modulation is stronger for upright compared 280 

to inverted trigrams.  281 

 282 
Figure S3. Letter model fits for upright and inverted trigrams 283 

(A) Example trigram search array containing letter transpositions, with oddball 284 

target (NAR) among distractors (ARN). It can be seen that this search is 285 

substantially harder when inverted compared to upright.  286 

(B) Dissimilarity for inverted trigram searches (1/RT) plotted against dissimilarity for 287 

upright trigram searches for word-word pairs (red circles, n = 105), transposed 288 

letter pairs (blue diamonds, n = 30), and other pairs (gray circles, n = 365).  289 

(C) Observed dissimilarity for upright trigrams plotted against the predicted 290 

dissimilarity from the letter model with symbol conventions as in (B).  291 

(D) Cross-validated letter model correlation for upright and inverted trigrams.  292 

(E) Average spatial modulation index (across 10 neurons) for the first and second 293 

letters in the trigram.  294 

(F) Same as (E) but for the first and third letters.  295 

(G) Same as (E) but for the second and third letters.   296 
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SECTION A3: COMPOUND WORDS 297 

 298 

Here we created compound words by combining two valid words such as 299 

FORGET from FOR and GET (Figure S5A). This resulted in some valid words (e.g. 300 

FORGET, TEAPOT) and many invalid words (e.g. FORPOT and TEAGET). The full 301 

stimulus set is shown in Figure S4.  302 

If valid words are driven by specialized detectors, responses to valid words 303 

should be less predictable by the single letter model. We formulated two specific 304 

predictions. First, we hypothesize that the dissimilarity between valid words (e.g. 305 

FORMAT vs TEAPOT) would yield larger model errors compared to invalid word pairs 306 

(e.g. DAYFOR vs ANYMAT). Second, we predicted that the dissimilarity between two 307 

invalid compound words (e.g. DAYFOR vs ANYMAT) should be explained better by 308 

their constituent trigrams (DAY, FOR, ANY, MAT) rather than by their constituent 309 

letters (Figure S5B).  310 

 311 

 312 

METHODS 313 

 A total of 8 subjects (4 female, aged 25 ± 2.5 years) participated in the 314 

experiment. Twelve 3-letter words were chosen: ANY, FOR, TAR, KEY, SUN, TEA, 315 

ONE, MAT, GET, PAD, DAY, POT. Each word was scrambled to obtain twelve 3-letter 316 

nonwords containing the same letters. The 12 words were combined to form 36 317 

compound words (Figure S4), such that they appeared equally on the left and right 318 

half of the compound words. It can be seen that there are seven valid words, whereas 319 

the other compound words are pseudowords that carry no meaning. The compound 320 

words measured 6° along the longer dimension. Subjects completed 1260 correct 321 

trials (36C2 search pairs x 2 repetitions). Additionally, subjects also performed visual 322 

search on 3-letter words (n = 132, 12C2 x 2 repetitions) and their jumbled versions (n = 323 

132).  Trials timed out after 15 seconds. All other details were identical to Experiment 324 

1.  325 

 Subjects were highly accurate on this task (mean ± std: 98 ± 1%). Outliers in 326 

the reaction times were removed using built-in routines in MATLAB (isoutlier function, 327 

MATLAB R2018a). This step removed 6.4% of the response time data.  328 

 329 

 330 
Figure S4. Stimulus set used for Experiment 4 (Compound Words). The left and 331 

the right 3 letters words were combined to form a 6-letter string. The strings that formed 332 

compound words are highlighted in red. 333 

 334 

RESULTS 335 

We recruited 8 subjects to perform oddball search involving pairs of trigrams as 336 

well as 6-letter strings. In all there were 12 three-letter words which resulted in 12C2 = 337 

66 searches and 36 compound 6-letter strings which resulted in 36C2 = 630 searches. 338 

We also included 12 three-letter nonwords created by transposing each three-letter 339 
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words, resulting in an additional 12C2 = 66 searches. As before, subjects were highly 340 

consistent in their responses (split-half correlation between odd and even subjects: r 341 

= 0.54, p < 0.00005 for 3-letter words; r = 0.46, p < 0.00005 for 3-letter nonwords; r = 342 

0.65, p < 0.00005 for 6-letter words).  343 

We started by using the single letter model as before to predict compound word 344 

responses. We took single neuron responses as before from Experiment 1, and took 345 

the response of each neuron to a compound word to be a weighted sum of its 346 

responses to the individual letters. Using these compound word responses, we 347 

calculated the dissimilarity between pairs of compound words, and used nonlinear 348 

fitting to obtain the best model parameters. The single letter model yielded excellent 349 

fits to the data (r = 0.68, p < 0.00005; Figure S5C). This performance was comparable 350 

to the data consistency estimated as before (rdata = 0.72).  351 

Next we asked whether discrimination between compound words can be 352 

explained better as a combination of two valid three-letter words, or as a combination 353 

of all the constituent six letters. To address this question we constructed a new 354 

compositional model based on trigrams, and asked if its performance was better than 355 

the single letter model (Figure S5D). The trigram-based letter model used trigram 356 

dissimilarity to construct neurons with trigram tuning, and spatial summation over the 357 

two trigrams to predict the 6-gram responses. To compare the performance of both 358 

models even though they have different numbers of free parameters, we used cross-359 

validation: we fit both models on half the subjects and tested their performance on the 360 

other half. The letter model outperformed the trigram model (Figure S5D). Because 361 

both models were trained on half the subjects and tested on the other half, the upper 362 

bound on their performance is simply the split-half correlation between the two halves 363 

of the data (denoted by rsh). Indeed the letter model performance was close to this 364 

upper bound (rsh = 0.56; Figure S5D), suggesting that it explained nearly all the 365 

explainable variance in the data. Finally, the letter model outperformed a widely used 366 

model for orthographic distance – the Orthographic Levenshtein Distance (OLD) 367 

(Figure S5D). Thus, compound word discrimination can be understood from single 368 

letters.  369 

Finally, the letter model fits for word-word pairs and nonword-nonword pairs 370 

were not significantly different (Figure S5E). This further validates the absence of local 371 

combination detectors (Dehaene et al., 2005) in perception.  372 

 373 

Three-letter word and nonword dissimilarities  374 

To investigate whether the letter model can predict dissimilarities between 375 

three-letter words and non-words, we fit a separate letter model with 6 neurons as 376 

before to the word and non-word dissimilarities. If frequent viewing of words led to the 377 

formation of specialized word detectors, the letter model would show worse model fits 378 

compared to nonwords. However, we observed no such pattern: the letter model fits 379 

were equivalent for words (r = 0.69, p < 0.00005; Figure S5F) and nonwords (r = 0.57, 380 

p < 0.00005; Figure S5F) – and these fits approached the respective data 381 

consistencies (rdata = 0.67 for words, 0.68 for nonwords). We conclude that three-letter 382 

string dissimilarities can be predicted by the letter model regardless of word status.  383 

 384 
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 385 
 386 

Figure S5. Discrimination of compound words in visual search (Experiment 4).  387 

(A) 3-letter words (top) used to create compound words (bottom).  388 

(B) Illustration of letter and trigram models. In the letter model, the response to a 389 

compound word is a weighted sum of responses to the six single letters. In the 390 

trigram model, the response to a compound word is a weighted sum of its two 391 

trigrams.  392 

(C) Observed dissimilarity for compound words plotted against predicted 393 

dissimilarity from the letter model for word pairs (red) and other pairs (gray).  394 

(D) Cross-validated model correlations for the letter model, trigram model and the 395 

Orthographic Levenshtein distance (OLD) model. The upper bound on model 396 

fits is the split-half correlation (rsh), shown in black with shaded error bars 397 

representing standard deviation across 30 random splits. Horizontal lines 398 

above shaded error bar depicts significant difference across different models.   399 

(E) Cross-validated model fits of the letter model for word-words pairs and 400 

nonword-nonword pairs.  401 

(F) Observed dissimilarities for 3-letter words (black) and nonwords (red) plotted 402 

against letter model predictions.  403 

  404 
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Spatial summation weights 405 

 To investigate the spatial summation weights for each neuron, we plotted the 406 

estimated spatial summation weights separately (Figure S6). It can be seen that 407 

spatial summation is heterogeneous across neurons, but the spatial summation of the 408 

first neuron follows the characteristic W-shaped curve for letter position observed in 409 

studies of reading.  410 

 411 

 412 

 413 

Figure S6. Spatial summation weights for each neuron. Estimated spatial 414 

summation weights (mean ± std across many random starting points of the nonlinear 415 

model fit algorithm) for each neuron in the letter model.  416 

  417 
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SECTION A4. EXPERIMENTS WITH LONGER STRINGS  418 

 419 

In the main text, we showed that bigram dissimilarity in visual search can be 420 

explained using a simple letter model with single letter responses that match 421 

perception, and a compositional spatial summation rule that predicts responses to 422 

bigrams. Here we asked whether this approach would generalize to longer strings of 423 

letters.   424 

To this end, we performed four additional experiments on longer strings. In 425 

Experiment S2, we created trigrams with a fixed middle letter and all possible 426 

combinations of flanking letters, to create multiple three-letter words. In Experiment 427 

S3, subjects performed searches involving 3, 4, 5 and 6-letter searches with 428 

uppercase, lowercase and mixed case strings. In Experiments S4 & S5, we attempted 429 

to optimize the search pairs used to estimate model parameters.  430 

 431 

METHODS 432 

 433 

Experiment S2: Trigrams with fixed middle letter. A total of 8 subjects (5 males, aged 434 

23.9 ± 1.8 years) participated in this experiment. Seven uppercase letters: A, E, I, P, 435 

S, T and Y were combined (around the stem R i.e. xRx) in all pairs to form a total of 436 

49 stimuli. These letters were chosen to maximize the occurrence of 3-letter words 437 

and psuedowords in the stimulus set. The longer dimension of the stimuli was ~5°. 438 

Each subject completed searches corresponding to all possible pairs of stimuli (49C2 = 439 

1176) with two trials for each search. All other details were identical to Experiment 2. 440 

 441 

Experiment S3: Random string searches. A total of 12 subjects (9 female, aged 24.8 442 

± 1.64 years) participated in this experiment. All 26 uppercase and lowercase letters 443 

were used to create 1800 stimuli, which were organized into 900 stimulus pairs with 444 

varying string length. These 900 pairs comprised 300 6-gram uppercase pairs, 100 6-445 

gram lowercase pairs, 100 6-gram mixed-case pairs, 100 5-gram uppercase pairs, 50 446 

4-gram uppercase pairs, 50 3-gram uppercase pairs and 200 pairs with uppercase 447 

strings of differing lengths (50 pairs each of 6- vs 5-grams, 6- vs 4-grams, 5- vs 4-448 

grams, 5- vs 3-grams = 200 pairs total). For each string length, letters were randomly 449 

combined to form strings with a constraint that all 26 letters should appear at least 450 

once at each location. Each stimulus pair was shown in two searches (with either item 451 

as target, and either on the left or right side). The trial timed out at 15 seconds for all 452 

searches.  453 

 454 

Experiment S4 – Optimized 4-letter searches. In all, 8 subjects (5 females, aged 23.5 455 

± 2.3 years) participated in this experiment. To maximize the importance of each 456 

spatial location in a 4-letter uppercase string, stimuli were created such that there were 457 

at least 75 search pairs with the same letter at either of the corresponding locations. 458 

Further, to reliably estimate the model parameters, the randomly chosen letters were 459 

arranged to minimize the condition number of the linear regression matrix X of the ISI 460 

model described below. In all there were 300 search pairs. The trial timed out after 15 461 

seconds. All other details were similar to Experiment 2. 462 

 463 

Experiment S5 – Optimized 6-letter searches. A total of 9 subjects (5 males, aged 24.1 464 

± 2.2 years) participated in this experiment. We chose 300 search pairs with 6-letter 465 

strings, according to the same criteria as in Experiment S4. All other details were the 466 

same as in Experiment S4. 467 
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RESULTS 468 

 Cross-validated model fits across all experiments are shown in Figure S7. It 469 

can be seen that the letter model fit is close to the split-half consistency of the data. 470 

Thus, visual discrimination of longer strings can be explained using a compositional 471 

neural code. Below we discuss some experiment-specific findings of interest.  472 

 473 

Lowercase and mixed-case strings 474 

 Word shape is thought to play a role in reading lowercase letters, because of 475 

the upward deflection (e.g. l, d) and downward deflections (e.g. p, g) of letters which 476 

might confer a specific overall shape to a word. To conclusively establish this would 477 

require factoring out the contribution of individual letters to word discrimination, as with 478 

the letter model. We were therefore particularly interested in whether the letter model 479 

would predict the dissimilarity between lowercase and mixed-case strings where word 480 

shape might potentially play a role. As can be seen in Figure S7, cross-validated model 481 

predictions for lowercase letters were highly correlated with the observed data (r = 482 

0.59, p < 0.00005). This correlation approached the upper bound given by the split-483 

half reliability itself (rsh = 0.64). Likewise, model predictions for mixed-case letters were 484 

also highly correlated with the observed data (r = 0.59, p < 0.00005; Figure S7). 485 

However in this case model fits were well below the split-half consistency (rsh = 0.72), 486 

suggesting that there is still some systematic unexplained variance in mixed-case 487 

strings. This gap in model fit could be simply due to the relatively few mixed-case 488 

searches used in this experiment (n = 100), or because of unaccounted factors like 489 

word shape. Nonetheless, the letter model explains a substantial fraction of variation 490 

in both lowercase and mixed case strings, suggesting that it can be used as a powerful 491 

baseline to elucidate the contribution of word shape to reading.   492 

 493 

Unequal length strings 494 

The letter model can be used to calculate responses to any string length, 495 

provided the spatial summation weights are known. Given the relatively few searches 496 

for unequal lengths in our data, we fit the letter model to unequal length strings using 497 

6 neurons. Doing so still raised a fundamental issue: which subset of the 6 spatial 498 

summation weights for each neuron should be used to calculate the response to a 4-499 

letter string? This requires aligning the 4-letter string to the 6-letter string in some 500 

manner.  501 

To address this issue, we evaluated the letter model fit on four possible 502 

alignments between longer and shorter strings, and asked whether model predictions 503 

were better for any one alignment compared to others. We aligned the smaller length 504 

string to either the left, right, centre or edge of the longer string. Model performance 505 

for these different variations is shown in Table S1. It can be seen that the model fits 506 

are comparable across different choices. However, edge alignment is slightly but not 507 

significantly better than other choices. We therefore used edge alignment for all 508 

subsequent model predictions.  509 

  510 
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 511 

Alignment Letter model correlation  

6 vs 5 6 vs 4 5 vs 3 4 vs 3 

Left: ABCDEF vs EFGHxx 0.54 0.66 0.58 0.57 

Right: ABCDEF vs xxEFGH 0.51 0.66 0.57 0.58 

Centre: ABCDEF vs xEFGHx - 0.68 0.58 - 

Edge: ABCDEF vs EFxxGH 0.55 0.63 0.60 0.59 

Table S1: Model fits for various choices of string alignment. In each case we fit 512 

the letter model with unknown weights corresponding to the longer length. The 513 

alignment is indicated by the position of “x”s in the string. For instance, “Left” alignment 514 

means that a 6-letter string ABCDEF is matched to a 4-letter string EFGH by assuming 515 

that the response to EFGH is created using the first four weights of spatial summation. 516 

Likewise, right alignment means that EFGH is aligned to the right, and therefore its 517 

response is created using the last four weights in the 6-letter letter model. The best 518 

alignment is highlighted for each column in bold. None of the correlation coefficient 519 

differences were statistically significant (p > 0.05, Fisher’s z-test).  520 

 521 

 522 

 523 
Figure S7. Letter model performance for varying length strings. For each 524 

experiment, we obtained a cross-validated measure of model performance using 6 525 

neurons as follows: each time we divided the subjects randomly into two halves, and 526 

trained the letter model on one half of the subjects and tested it on the other half. This 527 

was repeated for 30 random splits. The correlation between the model predictions and 528 

the average dissimilarity from the held-out half of the data was taken to be the model 529 

fit. The correlation between the observed dissimilarity between the two random splits 530 

of subjects is then the upper bound on model performance (mean ± std shown as gray 531 

shaded bars).  532 

 533 

  534 
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SECTION A5. ESTIMATING LETTER DISSIMILARITY FROM BIGRAMS 535 

 536 

Part-sum model  537 

 The letter model described in the text has many desirable features but requires 538 

as input the responses to single letters, which were obtained from searches involving 539 

single isolated letters. However, it could be that bigram representations can be 540 

understood in terms of component letter responses that are different from the 541 

responses of letters seen in isolation. It could also be that letter responses are different 542 

at each location.  543 

 To address these issues, we developed an alternate model in which bigram 544 

dissimilarities can be written in terms of unknown single letter dissimilarities. These 545 

single letter dissimilarities can be estimated in the model. In this model, which we call 546 

the part-sum model, the dissimilarity between two bigrams AB & CD is written as the 547 

sum of all pairs of part dissimilarities in the two bigrams (Figure S8A). Specifically:  548 

 549 

d(AB,CD) = CLAC + CRBD + XAD + XBC + WAB + WCD + constant 550 

 551 

where CLAC is the dissimilarity between letters at Corresponding Left (CL) locations (A 552 

& C), CRBD is the dissimilarity between letters at the Corresponding Right (CR) 553 

locations (B & D), XAD & XBC are the dissimilarities between letters across locations in 554 

the two bigrams (A & D, B & C), and WAB & WCD are the dissimilarities of letters within 555 

each bigram.  556 

 The part-sum model works because a given letter dissimilarity CLAC will occur 557 

in the dissimilarity of many bigram pairs (e.g. in the pair AB-CD and in AE-CF) thereby 558 

allowing us to estimate its unique contribution. Since there are 7 parts, there are 7C2 559 

= 21 possible part-pairs of each type (i.e. for CL, CR, X and W terms), resulting in 21 560 

x 4 = 84 unknown part dissimilarities. Since a given bigram experiment contains all 561 

possible 49C2 = 1176 bigram searches, there are many more observations than 562 

unknowns. The combined set of bigram dissimilarities can be written in the form of a 563 

matrix equation y = Xb where y is a 1176x1 vector of observed bigram dissimilarities, 564 

X is a 1176 x 85 matrix containing the number of times (0, 1 or 2) a given letter-pair of 565 

each type (CL, CR, X & W) contributes to the overall dissimilarity, and b is a 85 x 1 566 

vector of unknown letter dissimilarities of each type (21 each of CL, CR, X & W and 567 

one constant term). The unknown letter dissimilarities of each type was estimated 568 

using standard linear regression (regress function, MATLAB).  569 

 The part sum model has several advantages over the letter model: (1) It is linear 570 

which means that its parameters can be uniquely estimated; (2) it is compositional in 571 

that the net dissimilarity between two bigrams is explained using the constituent parts 572 

without invoking more complex interactions; (3) it can account for potentially different 573 

part relations at each location in the two bigrams. We have previously shown that the 574 

part-sum model can explain the dissimilarities between a variety of objects (Pramod 575 

and Arun, 2016).  576 

 The part sum model yielded excellent fits to the data (r = 0.88, p < 0.00005; 577 

Figure S8B) that were close to the reliability of the data (rdata = 0.90). As before, we 578 

observed no systematic deviations between model fits for frequent bigrams compared 579 

to infrequent bigrams (Figure S8B; average absolute residual error for the top 20 580 

bigram pairs with highest mean bigram frequency: 0.09 ± 0.1 s-1; for the bottom-20 581 

bigram pairs: 0.11 ± 0.08 s-1; p = 0.42, rank-sum test). To assess whether the part 582 

dissimilarities of each type (CL, CR, X and W) were related to each other, we plotted 583 

each of CR, X and W terms against the CL terms (Figure S8C). The CR and X terms 584 
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were highly positively correlated (Figure S8C), whereas the W terms were negative in 585 

sign and negatively correlated (Figure S8C). The negative values of the W terms 586 

means that bigrams with dissimilar letters become less dissimilar, an effect akin to 587 

distractor heterogeneity in visual search (Duncan and Humphreys, 1989; Vighneshvel 588 

and Arun, 2013). We conclude that the CL, CR, X and W terms in the part-sum model 589 

are driven by a common part representation.  590 

To visualize this underlying letter representation, we performed 591 

multidimensional scaling on the estimated part dissimilarities of the CL terms. In the 592 

resulting plot, nearby letters represent similar letters (Figure S8D). It can be seen that 593 

I & T, M & N are similar as in the single-letter representation (Figure S1A). These 594 

single letter dissimilarities estimated from bigrams using the part-sum model were 595 

highly correlated with the single-letter dissimilarities directly observed from visual 596 

search with isolated letters (Figure S8D).  597 

We conclude that bigram dissimilarities can be predicted from a common 598 

underlying letter representation that is identical to that of single isolated letters.  599 

 600 

Equivalence between part-sum and letter model 601 

 Given that the part-sum model and letter model both give equivalent fits to the 602 

data, we investigated how they are related. Consider a single neuron whose response 603 

to a bigram AB is given by: 𝑟𝐴𝐵 = α𝑟𝐴 + 𝑟𝐵, where 𝑟𝐴 and 𝑟𝐵 are its responses to A & B, 604 

and α is the spatial weight of A relative to B. Similarly its response to the bigram CD 605 

can be written as 𝑟𝐶𝐷 = α𝑟𝐶 + 𝑟𝐷. Then the dissimilarity between AB and CD can be 606 

written as  607 

 608 

𝑑(𝐴𝐵, 𝐶𝐷)2 609 

= (𝑟𝐴𝐵 − 𝑟𝐶𝐷)2 = (α𝑟𝐴 + 𝑟𝐵 − α𝑟𝐶 − 𝑟𝐷)2 610 

= (α(𝑟𝐴 − 𝑟𝐶) + (𝑟𝐵 − 𝑟𝐷))
2
 611 

= α2(𝑟𝐴 − 𝑟𝐶)2 + (𝑟𝐵 − 𝑟𝐷)2 + 2α(𝑟𝐴 − 𝑟𝐶)(𝑟𝐵 − 𝑟𝐷) 612 

= α2(𝑟𝐴 − 𝑟𝐶)2 + (𝑟𝐵 − 𝑟𝐷)2 + 2α(𝑟𝐴𝑟𝐵 + 𝑟𝐶𝑟𝐷 − 𝑟𝐴𝑟𝐷 − 𝑟𝐵𝑟𝐶) 613 

= α2(𝑟𝐴 − 𝑟𝐶)2 + (𝑟𝐵 − 𝑟𝐷)2 + α[(𝑟𝐴 − 𝑟𝐷)2 + (𝑟𝐵 − 𝑟𝐶)2 − (𝑟𝐴 − 𝑟𝐵)2 − (𝑟𝐶 − 𝑟𝐷)2] 614 

= α2𝑑𝐴𝐶
2 + 𝑑𝐵𝐷

2 + α(𝑑𝐴𝐷
2 + 𝑑𝐵𝐶

2 − 𝑑𝐴𝐵
2 − 𝑑𝐶𝐷

2 ) 615 

= α2𝑑𝐴𝐶
2 + 𝑑𝐵𝐷

2 + α(𝑑𝐴𝐷
2 + 𝑑𝐵𝐶

2 )  −  α(𝑑𝐴𝐵
2 + 𝑑𝐶𝐷

2 ) 616 

 617 

Thus, the squared dissimilarity between AB & CD can be written as a weighted sum 618 

of squared dissimilarities between parts at corresponding locations (A-C & B-D), parts 619 

at opposite locations (A-D & B-C) and between parts within each bigram (A-B & C-D), 620 

which is essentially the same as the part-sum model. The same argument extends to 621 

multiple neurons because the total bigram dissimilarity will be the sum of bigram 622 

dissimilarities across all neurons.  623 

There are however two important differences. First, the part sum model is 624 

written in terms of a weighted sum of part dissimilarities, whereas the above equation 625 

refers to a weighted sum of squared dissimilarities. However, the squared sum of 626 

distances and a weighted sum of distances are highly correlated, so the essential 627 

relation will still hold. Second, the letter model predicts that the across-bigram terms 628 

(XAD, XBC) should be similar in magnitude but opposite in sign to the within-bigram 629 

terms (WAB, WCD). These weights are similar in magnitude but not exactly equal, as 630 

can be seen in Fig S8C. The part-sum model thus allows for greater flexibility in part 631 

interactions compared to the letter model.   632 
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Reducing part-sum model complexity (ISI model)  633 

The observation that a common set of letter dissimilarities drive the part-sum 634 

model suggests that the part-sum model can be simplified. We therefore devised a 635 

reduced version of the part-sum model – called the Independent Spatial Interaction 636 

(ISI) model – in which the CL, CR, X and W terms are scaled versions of the single 637 

letter dissimilarities (Figure S8E). Specifically, the dissimilarity between bigrams AB & 638 

CD is:  639 

 640 

𝑑(𝐴𝐵, 𝐶𝐷) = 𝛼10𝑑𝐴𝐶 + 𝛼20𝑑𝐵𝐷 + 𝛼11(𝑑𝐴𝐷 + 𝑑𝐵𝐶) + 𝛽11(𝑑𝐴𝐵 + 𝑑𝐶𝐷)  +  𝑐 641 

  642 

 where dAC is the observed dissimilarity between the left letters A & C from visual 643 

search and 𝛼10 is an unknown scaling term, dBD is the observed dissimilarity between 644 

the right letters B & D, and 𝛼20 is an unknown scaling term. Likewise, 𝛼11is an unknown 645 

scaling term for the net dissimilarity (𝑑𝐴𝐷 + 𝑑𝐵𝐶) between letters across locations, β11 646 

is the unknown scaling term for the net dissimilarity (𝑑𝐴𝐵 + 𝑑𝐶𝐷) between letters within 647 

the two bigrams and c is a constant. Thus, the ISI model has only 5 free parameters: 648 

𝛼10, 𝛼20, 𝛼11, 𝛽11 𝑎𝑛𝑑 𝑐. These parameters can be estimated by solving the matrix 649 

equation y = Xb where y is a 1176x1 vector of observed bigram dissimilarities, X is a 650 

1176 x 5 matrix containing the net single dissimilarity of each type (CL, CR, X & W) 651 

that contributes to the total dissimilarity, and b is a 5 x 1 vector of unknown weights 652 

corresponding to the contribution of each type of dissimilarity (plus a constant). 653 

 The performance of the ISI model is summarized in Figure S8F. It can be seen 654 

that, despite having only 5 free parameters compared to 85 parameters of the part-655 

sum model, the ISI model yields comparable fits to the data (Figure S8F).  656 

  657 
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 658 

 659 
Figure S8. Predicting bigram dissimilarity using part-sum model  660 

(A) Schematic of the part sum model. According to this model, the dissimilarity (1/RT) 661 

between bigrams ‘AB’ and ‘CD’ is written as a linear sum of dissimilarities of its 662 

corresponding part terms (AC and BD, shown in red), across part terms (AD and 663 

BC, shown in yellow), and within part terms (AB and CD, shown in blue). 664 

(B) Correlation between the observed and predicted dissimilarities (1/seconds). Each 665 

point represents one search pair (n = 49C2 = 1176). Word-word pairs are highlighted 666 

using red diamonds, and frequent bigram pairs are highlighted using blue circles. 667 

Dotted lines represent unity slope line.  668 

(C) Correlation between the estimated weights at corresponding location left with 669 

estimated weights at 1) corresponding location right (red), 2) across location 670 

(yellow), and 3) within location (blue). Each point represents one letter pair (n = 7C2 671 

= 21). Dotted lines represent positive and negative unity slope line.  672 

(D) Perceptual space of the single letter dissimilarities, that are the model coefficients 673 

of part terms at left corresponding location 674 

(E) Schematic of the Independent Spatial Interaction model. In this model, we use the 675 

observed letter-pair dissimilarities and only estimate the weights of these letter-pair 676 

dissimilarities across different locations.  677 

(F) Comparing part-sum and ISI model fits. Bar plots represents mean correlation 678 

coefficient between the observed and predicted dissimilarities. Error bars represent 679 

one standard deviation across 30 splits. Black horizontal line represents mean 680 

split-half correlation (rsh) and the shaded error bar represents one standard 681 

deviation around the mean.  (****, p < 0.00005, **, p < 0.005). 682 

 683 

  684 
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ISI model performance across all experiments 685 

 Next we asked whether the ISI model can be generalized to explain 686 

dissimilarities between longer strings. Consider two n-letter strings 𝑢1𝑢2𝑢3𝑢4 … 𝑢𝑛 and 687 

𝑣1𝑣2𝑣3𝑣4 … 𝑣𝑛. The net dissimilarity between the two strings can be written as:  688 

 689 

𝑑(𝑢1𝑢2 … 𝑢𝑛 , 𝑣1𝑣2 … 𝑣𝑛) = ∑ ∑ 𝛼𝑖𝑘(𝑑(𝑢𝑖 , 𝑣𝑖+𝑘) + 𝑑(𝑣𝑖 , 𝑢𝑖+𝑘))

𝑛−𝑖

𝑘=0

𝑛

𝑖=0

− ∑ ∑ 𝛽𝑖𝑘(𝑑(𝑢𝑖 , 𝑢𝑖+𝑘) + 𝑑(𝑣𝑖 , 𝑣𝑖+𝑘))

𝑛−𝑖

𝑘=1

𝑛

𝑖=0

+ 𝑐 690 

 691 

where 𝛼𝑖𝑘 are the unknown weights corresponding to pairs of letters across the two n-692 

grams separated by “k” positions starting from 0, and 𝛽𝑖𝑘 are the unknown weights 693 

corresponding to pairs of letters separated by “k” positions within the two n-grams. 694 

Written in this manner, the total number of unknowns in the n-gram ISI model is n2+1, 695 

which can be estimated using standard linear regression as before. For instance, for 696 

the 6-gram ISI model, there are 62+1 = 37 free parameters.  697 

 In this manner, we fit the ISI model to all experiments. The resulting cross-698 

validated model fits are shown together with the letter model in Figure S9. It can be 699 

seen that the ISI model performance is comparable to that of the letter model across 700 

all experiments.  701 

 702 

 703 
Figure S9. ISI & letter model performance across all experiments 704 

For each experiment, we obtained a cross-validated measure of both neural and ISI 705 

model performance as follows: each time we divided the subjects randomly into two 706 

halves, and trained the letter model on one half of the subjects and tested it on the 707 

other half. This was repeated for 30 random splits. The correlation between the model 708 

predictions and the average dissimilarity from the held-out half of the data was taken 709 

to be the model fit. The correlation between the observed dissimilarity between the 710 

two random splits of subjects is then the upper bound on model performance (mean ± 711 

std shown as gray shaded bars). 712 

  713 
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Reducing the complexity of the ISI model  714 

 According to the ISI model, the net dissimilarity between two n-grams can be 715 

written as a weighted sum of dissimilarities between letter pairs that are varying 716 

distances apart. We wondered if the ISI model can be simplified further if there is a 717 

systematic pattern whereby these weight corresponding to a given letter pair varies 718 

systematically with letter position and distance between the letters.  719 

 To assess this possibility, we plotted model coefficients of the ISI model 720 

estimated from Experiment S3 along two dimensions. First, we asked if the 721 

contribution of letter pairs at corresponding locations in the two n-grams varies with 722 

letter position. For varying string lengths (3-, 4-, 5- and 6-letter strings) we observed a 723 

characteristic U-shaped function whereby the edge letters contribute more to the net 724 

dissimilarity compared to the middle letters (Figure S10A). Second, we asked if model 725 

weights decrease systematically with inter-letter distance. This was indeed the case 726 

regardless of the starting letter in the pair (Figure S10B). Finally, we note that across 727 

and within part terms are roughly equal in magnitude but opposite in sign (Figure S8C).  728 

 The above pattern of weights in the ISI model suggest that we can make two 729 

simplifying assumptions. First, the weight of the starting letter is a U-shaped function 730 

when the inter-letter distance is zero (α𝑖0). Second, weights decrease exponentially 731 

thereafter with increasing inter-letter distance. Specifically:  732 

α𝑖0 = 𝑎𝑖2 + 𝑏𝑖 + 𝑐 𝑓𝑜𝑟 𝑖 =  1,2, . . . 𝑛  733 

α𝑖𝑘 = α𝑖0𝑒−𝑘/τ 𝑓𝑜𝑟 𝑘 ≥  1 734 

β𝑖𝑘 = −α𝑖𝑘 𝑓𝑜𝑟 𝑘 ≥ 1 735 

 736 

 where 𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 τ are the free parameters in this model. This simplified model, 737 

which we call the Spatial Interaction Decay (SID) model has only 5 parameters and 738 

can be used to predict the dissimilarities between strings of arbitrary length. The model 739 

parameters are obtained using nonlinear gradient descent methods (nlinfit function, 740 

MATLAB).  741 

 To illustrate the performance of the SID model in comparison to the ISI model, 742 

we fit the model to 6-letter compound words (Experiment 4). To compare the two 743 

models, we plotted the ISI model terms directly estimated from the search data against 744 

the ISI model terms predicted from the SID model. This yielded a strong positive 745 

correlation (Figure S10C). The SID model also yielded excellent fits to the data (Figure 746 

S10D), and both models yielded comparable fits (Figure S10E).  747 

 To evaluate this pattern across all experiments, we fit both SID and ISI models 748 

to all experiments. Here too we obtained qualitatively similar fits for the two models 749 

(Figure S11). To confirm whether the SID model trained on one experiment can 750 

capture the variations in another, we trained the SID model on data from Experiment 751 

S5 and evaluated it on all other experiments. This too yielded largely similar but 752 

smaller predictions (Figure S11). This decrease in model fit suggests that model 753 

parameters are somewhat dependent on the search pairs chosen.  754 

 We conclude that dissimilarities between arbitrary letter strings can be 755 

predicted using highly simplified models that operate on single letter dissimilarities and 756 

simple compositional rules.  757 
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 758 
Figure S10. Reducing the ISI model  759 

(A) ISI model coefficients α𝑖0 as a function of starting letter position i, for Experiment 760 

S3, for varying string lengths.  761 

(B) ISI model coefficients α1𝑘 as a function of inter-letter distance k for Experiment 762 

S3, for varying string lengths.  763 

(C) ISI model coefficients (both α𝑖𝑘 and β𝑖𝑘) plotted against the predicted ISI model 764 

coefficients from the SID model. Both models are fitted to data from Experiment 765 

4 (compound words).  766 

(D) Observed dissimilarity in Experiment 4 plotted against predicted dissimilarity 767 

from the SID model.  768 

(E) Cross-validated model correlation for ISI & SID models.  769 

  770 
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 771 

 772 
Figure S11. ISI and SID model fits across all experiments. Cross-validated model 773 

fits for the ISI and SID models across all experiments. In each case the SID and ISI 774 

models were fit on a randomly chosen half of the subjects and tested on the other half. 775 

The SID (ES5) bars refer to the SID model trained on Experiment S5 and tested on 776 

data from a randomly chosen half of subjects in each experiment.  777 

  778 
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Comparing upright and inverted bigrams using part-sum model 779 

 The results in Section A2 were based on fitting the letter model to upright and 780 

inverted bigrams but assuming a fixed set of single letter responses derived from 781 

uppercase letters. The fact that the letter model yielded excellent fits to both upright 782 

and inverted bigrams validates this assumption. Nonetheless, we wondered whether 783 

differences between upright and inverted bigram searches can be explained solely by 784 

different letter representations or by differences in letter interactions.  785 

 To investigate this possibility, we fit the part-sum model to upright and inverted 786 

bigram searches (Figure S12A). The part-sum model also yielded equivalent fits to 787 

both upright and inverted searches (Figure S12B). If model predictions were similar, 788 

we reasoned that the difference between upright and inverted searches must be 789 

explained by differences in model parameters. To this end, we compared the 790 

estimated letter dissimilarities of each type (CL, CR, X and W) in the upright and 791 

inverted searches (Figure S12C). Model terms were comparable in magnitude for the 792 

CL terms, but were systematically weaker for both CR, X and W terms for inverted 793 

compared to upright searches (Figure S12C). However in all cases, the recovered 794 

letter dissimilarities were correlated between upright and inverted conditions 795 

(correlation between upright and inverted model terms: r = 0.93, 0.91, 0.97 & 0.87 for 796 

CL, CR, X & W terms; all correlations p < 0.00005).  797 

 798 

 799 

 800 
Figure S12. Part-sum model fits for upright and inverted bigrams 801 

(A) Schematic of the part-sum model, in which the net dissimilarity between two 802 

bigrams is given as a linear sum of letter dissimilarities at corresponding 803 

locations (CL & CR), across-bigrams (X) and within-bigrams (W).  804 

(B) Cross-validated model correlation of the part sum model for upright and 805 

inverted bigrams.  806 

(C) Average model coefficients (mean ± sem) of each type for upright and inverted 807 

bigrams. Asterisks denote statistical significance (**** is p < 0.00005) obtained 808 

on a sign-rank test comparing 15 letter dissimilarities between upright and 809 

inverted conditions).  810 

 811 

  812 
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Comparing upright and inverted trigrams using part-sum model 813 

The part sum model applied to trigrams is depicted in Figure S13A. In this 814 

model, the net dissimilarity between two trigrams can be written as a sum of single 815 

letter dissimilarities at every possible pair of locations. These locations are grouped as 816 

corresponding letters at left (C1), middle (C2) and right (C3) locations, letters across 817 

trigrams that are one letter apart starting from the left letter (XN1) or the middle letter 818 

(XN2), letters across trigrams that are two letters apart (XF), letters within each trigram 819 

that are one letter apart starting from the left letter (WN1) or middle letter (WN2), and 820 

letters within each trigram that are two letters apart (WF). Thus the full part-sum model 821 

has 9 groups of letter dissimilarities (C1, C2, C3, XN1, XN2, XF, WN1, WN2, WF) each 822 

having 6C2 = 15 unknown single letter dissimilarities. Together with a constant term, 823 

this part-sum model has 9 x 15 + 1 = 136 free parameters. Since we have 500 824 

searches each for upright and inverted trigrams, the part-sum model can be fit to this 825 

data to estimate these free parameters using standard linear regression.  826 

Cross-validated model fits for the part-sum model are shown in Figure S13B. It 827 

can be seen that the part-sum model explains nearly all the explainable variance in 828 

the data for both upright and inverted trigrams (Figure S13B). This in turn means that 829 

differences between upright and inverted trigrams can be explained using differences 830 

in model parameters. This was indeed the case: on plotting the strength of model terms 831 

of each type it was clear that 7 of the 9 types of model terms (C1, C2, C3, XN2, XF, 832 

WN2, WF) were systematically larger for upright trigrams compared to inverted 833 

trigrams (Figure S13C). Finally we confirmed that model terms for upright and inverted 834 

trigrams were highly correlated (correlation between upright and inverted model terms, 835 

averaged across 9 model term types: r = 0.65 ± 0.1, p < 0.05 in all cases).  836 

We conclude that upright and inverted trigram searches can be explained using 837 

the part-sum model driven by a common single letter representation.  838 

 839 

 840 
Figure S13. Part-sum model fits for upright and inverted trigrams 841 

(A) Schematic of part-sum model for trigrams.  842 

(B) Cross-validated model correlation of part-sum model for upright and inverted 843 

trigrams.  844 

(C) Average model coefficient (averaged across 6C2 = 15 terms) of each type for 845 

upright and inverted trigrams. Asterisks indicate statistical significance (* is p < 846 

0.05, ** is p < 0.005, etc) calculated using a sign-rank test comparing the upright 847 

and inverted model terms.  848 

  849 
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SECTION A6. JUMBLED WORD READING (EXPT S6)  850 

 851 

 Here, in Experiment S6, we tested subjects on a jumbled word reading task, 852 

where they had to view a jumbled word and recognize the original word.  853 

 854 

METHODS 855 

Procedure. A total of 16 subjects (9 male, aged 24.8 ± 2.1 years) participated in the 856 

task. Other details were similar to Experiment 5.  857 

Stimuli. We chose 300 words such that no two words were anagrams of each other. 858 

These comprised 75 four-letter words, 150 five-letter words and 75 six-letter words. 859 

Jumbled words were created by shuffling 2, 3, or 4 letters of each word. There were 860 

an equal proportion of 2, 3, and 4 letter transpositions. All stimuli were presented in 861 

uppercase against a black background.   862 

Task. Each trial began with a fixation cross shown for 0.5 s followed by a jumbled word 863 

that appeared for 5 seconds (for the first 6 subjects) and 7 seconds (for the rest), or 864 

until the subject made a response by pressing the space bar on the keyboard. Subjects 865 

were asked to press a key as soon as they could recognize the unjumbled word. To 866 

ensure that subjects correctly recognized the unjumbled word, they were asked to type 867 

the unjumbled word within 10 seconds of pressing the space bar. The response time 868 

was taken as the time at which the subject pressed the space bar. To avoid any 869 

memory effects, the same set of jumbled words were shown to all subjects exactly 870 

once. We analysed response times only on trials in which the subject subsequently 871 

entered the correct word.  872 

Data Analysis. Subjects were reasonably accurate on this task (average accuracy: 873 

59.5 ± 8% across 300 words). Response times for wrongly typed words were 874 

discarded. Words correctly solved by more than 6 subjects (n = 238) were included for 875 

further analysis. Since trials were self-paced, we did not remove any outliers in the 876 

reaction times. Lexical properties were obtained from the English Lexicon Project 877 

(Balota et al., 2007).   878 

 879 

RESULTS 880 

 Of a total of 300 jumbled words tested, we selected for further analysis 238 881 

words that were correctly unjumbled by more than two-thirds of the subjects. Subjects 882 

responded quickly and accurately to these words (mean ± std of accuracy: 71 ± 9%; 883 

response time: 2.13 ± 0.33 s across 238 words). Subjects took longer to respond to 884 

some jumbled words (e.g. REHID) compared to others (e.g. DBTOU), as seen in the 885 

sorted response times (Figure S14A). These patterns were consistent across subjects, 886 

as evidenced by a significant split-half correlation (r = 0.55, p < 0.00005 between odd- 887 

and even-numbered subjects).  888 

 Can these patterns in unscrambling time be explained using the letter model? 889 

To do so, we reasoned that jumbled words with large dissimilarity to the original word 890 

will take longer to elicit a response (Figure S14B). Accordingly, we took the average 891 

response times to each jumbled word and asked whether it can be predicted using the 892 

single letter model described previously. For each word length, we optimized the 893 
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weights of the single letter model to find the best fit to this data, and then combined 894 

the predictions across all word lengths to obtain a composite measure of performance. 895 

The single letter model yielded excellent fits to the data (r = 0.76, p < 0.00005; Figure 896 

S14C). This model fit was comparable to the data consistency (rdata = 0.70). An 897 

alternate distance model - Orthographic Levenshtein (OL) distance (Levenshtein, 898 

1966) – calculates the number of edits required to transform one string to other. This 899 

model neither accounts for letter similarity nor the position of edit. Hence, it fails to 900 

account for all the variance in the data (r = 0.44, p < 0.00005; Figure S14D).   901 

 The above finding shows that human performance on unscrambling words is 902 

driven primarily by the visual dissimilarity between the jumbled and original word. 903 

However, it does not rule out the presence of lexical factors. To assess this possibility 904 

we formulated a model to predict the unscrambling time as a linear sum of many lexical 905 

factors. We used five lexical properties: log word frequency, log mean letter frequency, 906 

log mean bigram frequency of the jumbled word, log mean bigram frequency of the 907 

unjumbled i.e. original word, and the number of orthographic neighbours (see 908 

Methods). To avoid overfitting by either model, we trained both models on one-half of 909 

the subjects and tested it on the other half. This lexical model yielded relatively poor 910 

fits (r = 0.30, p < 0.00005, Figure S14E) compared to visual dissimilarity from both 911 

single letter model and OL distance model. The difference in model fits was statistically 912 

significant (p < 0.05, Fisher’s z-test).  Among the lexical factors, word frequency and 913 

letter frequency contributed the most compared to the others (partial correlation of 914 

each lexical factor after accounting for all others: r = -0.23, p < 0.0005 for log word 915 

frequency, r = 0.18, p < 0.05 for log mean letter frequency; r = .05, p = 0.49 for log 916 

mean bigram frequency of jumbled word; r = -0.02, p = 0.77 for log mean bigram 917 

frequency in original word; r = 0.04, p = 0.58 for number of orthographic neighbours).  918 

  To assess the extent of shared variance in the two models, we calculated the 919 

partial correlation between the observed data and the lexical model predictions after 920 

factoring out the contribution from visual dissimilarity. This revealed a small partial 921 

correlation (r = 0.31, p < 0.00005). Conversely, the partial correlation for the single 922 

letter model after factoring out the lexical model was much higher (r = 0.75, p < 923 

0.00005). Thus, visual dissimilarity from the single letter model dominates jumbled 924 

word reading.  925 

 Finally we asked whether both visual dissimilarity and lexical factors contribute 926 

to the jumbled word task. We created a combined model in which the jumbled word 927 

response times were a linear combination of the predictions of both models. This 928 

combined model yielded better predictions than either model by itself (r = 0.78, p < 929 

0.00005, Figure S14E). To assess the statistical significance of these results, we 930 

performed a bootstrap analysis. On each trial, we trained three models on the 931 

dissimilarity obtained from considering only one randomly chosen half of subjects: the 932 

visual dissimilarity model, the lexical model and the combined model. We calculated 933 

the correlation between all three model predictions on the other half of the data, and 934 

repeated this procedure 1000 times. The OL distance model does not have any free 935 

parameters, hence the distances were directly correlated with the other half of the 936 

data. Across these samples, the lexical model fits never exceeded the visual 937 
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dissimilarity model, suggesting that the visual dissimilarity model was significantly 938 

better (p < 0.05). Likewise, the combined model was only marginally better than the 939 

visual letter model (fraction of combined < visual: p = 0.07) but was significantly better 940 

than the lexical model (fraction of combined < lexical: p = 0).   941 

 We conclude that performance on the jumbled word task relies primarily on 942 

visual dissimilarity. We propose that this initial visual representation of a word allows 943 

the subject to make a quick guess at the correct word without explicit symbolic 944 

manipulation.  945 

 946 

  947 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2020. ; https://doi.org/10.1101/653048doi: bioRxiv preprint 

https://doi.org/10.1101/653048
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 29 of 38 

 

 948 
Figure S14. Jumbled word task (Experiment S7).  949 

(A) Response times in the jumbled word task sorted in descending order. Shaded error 950 

bars represent s.e.m. Some example words are indicated using dotted lines. The 951 

split-half correlation between subjects (rsh) is indicated on the top left.  952 

(B) Schematic of visual word space, with one stored word (DRINK) and two jumbled 953 

versions (DRNIK & NIRDK). We predicted that the time taken by subjects to 954 

unscramble a jumbled word would be proportional to its dissimilarity to the stored 955 

word. Thus, subjects would take longer to unscramble NIRDK compared to DRINK.  956 

(C) Observed response times in the jumbled word task plotted against predictions from 957 

the letter model based on single letters with spatial summation. Each point 958 

represents one word. Asterisks indicate statistical significance (**** is p < 0.00005). 959 

(D) Observed response times in the jumbled word task plotted against Orthographic 960 

Levenshtein (OL) distance. Each point represents one word. Asterisks indicate 961 

statistical significance (**** is p < 0.00005). 962 

(E) Cross-validated model correlations for the letter model, OLD model, lexical model 963 

and the neural+lexical model. Model correlations were obtained by training each 964 

model on one half of subjects, and evaluating the correlation on the other half (error 965 

bars represent standard deviation across 1000 random splits). The upper bound 966 

on model fits is the split-half correlation (rsh), shown in black with shaded error bars 967 

representing standard deviation across the same random splits. All correlations 968 

were individually statistically significant (p < 0.00005). Horizontal lines above 969 

shaded error bar depicts significant difference across different models i.e. the 970 

fraction of splits in which the observed difference was violated. All significant 971 

comparisons are indicated. 972 

  973 
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SECTION A7. ADDITIONAL ANALYSES FOR EXPERIMENTS 6 & 7 974 

Stimulus set 975 

32 words were chosen of varying frequency of occurrence and the nonwords were 976 

created by either transposition or substitution of middle or edge letters. 10 single 977 

letters: E, S, A, R, O, L, I, T, N, and D were used to form words. The full set of strings 978 

used experiments 6 and 7 is shown below. 979 
 980 

Middle Letter 
Transposition 

Edge Letter 
Transposition 

Middle Letter 
Substitution 

Edge Letter 
Substitution 

Words Nonwords Words Nonwords Words Nonwords Words Nonwords 

AORTA 
DRAIN    
TREND    
ATLAS   
DRONE    
LEARN    
SANTA    
INSET 

AROTA    
DARIN    
TERND    
ALTAS    
DRNOE    
LERAN    
SATNA    
INEST 

STOLE    
OASIS    
SOLID    
TRAIN    

ORDER    
INDIA   
RINSE    
SNAIL 

TSOLE    
AOSIS    
OSLID    
RTAIN    

ORDRE    
INDAI    
RINES    
SNALI 

NOISE   
ERROR    
DRILL    
ARISE    
LITRE    
SLIDE    
NASAL    
ALIEN 

NANSE    
EDLOR    
DTELL    
AOESE   
LINOE    
SLONE    
NATDL    
ALOTN 

ONION    
RADIO    
ASSET    
TEASE    
ENTER    
IDEAL    

ADORE    
LASER 

ESION    
EEDIO    
EESET    
RDASE    
ENTRO    
IDEDI    
ADODI    
LASRO 

Table S3: List of 32 words and 32 nonwords used in Experiment 6 & 7. All words 981 

and nonwords were created from 10 single letters whose activations were also 982 

measured in the experiment.  983 

 984 

ROI definitions 985 

 986 

ROI 
 

Definition #voxels 
(mean ± sd) 

ROI peak 
location 

V1-V3 Voxels activated for scrambled > fixation 
overlaid with anatomical mask of V1-V3 

398 ± 131 X: 8 ± 17 
Y: -96 ± 5 
Z: 6 ± 9 

V4 Voxels activated for scrambled > fixation 
overlaid with anatomical mask of V4 

185 ± 63 X: 5 ± 26 
Y: -88 ± 3 
Z: 27 ± 11  

LO Voxels activated for object > scrambled and 
not in other ROIs 

371 ± 115 X: -17 ± 43 
Y: -66 ± 15 
Z: -19 ± 5 

VWFA Voxels with known words > scrambled word 
in a contiguous region in fusiform gyrus 

52 ± 15 X: -44 ± 4 
Y: -50 ± 5 
Z: -17 ± 5 

TG Voxels with native words > scrambled word in 
a contiguous region in temporal gyrus 

289 ± 182 X: -44 ± 39 
Y: -43 ± 18 
Z: 3 ± 9 

Table S4. Variability in ROI definitions across subjects. For each ROI we report 987 

the mean and standard deviation across subjects of the number of voxels, and the 988 

XYZ location of the voxel with peak T-value in the normalized brain.  989 

 990 

 991 

 992 

  993 
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Visualization of perceptual and semantic space 994 

 To visualize words and nonwords in perceptual space, we performed a 995 

multidimensional scaling (MDS) analysis of the visual search data (Experiment 7). 996 

Briefly, MDS finds the best-fitting 2D coordinates that best match with the observed 997 

distances. In the resulting plot, nearby stimuli correspond to hard searches.  The 998 

perceptual space for words and nonwords is shown in Figure S15 A-B. It can be seen 999 

that stimuli with common first letters are grouped together. MDS coordinates for 1000 

nonwords was rotated without altering their overall configuration so as to best match 1001 

the MDS coordinates for words.  1002 

 The semantic dissimilarities were estimated using the GloVe features 1003 

(Pennington et al., 2014), and visualized using MDS analysis (Figure S15C). In the 1004 

resulting plot, semantically related words/ frequently cooccurring words are closer to 1005 

each other.  1006 

 1007 

 1008 
Figure S15: Multi-dimensional representation of words and nonwords.  1009 

A. Perceptual space for words. we used multidimensional scaling to find the 2D 1010 

coordinates of all words that best match the observed distances. In the resulting 1011 

plot, nearby words indicate hard searches. The correlation coefficient between 1012 

dissimilarities in 2D plane and the observed data is shown. Asterisks indicate 1013 

significant correlation (**** is p < 0.00005).  1014 

B. Same as (A) but for nonwords. 1015 
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C. Same as (A) but for semantic space of words.  1016 

Neural activity corresponding to words, nonwords, and letters 1017 

For each category of stimuli i.e. words, nonwords, and letters, we averaged the activity 1018 

values across voxels and subjects within each ROI. The mean activity values are 1019 

shown in Figure S16A-E. 1020 

 1021 

Word vs nonword classification   1022 

For each ROI and subject, we built linear classifier to discriminate between 1023 

words and nonwords using built-in MATLAB routine “fitcdiscr”. We built separate 1024 

classifiers to distinguish the activity pattern of transposed and substituted nonwords 1025 

from their corresponding word activity patterns. The resulting decoding accuracy is 1026 

shown in Figure S16F.  1027 

 1028 

Can string responses be predicted from single letters?   1029 

 We modelled the response of each voxel across the 64 strings (32 words, 32 1030 

nonwords) as a linear combination of the single letter activations (Figure S16G). We 1031 

evaluated model fits by comparing model correlations separately for words and 1032 

nonwords. If string responses were driven by specialized detectors for letter 1033 

combinations (such as those present in words), then we reasoned that model 1034 

correlations would be worse for words compared to nonwords. By contrast, if there are 1035 

no specialized detectors of this kind, model fits would be equivalent for words and 1036 

nonwords.  1037 

 We calculated cross-validated model fits by training the model on half the trials 1038 

and testing it on the other half of the trials. Since voxels could vary widely in their 1039 

reliability of responses to the stimuli, we normalized the model fit of each voxel by its 1040 

split-half reliability. The average noise-corrected model fit (averaged across voxels 1041 

and subjects) is shown in Figure S16H. This revealed no systematic difference in 1042 

model performance for words and nonwords in any of the ROIs (Figure S16H). We 1043 

obtained qualitatively similar results using a searchlight, where there were no clear 1044 

regions in which model fits differed for words and nonwords (Figure S17D).  1045 

 To further validate the letter model, we compared the single letter tuning along 1046 

each MDS dimension with the observed single letter tuning in each ROI (Figure S18A). 1047 

For each ROI, we grouped voxels with similar response profile and matched it to the 1048 

MDS dimension (Figure S18A). We obtained similar single letter tuning and weight 1049 

profiles for voxels across different ROIs. However this analysis is inconclusive 1050 

because there is no systematic way to compare a small set of neurons inferred from 1051 

behaviour with the much larger, possibly overcomplete set of voxel activations 1052 

observed in brain imaging. Likewise, we grouped voxels with similar summation 1053 

weights to compare the weight profiles in behaviour and brain imaging. However this 1054 

analysis is also inconclusive because different MDS-derived neurons might contribute 1055 

differently towards behaviour, so the summation weights cannot be directly averaged 1056 

to make overall comparisons between ROI activations and behaviour. Despite these 1057 

caveats, there is a general match between tuning profiles and summation weights 1058 

observed in behaviour with those observed in different brain regions.   1059 

 1060 

 1061 

 1062 

 1063 
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 1064 
Figure S16: Neural activity 1065 

(A) Average activation levels for words, nonwords, and letters. Error bar indicate 1066 

±1 s.e.m. across subjects. Asterisks indicate statistical significance (* is p < 1067 

0.05, ** is p < 0.005, etc. in a sign-rank test comparing subject-wise average 1068 

activations). 1069 

(B)-(E). Same as in A but for V4, Lateral Occipital areas, Visual Word Form Area, 1070 

and Temporal Gyri respectively.  1071 

(F) Cross-validated classification accuracy for transposed word-nonword pairs 1072 

(dark) and substituted word-nonword pairs (light). Error bars indicate s.e.m. 1073 

across subjects. Asterisks indicate statistical significance (* is p < 0.05, ** is p 1074 

< 0.005, etc. in a sign-rank test comparing subject-wise accuracy w.r.t. chance 1075 

level). 1076 

(G) Schematic of the voxel model. The response of each voxel across strings is 1077 

modelled as a linear combination of the constituent letter responses. Bottom: 1078 

Hypothetical model fits based on the presence (right) or absence (left) of local 1079 

combination detectors. Predicted responses for words will deviate from the 1080 

observed responses under the influence of LCD.  1081 

(H) Average model correlation (normalized using split-half correlation) for each ROI 1082 

for words (dark) and nonwords (light). Error bar indicate s.e.m. across subject. 1083 

 1084 

 1085 

 1086 

  1087 
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Searchlight analyses 1088 

To identify other brain regions that might show the effects observed in the 1089 

individual ROIs, we performed a whole-brain searchlight analysis. Specifically, for 1090 

each voxel in a given subjects’ brain, we considered a local neighbourhood of 27 1091 

voxels (3x3x3 voxels) and performed the following analyses of interest. We obtained 1092 

similar results for larger searchlight volumes. The resulting maps were smoothed using 1093 

a Gaussian filter with FWHM of 3 mm  1094 

 1095 

Searchlight for regions that match lexical decision time 1096 

For each voxel, its activity across strings is correlated with mean lexical 1097 

decision time. The resulting whole brain correlation map is averaged across subjects. 1098 

Overall, activity in VWFA, Superior Parietal Lobe (SPL), Pre-Frontal and motor cortex 1099 

is correlated with lexical decision time. This correlation map was visualized on the 1100 

brain surface (Figure S17A). 1101 

 1102 

Searchlight for regions that match perceptual space 1103 

For the neighbourhood of each voxel, we calculated the pairwise neural 1104 

dissimilarity for all word-word, nonword-nonword, and word-nonword pairs for a given 1105 

subject, and averaged this across subjects. We then calculated the correlation 1106 

between this local neural dissimilarity and the corresponding string dissimilarities 1107 

estimated using experiment 7. This correlation map was visualized on the brain 1108 

surface (Figure S17B). 1109 

 1110 

Searchlight for regions that match semantic space 1111 

For the neighbourhood of each voxel, we calculated the pairwise neural 1112 

dissimilarity for all word-word pairs for a given subject and averaged this across 1113 

subjects. We then calculated the correlation between this local neural dissimilarity and 1114 

the corresponding semantic dissimilarities. This correlation map was visualized on the 1115 

brain surface (Figure S17C). 1116 

 1117 

Searchlight for comparing linear model fits between words and nonwords 1118 

 For each subject and voxel, we modelled the response to strings as a linear 1119 

combination of its single letter responses. The model fits (correlation between 1120 

observed and predicted string responses) was evaluated separately for words and 1121 

nonwords. The difference in the mean model fits between words and nonword is 1122 

visualized on the brain surface (Figure S17D).  1123 

 1124 
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 1125 
 1126 

Figure S17: Searchlight analysis 1127 

A. Searchlight map of correlation between neural activity and lexical decision time for 1128 

each voxel. 1129 

B. Searchlight map of correlation between neural dissimilarity and search 1130 

dissimilarities in behaviour. 1131 

C. Searchlight map of correlation between neural dissimilarity and semantic 1132 

dissimilarities. 1133 

D. Searchlight map depicting the difference in model fit for words versus nonwords 1134 

for each voxel, averaged across subjects. 1135 

  1136 
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Match between letter model and fMRI data 1137 

The letter model described throughout the study is derived from dissimilarities 1138 

measured in behaviour in two steps. First, the dissimilarities between single letters 1139 

were used to construct single neurons tuned to letter shape, whose activity predicts 1140 

these dissimilarities. Second, the summation weights of each neuron were adjusted 1141 

so that they match the dissimilarities between longer strings.  1142 

Given that we recorded responses to single letters as well as strings in fMRI, 1143 

we wondered whether these can be matched in some manner to the letter tuning and 1144 

summation weights derived from behaviour in the letter model. Any direct comparison 1145 

is fraught with the difficulty that many single letter tuning functions could produce the 1146 

same behaviour. For instance, simply rotating the MDS-derived tuning functions could 1147 

yield another set of neurons that match the observed letter dissimilarities. This is 1148 

further compounded by the fact that the MDS-derived neurons contribute unequally to 1149 

behaviour, and by the fact that this mapping could change completely with increasing 1150 

numbers of neurons. Thus it is unreasonable to expect voxel tuning for single letters 1151 

or the summation weights to match exactly with the behaviourally derived tuning.  1152 

Nonetheless, we attempted to find a broad link between the single letter tuning 1153 

and summation weights observed in behaviour with those observed in each ROI. The 1154 

results are summarized in Figure S18. Since there are only 10 single letters, 6 MDS 1155 

neurons were sufficient to explain > 95% of the variance of the pair-wise single letter 1156 

dissimilarities observed in Experiment 1. For each MDS neuron, we identified the 1157 

voxels whose activity for single letters had the least residual error compared to other 1158 

MDS neurons. In this manner, we sorted the voxels into six groups corresponding to 1159 

each MDS neuron. The resulting plots are shown in Figure S18A. It can be see that 1160 

all ROIs show single letter tuning profiles similar to the behaviourally derived single 1161 

letter tuning profiles. The corresponding summation weights for these voxels are 1162 

shown in Figure S18B. Once again, it can be seen that many ROIs show similar 1163 

summation weights as those observed in behaviour.    1164 
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 1165 

 1166 
Figure S18: Comparison of letter tuning and summation weights  1167 

A. (Left) Response of 6 MDS neurons for all the 10 letters. (Right) Single letters 1168 

response across all the voxels (concatenated across subjects) within a given ROI. 1169 

Each voxels is sorted into one of 6 groups depending on which MDS neuron it 1170 

matches best. The height of each ROI plot is logarithmically scaled to match the 1171 

number of voxels across all subjects. Black dashed lines are used to separate the 1172 

clusters corresponding to each MDS neuron.  1173 

B. Same as (A) but showing the summation weights corresponding to each MDS 1174 

neuron or ROI voxel.  1175 

  1176 
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