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Abstract 34 

Here, we report the de novo genome sequencing and analysis of Oryza sativa ssp. japonica variety 35 

KitaakeX, a Kitaake plant carrying the rice XA21 immune receptor. Our KitaakeX sequence assembly 36 

contains 377.6 Mb, consisting of 33 scaffolds (476 contigs) with a contig N50 of 1.4 Mb. Complementing 37 

the assembly are detailed gene annotations of 35,594 protein coding genes. We identified 331,335 genomic 38 

variations between KitaakeX and Nipponbare (ssp. japonica), and 2,785,991 variations between KitaakeX 39 

and Zhenshan97 (ssp. indica). We also compared Kitaake resequencing reads to the KitaakeX assembly 40 

and identified 219 small variations. The high-quality genome of the model rice plant KitaakeX will accelerate 41 

rice functional genomics. 42 

 

Keywords: Rice, Kitaake, KitaakeX, XA21 immune receptor, Whole genome sequence, De novo genome 43 

assembly, Nipponbare, Zhenshan97 44 

 

Background 45 

Rice (Oryza sativa) provides food for more than half of the world’s population [1] and also serves 46 

as a model for studies of other monocotyledonous species. Cultivated rice contains two major types of O. 47 

sativa, the O. sativa indica/Xian group and the O. sativa japonica/Geng group. Using genomic markers, two 48 

additional minor types have been recognized, the circum-Aus group and the circum-Basmati group [2]. 49 
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The Kitaake cultivar (ssp. japonica), which originated at the northern limit of rice cultivation in 50 

Hokkaido, Japan [3], has emerged as a model for rice research [4] because it is extremely early flowering, 51 

easy to propagate, and short in stature [5]. Kitaake has been used to establish multiple mutant 52 

populations, including an RNAi mutant collection [6], T-DNA insertion collections [4], [7], and a whole-53 

genome sequenced mutant population of KitaakeX, a Kitaake variety carrying the Xa21 immune receptor 54 

gene (formerly called X.Kitaake) [8, 9]. Kitaake has been used to explore diverse aspects of rice biology, 55 

including flowering time [10], disease resistance [11], [12], [13], small RNA biology [14], and the CRISPR-56 

Cas9 and TALEN technologies [15], [16]. 57 

The unavailability of the Kitaake genome sequence has posed an obstacle to the use of Kitaake 58 

in rice research. For example, analysis of a fast-neutron (FN) induced mutant population in KitaakeX [8], 59 

required the use of Nipponbare (ssp. japonica) as the reference. Additionally, CRISPR/Cas9 guide RNAs 60 

cannot be accurately designed for Kitaake without a complete sequence. To address these issues, we 61 

assembled a high-quality genome sequence of KitaakeX, compared its genome to the genomes of rice 62 

varieties Nipponbare and Zhenshan97 (ssp. indica), and identified genomic variations. 63 

 

Results 64 

Kitaake has long been recognized as a rapid life-cycle variety [17], but it has yet to be systematically 65 

compared to other rice varieties. We compared the flowering time of KitaakeX with other sequenced rice 66 

varieties under long-day conditions (14 h light/10 h dark). Consistent with other studies, we found that 67 

KitaakeX flowers much earlier than other varieties (Fig. 1a, 1b), heading at 54 days after germination. Other 68 

rice varieties Nipponbare, 93-11 (ssp. indica), IR64 (ssp. indica), Zhenshan 97, Minghui 63 (ssp. indica), 69 

and Kasalath (aus rice cultivar) start heading at 134, 99, 107, 79, 125, and 84 days after germination, 70 

respectively (Fig. 1b). 71 

 We assessed how KitaakeX is related to other rice varieties using a phylogenetic approach based 72 

on the rice population structure and diversity published for 3,010 varieties [2]. The 3010 sequenced 73 

accessions were classified into nine subpopulations, most of which could be connected to geographical 74 

origins. The phylogenetic tree reveals that KitaakeX and Nipponbare are within the same subpopulation 75 

closely related (Fig 1c). 76 
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To obtain a high-quality, de novo genome assembly, we sequenced the KitaakeX genome using a 77 

strategy that combines short-read and long-read sequencing. Sequencing reads were collected using 78 

Illumina, 10x Genomics, PACBIO, and Sanger platforms at the Joint Genome Institute (JGI) and the 79 

HudsonAlpha Institute. The current release is version 3.0, which is a combination of a MECAT (Mapping, 80 

Error Correction and de novo Assembly Tools) PACBIO based assembly and an Illumina sequenced 10x 81 

genomics SuperNova assembly. The assembled sequence contains 377.6 Mb, consisting of 33 scaffolds 82 

(476 contigs) with a contig N50 of 1.4 Mb, covering a total of 99.67% of assembled bases in chromosomes 83 

(Table 1). 84 

We assessed the quality of the KitaakeX assembly for sequence completeness and accuracy. 85 

Completeness of the assembly was assessed by aligning the 34,651 annotated genes from the v7.0 86 

Nipponbare to the KitaakeX assembly using BLAT [18]. The alignments indicate that 98.94% (34,285 of 87 

genes) genes completely aligned to the KitaakeX assembly, 0.75% (259 genes) partially aligned, and 0.31% 88 

(107 genes) were not detected. A bacterial artificial chromosome (BAC) library was constructed and a set 89 

of 346 BAC clones (9.2x clone coverage) was sequenced using PACBIO sequencing. A range of variants 90 

was detected by comparing the BAC clones to the assembly. Alignments were of high quality (<0.1% of 91 

error) in 271 clones (Additional file 1: Figure S13). Sixty BACs indicate a higher error rate (0.45% of error) 92 

due mainly to their placement in repetitive regions (Additional file 1: figure S14). Fifteen BAC clones indicate 93 

a rearrangement (10 clones) or a putative overlap on adjacent contigs (5 clones) (Additional file 1: figure 94 

S15). The overall error rate in the BAC clones is 0.09%, indicating the high quality of this assembly (for 95 

detailed information, see Additional file 1). 96 

We predicted 35,594 protein-coding genes in the KitaakeX genome (Table 1), representing 31.5% 97 

genic space of the assembled genome size (Table 1). There is some transcriptome support for 89.5% 98 

(31,854/35,594) of the KitaakeX genes, and 81.6% (29,039/35,594) genes are fully supported by the 99 

transcriptome (Additional file 2 Table: S11). The predicted protein-coding genes are distributed unevenly 100 

across each chromosome; gene density tends to be higher toward chromosome ends (Fig. 1i). The average 101 

GC content of the genome is 43.7% (Fig. 1h, Table 1). 102 

To assess the quality of the annotation of Kitaake genes, we compared the KitaakeX annotation to 103 

those of other completed rice genomes using the BUSCO v2 method, which is based on a set of 1,440 104 
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conserved plant genes. The results confirm 99.0% completeness of the KitaakeX genome annotation 105 

(Table1, Additional file 2: Table S7). To further evaluate the quality of the annotation, we studied the extent 106 

of conservation of functional genes in KitaakeX. We selected 291 genes (Additional file 3) from three 107 

pathways associated with stress resistance, flowering time and response to light [19], and then searched 108 

for orthologous genes in the KitaakeX genome. We found that 275 of 291 (94.5%) of the selected KitaakeX 109 

genes show greater than 90% identity with the corresponding Nipponbare genes at the protein level. 110 

Twenty-three out of the 291 show 100% identity on the genome level but not on the protein level. Of these 111 

23 genes, the KitaakeX gene model for 16 genes has better transcriptomic evidence than the Nipponbare 112 

gene model. One of the 291 KitaakeX genes is slightly shorter than its Nipponbare ortholog due to an 113 

alternative transcript (Additional file 3). These results indicate the high quality of the annotation, and 114 

conservation between the KitaakeX and Nipponbare japonica rice varieties. 115 

Using SynMap, we identified 2,469 pairs of colinear genes (88 blocks) in the KitaakeX genome 116 

(Fig. 1j). These results correlate with already published findings [20]. We used RepeatMaker and Blaster 117 

to identify transposable elements (TEs) in the KitaakeX genome, and identified 122.2 Mb of sequence 118 

corresponding to TEs (32.0% of the genome). DNA transposons account for ~33 Mb; retrotransposons 119 

account for ~90 Mb. The TEs belong mostly to the Gypsy and Copia retroelement families, and account for 120 

23% of the genome (Additional file 2: Table S8), as is true in the Nipponbare and Zhenshan97 genomes 121 

[21]. 122 

Table 1 Summary of the KitaakeX genome assembly and annotation 123 

 Estimated genome size 409.5 Mb 

 Assembled contigs 377.6 Mb 

 Contig N50 1.4 Mb 

Genome assembly Longest contig 8.6 Mb 

 Assembled scaffolds 381.6 Mb 

 Scaffold N50 30.3 Mb 

 Longest scaffold 44.3 Mb 

 GC content 43.7% 
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 Retrotransposons 89.6 Mb 

Transposable elements  DNA transposons 32.6 Mb 

 Total 122.2 Mb 

 Protein-coding genes 35,594 

 Complete BUSCOs 99.0% 

Genome annotation Average transcript length 1,874 bp 

 Average coding sequence length 1,222 bp 

 Functionally annotated 33,226 

 

We compared the genome of KitaakeX to the Nipponbare and Zhenshan97 genomes to detect 124 

genomic variations, including single nucleotide polymorphisms (SNPs), insertions and deletions under 30 125 

bp (InDels), presence/absence variations (PAVs), and inversions using MUMmer (Kurtz, Phillippy et al. 126 

2004). We found 331,335 variations between KitaakeX and Nipponbare (Additional file 4), and nearly 10 127 

times as many (2,785,991) variations between KitaakeX and Zhenshan97 (Additional file 5). There are 128 

253,295 SNPs and 75,183 InDels between KitaakeX and Nipponbare, and 2,328,319 SNPs and 442,962 129 

InDels between KitaakeX and Zhenshan97 (Additional files 6 and Additional file 2: Table S3). With respect 130 

to SNPs in both intersubspecies (japonica vs. indica) as well as intrasubspecies (japonica vs. japonica) 131 

comparisons, transitions (Tss) (G ->A and C ->T) are about twice as abundant as transversions (Tvs) (G -132 

>C and C ->G) (Additional file 2: Table S10). Genomic variations between KitaakeX and Nipponbare are 133 

highly concentrated in some genomic regions (Fig. 1e), but variations between KitaakeX and Zhenshan97 134 

are spread evenly through the genome (Fig. 1f). Intersubspecies genomic variations, then, are much more 135 

extensive than intrasubspecies variations. We also detected multiple genomic inversions using comparative 136 

genomics (Additional files 4 and 5). 137 

For variations occurring in the genic regions, we found that single-base and 3 bp (without frame 138 

shift) InDels are much more abundant than others (Additional file 7: Figure S16a), suggesting that these 139 

genetic variations have been functionally selected. We carried out detailed analysis of gene structure 140 

alterations that exist as a consequence of SNPs and InDels between KitaakeX and Nipponbare and Kitaake 141 

and Zhenshan97. Between KitaakeX and Nipponbare, we identified 2,092 frameshifts, 78 changes affecting 142 
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splice-site acceptors, 71 changes affecting splice-site donors, 19 lost start codons, 161 gained stop codons, 143 

and 15 lost stop codons. In the comparison of KitaakeX to Zhenshan97, 6,809 unique genes in KitaakeX 144 

are affected by 8,640 frameshifts (Additional file 7: Figure S16b), 531 changes affecting splice-site 145 

acceptors, 530 changes affecting splice-site donors, 185 lost start codons, 902 gained stop codons and 146 

269 lost stop codons (Additional file 7: Figure S16b). 147 

Based on PAV analysis, we identified 456 loci that are specific to KitaakeX (Additional file 4) 148 

compared with Nipponbare. Pfam analysis of KitaakeX-specific regions revealed 275 proteins. Out of these 149 

275 genes, 148 genes are from 19 different gene families with more than 2 genes in those regions. These 150 

gene families include protein kinases, leucine-rich repeat proteins, NB-ARC domain-containing proteins, F-151 

box domain containing proteins, protein tyrosine kinases, Myb/SANt-like DNA binding domain proteins, 152 

transferase family proteins, xylanase inhibitor C-terminal protein, and plant proteins of unknown function 153 

(Additional file 7: Figure S16c). We identified 4589 loci specific to KitaakeX compared with Zhenshan97 154 

(Additional file 5).  155 

We also compared our de novo assembly of KitaakeX genome with Kitaake resequencing reads 156 

using an established pipeline [22]. This analysis revealed 219 small variations (200 SNPs and 19 INDELs) 157 

between the two genomes (Additional file 8). These variations affect 9 genes in KitaakeX besides the Ubi-158 

Xa21 transgene, including the selectable marker encoding a hygromycin B phosphotransferase on 159 

chromosome 6 (Additional file 8, Additional file 9: Figure S17).  160 

 

Discussion 161 

In 2005 the Nipponbare genome was sequenced and annotated to a high-quality level (International Rice 162 

Genome Sequencing and Sasaki 2005). Since that time, it has served as a reference genome for many 163 

rice genomic studies [23]. Despite its use, the long life cycle of Nipponbare makes it time-consuming for 164 

most genetic analyses. Here we report the de novo assembly and annotation of KitaakeX, an early-flowering 165 

rice variety with a rapid life cycle that is easy to propagate under greenhouse conditions. We predict that 166 

KitaakeX contains 35,594 protein-coding genes, comparable to the published genomes (39,045 for 167 

Nipponbare and 34,610 for Zhenshan97) (Additional file 4 and Additional file 5). The availability of a high-168 
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quality genome and annotation for KitaakeX will be useful for associating traits of interest with genetic 169 

variations, and for identifying the genes controlling those traits. 170 

We identified 219 SNPs and InDels between the KitaakeX and Kitaake genomes. These variations 171 

may have resulted from somatic mutations that arose during tissue culture and regeneration, or they may 172 

be spontaneous mutations [24]. For rice, 150 mutations are typically induced during tissue culture and 41 173 

mutations occur spontaneously per three generations [24]. These numbers are consistent with the 174 

independent propagation of KitaakeX and Kitaake over approximately 10 generations in the greenhouse. 175 

 The KitaakeX genome will be useful for variety of studies. For example, we recently published the 176 

whole genome sequences of 1,504 FN-mutated KitaakeX rice lines [22]. Mutations were identified by 177 

aligning reads of the KitaakeX mutants to the Nipponbare reference genome [8]. On average, 97% of the 178 

Nipponbare genome is covered by the KitaakeX reads. However, in some regions, the KitaakeX genome 179 

diverges from Nipponbare to such an extent that no variants can be confidently identified. These appear 180 

either as gaps in coverage or as regions containing a concentration of natural variations between KitaakeX 181 

and Nipponbare. We can now use the KitaakeX sequence as the direct reference genome and detect 182 

mutations in highly variable regions. This approach will simplify analysis and increase confidence in the 183 

identification of FN-induced mutations. 184 

Conclusions: 185 

The de novo assembly of the KitaakeX genome serves as a useful reference genome for the model rice 186 

variety Kitaake and will facilitate investigations into the genetic basis of diverse traits critical for rice biology 187 

and genetic improvement. 188 

 

Methods  189 

Plant Growth conditions 190 

Rice seeds were germinated on 1/2x MS (Murashige and Skoog) medium. Seedlings were transferred to 191 

a greenhouse and planted 3 plants/pot during the springtime (Mar. 2, 2017) in Davis, California. The light 192 

intensity was set at approximately 250 μmol m− 2 s− 1. The day/night period was set to 14/10 h, and the 193 

temperature was set between 28 and 30 °C [25]. Rice plants were grown in sandy soil supplemented with 194 
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nutrient water. The day when the first panicle of the plant emerged was recorded as the heading date for 195 

that plant. Kasalath seeds were received later, and the heading date was recorded in the same way. The 196 

experiment was repeated in winter. 197 

 

Construction of a phylogenetic tree 198 

We obtained 178,496 evenly distributed SNPs by dividing the genome into 3.8 kb bins and selecting one 199 

or two SNPs per bin randomly according to the SNP density of the bin. Genotypes of all the rice 200 

accessions, including 3,010 accessions of the 3K Rice Genomes Project and additional noted 201 

accessions, were fetched from the SNP database RiceVarMap v2.0 [26] and related genomic data [27] 202 

and used to calculate an IBS distance matrix which was then applied to construct a phylogenetic tree by 203 

the unweighted neighbor-joining method, implemented in the R package APE [28]. Branches of the 204 

phylogenetic tree were colored according to the classification of the 3,010 rice accessions [2]. 205 

 

Genome Sequencing and Assembly  206 

High molecular weight DNA from young leaves of KitaakeX was isolated and used in sequencing. 207 

See (Additional file 1) for further details.  208 

 

Annotation of Protein-Coding Genes 209 

To obtain high-quality annotations, we performed high throughput RNA-seq analysis of libraries from 210 

diverse rice tissues (leaf, stem, panicle, and root). Approximately 683 million pairs of 2x151 paired-end 211 

RNA-seq reads were obtained and assembled using a comprehensive pipeline PERTRAN (Shu, 212 

unpublished). Gene models were predicted by combining ab initio gene prediction, protein-based 213 

homology searches, experimentally cloned cDNAs/expressed-sequence tags (ESTs) and assembled 214 

transcripts from the RNA-seq data. Gene functions were further annotated according to the best-matched 215 

proteins from the SwissProt and TrEMBL databases [29] using BLASTP (E value < 10-5) (Additional file 216 

11). Genes without hits in these databases were annotated as “hypothetical proteins”. Gene Ontology 217 

(GO) [30] term assignments and protein domains and motifs were extracted with InterPro [31]. Pathway 218 
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analysis was derived from the best-match eukaryotic protein in the Kyoto encyclopedia of genes and 219 

genomes (KEGG) database [32] using BLASTP (E value<1.0e-10).  220 

 

Genome Synteny 221 

We used SynMap (CoGe, www.genomevolution.org) to identify collinearity blocks using homologous CDS 222 

pairs with parameters according to Daccord et al [33] and visualized collinearity blocks using Circos [34]. 223 

 

Repeat Annotation 224 

The fraction of transposable elements and repeated sequences in the assembly was obtained merging 225 

the output of RepeatMasker (http://www.repeatmasker.org/, v. 3.3.0) and Blaster (a component of the 226 

REPET package) [35]. The two programs were run using nucleotide libraries (PReDa and 227 

RepeatExplorer) from RiTE-db [36] and an in-house curated collection of transposable element (TE) 228 

proteins, respectively. Reconciliation of masked repeats was carried out using custom Perl scripts and 229 

formatted in gff3 files. Infernal [37] was adopted to identify non-coding RNAs (ncRNAs) using the Rfam 230 

library Rfam.cm.12.2 [38]. Results with scores lower than the family-specific gathering threshold were 231 

removed; when loci on both strands were predicted, only the hit with the highest score was kept. Transfer 232 

RNAs were also predicted using tRNAscan-SE [39] at default parameters. Repeat density was calculated 233 

from the file that contains the reconciled annotation (Additional file 10). 234 

 

Analysis of Genomic Variations  235 

Analysis of SNPs and InDels: We used MUMmer (version 3.23) [40] to align the Nipponbare and 236 

Zhenshan97 genomes to the KitaakeX genome using parameters -maxmatch -c 90 -l 40. To filter the 237 

alignment results, we used the delta -filter -1 parameter with the one-to-one alignment block option. To 238 

identify SNPs and InDels we used show-snp option with parameter (-Clr TH). We used snpEff [41] to 239 

annotate the effects of SNPs and InDels. Distribution of SNPs and InDels along the KitaakeX genome 240 

was visualized using Circos [34]. 241 

Analysis of PAVs and inversions: We used the show-coords option of MUMmer (version 3.23) 242 

with parameters -TrHcl to identify gap regions and PAVs above >86 bp in size from the alignment blocks. 243 
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We used the inverted alignment blocks with ≥98% identity from the show-coords output file to identify 244 

inversions.  245 

To identify genomic variations between Kitaake and KitaakeX we sequenced and compared the 246 

sequences using the established pipeline [22].  247 

 

BAC library construction 248 

Arrayed BAC libraries were constructed using established protocols [42]. Please see Additional 249 

file 1 for further details. 250 

 251 

 252 

Additional files:  253 

Additional file 1: Supplemental method: Tables S1-S6, Figures S1-S15 254 

Additional file 2: Comparison of the KitaakeX genome with other rice genomes and KitaakeX annotation; 255 

Tables S7-S11 256 

Additional file 3: Genes used in annotation quality control 257 

Additional file 4: Comparative genomics between KitaakeX and Nipponbare 258 

Additional file 5: Comparative genomics between KitaakeX and Zhenshan97 259 

Additional file 6: SNPs between KitaakeX and Zhenshan97 260 

Additional file 7: Figure S16. Genomic variations showing gene variations between KitaakeX and 261 

Nipponbare and Zhenshan97  262 

Additional file 8. Genomic variations between KitaakeX and Kitaake 263 

Additional file 9: Figure S17. Position of the XA21 locus in the KitaakeX genome  264 

Additional file 10: Repeat annotation  265 

Additional file 11: Gene functional annotation 266 
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Fig. 1 The early flowering rice variety KitaakeX.  300 

a KitaakeX and selected sequenced rice varieties under long-day conditions. Scale bar = 10 cm; b 301 

Flowering time of KitaakeX and selected rice varieties under long-day conditions. DAG, days after 302 

germination. Asterisks indicate significant differences using the unpaired Student’s t-test (P < 0.0001); c 303 

KitaakeX in the unweighted neighbor-joining tree comprising 3,010 accessions of the 3k rice genomes 304 

project and indicated varieties. It includes four XI clusters (XI-1A from East Asia, XI-1B of modern varieties 305 

of diverse origins, XI-2 from South Asia and XI-3 from Southeast Asia); three GJ clusters [primarily East 306 

Asian temperate (named GJ-tmp), Southeast Asian subtropical (named GJ-sbtrp) and Southeast Asian 307 

Tropical (named GJ-trp)]; and two groups for the mostly South Asian cA (circum-Aus) and cB (circum-308 

Basmati) accessions, 1 group Admix (accessions that fall between major groups were classified as 309 

admixed) Branch length indicates the genetic distance between two haplotypes; d Circles indicate the 12 310 

KitaakeX chromosomes represented on a Mb scale; e,f SNPs and InDels between KitaakeX and 311 

Nipponbare (e) and Kitaake and   Zhenshan97 (f); g Repeat density; h GC content; i Gene density; j 312 

Homologous genes in the KitaakeX genome. Window size used in the circles is 500 kb. 313 
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