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ABSTRACT 
Background: Cancer genomes are peppered with somatic mutations imprinted by different 
mutational processes. The mutational pattern of a cancer genome can be used to identify and 
understand the etiology of the underlying mutational processes. A plethora of prior research has 
focused on examining mutational signatures and mutational patterns from single base 
substitutions and their immediate sequencing context. We recently demonstrated that further 
classification of small mutational events (including substitutions, insertions, deletions, and 
doublet substitutions) can be used to provide a deeper understanding of the mutational processes 
that have molded a cancer genome. However, there has been no standard tool that allows fast, 
accurate, and comprehensive classification for all types of small mutational events 
Results: Here, we present SigProfilerMatrixGenerator, a computational tool designed for 
optimized exploration and visualization of mutational patterns for all types of small mutational 
events. SigProfilerMatrixGenerator is written in Python with an R wrapper package provided for 
users that prefer working in an R environment. SigProfilerMatrixGenerator produces fourteen 
distinct matrices by considering transcriptional strand bias of individual events and by 
incorporating distinct classifications for single base substitutions, doublet base substitutions, and 
small insertions and deletions. While the tool provides a comprehensive classification of 
mutations, SigProfilerMatrixGenerator is also faster and more memory efficient than existing 
tools that generate only a single matrix. 
Conclusions: SigProfilerMatrixGenerator provides a standardized method for classifying small 
mutational events that is both efficient and scalable to large datasets. In addition to extending the 
classification of single base substitutions, the tool is the first to provide support for classifying 
doublet base substitutions and small insertions and deletions. SigProfilerMatrixGenerator is 
freely available at https://github.com/AlexandrovLab/SigProfilerMatrixGenerator with an 
extensive documentation at https://osf.io/s93d5/wiki/home/. 
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Background 
Analysis of somatic mutational patterns is a powerful tool for understanding the etiology of 
human cancers [1]. The examination of mutational patterns can trace its origin to seminal studies 
that evaluated the patterns of mutations imprinted in the coding regions of TP53 [2], the most 
commonly mutated gene in human cancer [3]. These early reports were able to identify 
characteristic patterns of single point substitutions imprinted due to smoking tobacco cigarettes, 
exposure to ultraviolet light, consumption of aflatoxin, intake of products containing aristolochic 
acid, amongst others [4-7]. The advent of massively parallel sequencing technologies [8] allowed 
cheap and efficient evaluation of the somatic mutations in a cancer genome. This provided an 
unprecedented opportunity to examine somatic mutational patterns by sequencing multiple 
cancer-associated genes, by sequencing all coding regions of the human genome (i.e., usually 
referred to as whole-exome sequencing), or even by interrogating the complete sequence of a 
cancer genome (i.e., an approach known as whole-genome sequencing). 
 
Examinations of mutational patterns from whole-genome and whole-exome sequenced cancers 
confirmed prior results derived from evaluating the mutations in the coding regions of TP53 [9]. 
For example, the cancer genome of a lung cancer patient with a long history of tobacco smoking 
was peppered with somatic mutations exhibiting predominately cytosine to adenine single base 
substitutions [10]; the same mutational pattern was previously reported by examining mutations 
in TP53 in lung cancers of tobacco smokers [4, 11]. In addition to confirming prior observations, 
whole-exome and whole-genome sequencing data provided a unique opportunity for identifying 
all of the mutational processes that have been active in the lineage of a cancer cell [12]. By 
utilizing mathematical modelling and computational analysis, we previously created the concept 
of mutational signatures and provided tools for deciphering mutational signatures from 
massively parallel sequencing data [13]. It should be noted that a mutational signature is 
mathematically and conceptually distinct from a mutational pattern of a cancer genome. While a 
mutational pattern of a cancer genome can be directly observed from sequencing data, a 
mutational signature is, in most cases, not directly observable. Rather, a mutational signature 
corresponds to a mathematical abstraction (i.e., a probability mass function) derived through a 
series of numerical approximations. From a biological perspective, a mutational signature 
describes a characteristic set of mutation types reflecting the activity of endogenous and/or 
exogenous mutational processes [12]. By examining the directly observed mutational patterns of 
thousands of cancer genomes, we were able to identify 49 single point substitution, 11 doublet 
base substitution, and 17 small insertion and deletion signatures [14] in human cancer and to 
propose a putative etiology for a number of these signatures. 
 
Since we presented the very first bioinformatics framework for deciphering mutational 
signatures in cancer genomes [13, 15], a number of computational tools have been developed for 
the analysis of mutational signatures (recently reviewed in [16]). All of these tools perform a 
matrix factorization or leverage an approach mathematically equivalent to a matrix factorization.  
As such, each of these tools directly or indirectly requires generating a correct initial input matrix 
for subsequent analysis of mutational signatures. In principle, creating an input matrix can be 
examined as a transformation of the mutational catalogues of a set of cancer genomes to a matrix 
where each sample has a fixed number of mutation classes (also, known as mutation channels). 
The majority of existing tools have focused on analyzing data using 96 mutation classes 
corresponding to a single base substitution and the 5’ and 3’ bases immediately adjacent to the 
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mutated substitution. While this simple classification has proven powerful, additional 
classifications are required to yield greater understanding of the operative mutational processes 
in a set of cancer genomes [12].  
 
Here, we present SigProfilerMatrixGenerator, a computational package that allows efficient 
exploration and visualization of mutational patterns. SigProfilerMatrixGenerator is written in 
Python with an R wrapper package provided for users that prefer working in an R environment. 
The tool can read somatic mutational data in most commonly used data formats (i.e., VCF, MAF, 
etc.) and it provides support for analyzing all types of small mutational events: single bases 
substitutions, doublet base substitutions, and small insertions and deletions. 
SigProfilerMatrixGenerator generates fourteen distinct matrices including ones with extended 
sequencing context and transcriptional strand bias, while providing publication ready 
visualization for the majority of these matrices. Further, the tool is the first to provide standard 
support for the classification of small insertions and deletions as well as the classification of 
doublet base substitutions that were recently used to derive the next generation of mutational 
signatures [14]. While SigProfilerMatrixGenerator provides much more functionality (Table 1), 
in almost all cases, it is more computationally efficient than existing approaches. Lastly, 
SigProfilerMatrixGenerator comes with extensive Wiki-page documentation and can be easily 
integrated with existing packages for analysis of mutational signatures. 
 
 
Implementation 
 
Classification of Single Base Substitutions (SBSs) 
A single base substitution (SBS) is a mutation in which a single DNA base-pair is substituted 
with another single DNA base-pair. An example of an SBS is a C:G base-pair mutating to an 
A:T base-pair; this is usually denoted as a C:G>A:T. The most basic classification catalogues 
SBSs into six distinct categories, including: C:G>A:T, C:G>G:C, C:G>T:A, T:A>A:T, 
T:A>C:G, and T:A>G:C. In practice, this notation has proven to be bulky and, in most cases, 
SBSs are referred to by either the purine or the pyrimidine base of the Watson-Crick base-pair. 
Thus, one can denote a C:G>A:T substitution as either a C>A mutation using the pyrimidine 
base or as a G>T mutation using the purine base. While all three notations are equivalent, prior 
research on mutational signatures [13, 15, 17] has made the pyrimidine base of the Watson-Crick 
base-pair a community standard. As such, the most commonly used SBS-6 classification of 
single base substitutions can be written as: C>A, C>G, C>T, T>A, T>C, and T>G. The 
classification SBS-6 should not be confused with signature SBS6, a mutational signature 
attributed to microsatellite instability [15]. 
 
The simplicity of the SBS-6 classification allows capturing the predominant mutational patterns 
when only a few somatic mutations are available. As such, this classification was commonly 
used in analyzing mutational patterns derived from sequencing TP53 [4, 11]. The SBS-6 
classification can be further expanded by taking into account the base-pairs immediately adjacent 
5’ and 3’ to the somatic mutation. A commonly used classification for analysis of mutational 
signatures is SBS-96, where each of the classes in SBS-6 is further elaborated using one base 
adjacent at the 5’ of the mutation and one base adjacent at the 3’ of the mutation. Thus, for a 
C>A mutation, there are sixteen possible trinucleotide (4 types of 5’ base ∗ 4 types of 3’ base): 
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ACA>AAA, ACC>AAC, ACG>AAG, ACT>AAT, CCA>CAA, CCC>CAC, CCG>CAG, 
CCT>CAT, GCA>GAA, GCC>GAC, GCG>GAG, GCT>GAT, TCA>TAA, TCC>TAC, 
TCG>TAG, and TCT>TAT (mutated based is underlined). Each of the six single base 
substitutions in SBS-6 has sixteen possible trinucleotides resulting in a classification with 96 
possible channels (Fig 1A). In this notation, the mutated base is underlined and the pyrimidine 
base of the Watson-Crick base-pair is used to refer to each SBS. Please note that using the purine 
base of the Watson-Crick base-pair for classifying mutation types will require taking the reverse 
complement sequence of each of the classes of SBS-96. For example, ACG:TGC>AAG:TTC can 
be written as ACG>AAG using the pyrimidine base and as CGT>CTT using the purine base 
(i.e., the reverse complement sequence of the pyrimidine classification). Similarly, an 
AGC:TCG>AAC:TTG mutation can be written as AGC>AAC using the purine base and 
GCT>GTT using the pyrimidine base (i.e., the reverse complement sequence of the purine 
classification). In principle, somatic mutations are generally reported based on the reference 
strand of the human genome thus requiring converting to either the purine or the pyrimidine base 
of the Watson-Crick base-pair. Prior work on mutational signatures [13, 15, 17] has established 
the pyrimidine base as a standard for analysis of somatic mutational patterns. 
 
The SBS-96 has proven particularly useful for analysis of data from both whole-exome and 
whole-genome sequencing data [17]. This classification is both simple enough to allow visual 
inspection of mutational patterns and yet sufficiently complicated for separating different sources 
of the same type of an SBS. For example, mutational signatures analysis has identified at least 15 
distinct patterns of C>T mutations each of which has been associated with different mutational 
processes (e.g., exposure to ultraviolet light [18], activity of the APOBEC family of deaminases 
[19], failure of base excision repair [20], etc.). SBS-96 can be further elaborated by including 
additional sequencing context. Simply by including additional 5’ and 3’ adjacent context, one 
can increase the resolution. For example, considering two bases 5’ and two bases 3’ of a 
mutation results in 256 possible classes for each SBS (16 types of two 5’ bases ∗ 16 types of two 
3’ bases). Each of the six single base substitutions in SBS-6 has 256 possible pentanucleotides 
resulting in a classification with 1536 possible channels. Since we first introduced SBS-1536 
[13], this classification has found limited use in analysis of mutational patterns. The increased 
number of mutational channels requires a large number of somatic mutations, which can be 
generally found only in whole-genome sequenced cancer exhibiting a high mutational burden 
(usually >2 mutations per MB). Nevertheless, SBS-1536 has been used to further elaborate the 
mutational patterns exhibited by several mutagenic processes, for example, the aberrant activity 
of DNA polymerase epsilon [14] or the ectopic action of the APOBEC family of cytidine 
deaminases [13, 14].  
 
SigProfilerMatrixGenerator provides matrix generation support for SBS-6, SBS-96, and SBS-
1536 using the commonly accepted pyrimidine base of the Watson-Crick base-pair. Further, the 
tool allows interrogation of transcriptional strand bias for each of these classifications and 
provides a harmonized visualization for all three matrices.  
 
Classification of Doublet Base Substitutions (DBSs) 
A doublet base substitution (DBS) is a somatic mutation in which a set of two adjacent DNA 
base-pairs is simultaneously substituted with another set of two adjacent DNA base-pairs. An 
example of a DBS is a set of CT:GA base-pairs mutating to a set of AA:TT base-pairs, which is 
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usually denoted as CT:GA>AA:TT (Fig 1B). It should be noted that a CT:GA>AA:TT 
mutation can be equivalently written as either a CT>AA mutation or an AG>TT mutation (note 
that AG>TT is the reverse complement of CT>AA). Similar to the SBSs, the complete notation 
for DBS has proven bulky. As such, we have previously defined a canonical set of DBSs and 
used this set to interrogate both mutational patterns and mutational signatures [14]. In this 
canonical set, DBSs are referred to using the maximum number of pyrimidine nucleotides of the 
Watson-Crick base-pairs; for example, an AA:TT>GT:CA mutation is usually denoted as 
TT>AC as this notation contains three pyrimidine nucleotides rather than the alternative AA>GT 
notation, which contains only a single pyrimidine nucleotide. There are several DBSs with the 
equivalent number of pyrimidine nucleotide in each context (e.g., AA:TT>CC:GG), in such 
cases, one of these notations was selected. Further, it should be noted, that some DBSs are 
palindromic. For example, an AT:TA>CG:GC can be written only as AT>CG since the reverse 
complement of 5’-AT-3’>5’-CG-3’ is again 5’-AT-3’>5’-CG-3’. Overall, the basic classification 
catalogues DBSs into 78 distinct categories denoted as the DBS-78 matrix (Supplementary Table 
1).   
 
While the prevalence of DBSs in a cancer genome is relatively low, on average a hundred times 
less than SBSs [14], we have previously demonstrated that a doublet base substitution is not two 
single base substitutions occurring simply by chance next to one another [14]. While such events 
are possible, across most human cancers, they will account for less than 0.1% of all observed 
DBSs [14]. Further, certain mutational processes have been shown to specifically generate high 
levels of DBSs. A flagship example is the exposure to ultraviolet light, which causes large 
numbers of CC>TT mutations in cancers of the skin [5]. Other notable examples are DBSs 
accumulating due to defects in DNA mismatch repair [14], exposure to platinum 
chemotherapeutics [21], tobacco smoking [22], and many others [14].   
 
Similar to the classification of SBSs, we can expand the characterization of DBS mutations by 
considering the 5’ and 3’ adjacent contexts. By taking one base on the 5’ end and one base on the 
3’ end of the dinucleotide mutation, we establish the DBS-1248 context. For example, a CC>TT 
mutation has 16 possible tetranucleotides: ACCA>ATTA, ACCC>ATTC, ACCG>ATTG,  
ACCT>ATTT, CCCA>CTTA,  CCCC>CTTC, CCCG>CTTG, CCCT>CTTT, GCCA>GTTA, 
GCCC>GTTC, GCCG>GTTG, GCCT>GTTT, TCCA>TTTA, TCCC>TTTC, TCCG>TTTG,  
and TCCT>TTTT (mutated bases are underlined). With seventy-eight possible DBS mutations 
having sixteen possible tetranucleotides each, this context expansion results in 1,248 possible 
channels denoted as the DBS-1248 context. While this classification is provided as part of 
SigProfilerMatrixGenerator, it has yet to be thoroughly leveraged for analysis of mutational 
patterns. Further, it should be noted that for most samples, the low numbers of DBSs in a single 
sample will make the DBS-1248 classification impractical. Nevertheless, we expect that this 
classification will be useful for examining hypermutated and ultra-hypermutated human cancers. 
 
SigProfilerMatrixGenerator generates matrices for DBS-78 and DBS-1248 by predominately 
using the maximum pyrimidine context of the Watson-Crick base-pairs. The matrix generator 
also supports the incorporation of transcriptional strand bias with an integrated display of the 
DBS-78 mutational patterns. 
 
Classification of Small Insertions and Deletions (IDs) 
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A somatic insertion is an event that has incorporated an additional set of base-pairs that 
lengthens a chromosome at a given location. In contrast, a somatic deletion is an event that has 
removed a set of existing base-pairs from a given location of a chromosome. Collectively, when 
these insertions and deletions are short (usually <100 base-pairs), they are commonly referred as 
small insertions and deletions (often abbreviated as indels). In some cases, indels can be 
complicated events in which the observed result is both a set of deleted base-pairs and a set of 
inserted base-pairs. For example, 5’-ATCCG-3’ mutating to 5’-ATAAAG-3’ is a deletion of 
CC:GG and an insertion of AAA:TTT. Such events are usually annotated as complex indels. 
 
Indel classification is not a straightforward task and it cannot be performed analogously to SBS 
or DBS classifications, where the immediate sequencing context flanking each mutation was 
utilized to subclassify these mutational events. For example, determining the flanking sequences 
for deleting (or inserting) a cytosine from the sequence 5’-ATCCCCCCG-3’ is not possible as 
one cannot unambiguously identify which cytosine has been deleted.  We recently developed a 
novel way to classify indels and used this classification to perform the first pan-cancer analysis 
of indel mutational signatures (Supplementary Table 2) [14]. More specifically, indels (IDs) 
were classified as single base-pair events or longer events. A single base-pair event can be 
further subclassified as either a C:G or a T:A indel; usually abbreviated based on the pyrimidine 
base as a C or a T indel. The longer indels can also be subclassified based on their lengths: 2bp, 
3bp, 4bp, and 5+bp. For example, if the sequence ACA is deleted from 5’-
ATTACA[ACA]GGCGC-3’ we denote this as a deletion with length 3. Similarly, if a genomic 
region mutates from 5’-ATTACAGGCGC-3’ to 5’-ATTACACCTGGGCGC-3’, this will be 
denoted as an insertion with length 4 (Fig 1C). 
 
Indels were further subclassified into ones at repetitive regions and ones with microhomologies 
(i.e., partial overlap of an indel). Note that microhomologies are not defined for indels with 
lengths of 1bp as partial overlaps are not possible. For indels with lengths of 1bp, the 
subclassification relied on repetitive regions that are stretches of the same base-pair referred to as 
homopolymers. The repeat sizes of insertions were subclassified based on their sizes of 0bp, 1bp, 
2bp, 3bp, 4bp, 5+bp; while the repeat sizes of deletions were subclassified as 1bp, 2bp, 3bp, 4bp, 
5bp, 6+bp (note that one cannot have a deletion with a repeat size of 0bp). For example, if the 
sequence ACA is deleted from 5’-ATTACA[ACA]GGCGC-3’, this will be denotated as a 
deletion with length 3 at a repeat unit of 2 since there are two adjacent copies of ACAACA and 
only one of these copies has been deleted. Similarly, if a genomic region mutates from 5’-
ATTACAGGCGC-3’ to 5’-ATTACACCTGGGCGC-3’, this will be denoted as an insertion 
with length 4 at a repeat unit of 0 since the adjacent sequences are not repeated.  
 
In addition to classifying indels as ones occurring at repetitive regions, a classification was 
performed to identify the long indels with microhomologies (i.e., partially overlapping 
sequences). Since almost no insertions with microhomologies were identified across more than 
20,000 human cancers [14], this classification was limited to long deletions at microhomologies. 
Microhomologies were classified based on the length of the short identical sequence of bases 
adjacent to the variation. For example, if TAGTC is deleted from the sequence 5’-
ACCCA[TAGTC]TAGTAGCGGC-3’, this will be classified as a deletion of length five 
occurring at a microhomology site of length four because of the identical sequence TAGT 
located at the 3’ end of the deletion. Similarly, if TAGTC is deleted from the sequence 5’- 
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ACCCAGTC[TAGTC]AAGCGGC-3’, this will also be classified as a deletion of length five 
occurring at a microhomology site of length four because of the identical sequence AGTC 
located at the 5’ end of the deletion. The classification does not distinguish (i.e., subclassify) 
between 3’ and 5’ microhomologies since these tend to be dependent on the mutation calling 
algorithms. For example, 5’-ACCCA[TAGTC]TAGTAGCGGC-3’ is the same event as 5’-
ACCCATAG[TCTAG]CGGC-3’ since in both cases a 5bp sequence is deleted from a reference 
sequence 5’-ACCCATAGTCTAGTAGCGGC-3’and the result is 5’-ACCCATAGCGGC-3’. 
While somatic mutation callers may report different indels, our classification will annotate these 
indels as exactly the same mutational event.  
 
The classification of small insertions and deletions was developed to reflect previously observed 
indel mutational processes. More specifically, the large numbers of small insertions and deletions 
at repetitive regions were observed in micro-satellite unstable tumors [23] as well as the large 
numbers of deletions were observed in tumors with deficient DNA double-strand break repair by 
homologous recombination [24]. Our classification was previously used to identify 17 indel 
signatures across the spectrum of human cancers [14]. SigProfilerMatrixGenerator allows 
generation of multiple mutational matrices of indels including ID-28 and ID-83. Importantly, the 
tool also generates an ID-8628 matrix that extends the ID-83 classification by providing 
complete information about the indel sequence for indels at repetitive regions with length of less 
than 6bp. While SigProfilerMatrixGenerator provide this extensive indel classification, ID-8628 
has yet to be thoroughly utilized for analysis of indel mutational patterns. Further, it should be 
noted that for most samples, the low numbers of indels in a single sample will make the ID-8628 
classification impractical. Nevertheless, we expect that this classification will be useful for 
examining cancers with large numbers of indels and especially ones with deficient DNA repair. 
The matrix generator also supports the incorporation of transcriptional strand bias for ID-83 and 
the generation of plots for most of the indel matrices. 
 
 
Incorporation of Transcription Strand Bias (TSB) 
The mutational classifications described above provide a detailed characterization of mutational 
patterns of single base substitutions, doublet base substitutions, and small insertions and 
deletions. Nevertheless, these classifications can be further elaborated by incorporating 
additional features. Strand bias is one commonly used feature that we and others have 
incorporated in prior analyses [13-15, 17]. While one cannot distinguish the strand of a mutation, 
one expects that mutations from the same type will be equally distributed across the two DNA 
strands. For example, given a mutational process that causes purely C:G>T:A mutations and a 
long repetitive sequence 5’-CGCGCGCGCGCGCGCGCCG-3’ on the reference genome, one 
would expect to see an equal number of C>T and G>A mutations. However, in many cases an 
asymmetric number of mutations are observed due to either one of the strands being 
preferentially repaired or one of the strands having a higher propensity for being damaged. 
Common examples of strand bias are transcription strand bias in which transcription-couple 
nucleotide excision repair (TC-NER) fixes DNA damage on one strand as part of the 
transcriptional process [25] and replicational strand bias in which the DNA replication process 
may result in preferential mutagenesis of one of the strands [26]. Strand bias can be measured by 
orienting mutations based on the reference strand. In the above-mentioned example, observing 
exclusively C>A mutations (and no G>A mutations) in the reference genome sequence 5’-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/653097doi: bioRxiv preprint 

https://doi.org/10.1101/653097
http://creativecommons.org/licenses/by/4.0/


CGCGCGCGCGCGCGCGCCG-3’ may mean that: (i) the guanine on the reference strand is 
protected; (ii) the cytosine on the reference strand is preferentially damaged; (iii) the guanine on 
the non-reference strand is preferentially damaged; (iv) the cytosine on the non-reference strand 
is protected; or (v) a combination of the previous four examples. In principle, a strand bias 
reveals additional strand-specific molecular mechanisms related to DNA damage, repair, and 
mutagenesis.  
 
SigProfilerMatrixGenerator provides a standard support for examining transcriptional strand bias 
for single base substitutions, doublet base substitutions, and small indels. The tool evaluates 
whether a mutation occurs in the transcribed or the non-transcribed regions of well-annotated 
protein coding genes of a reference genome. Mutations found in the transcribed regions of the 
genome are further subclassified as: (i) transcribed, (ii) un-transcribed, (iii) bi-directional, or (iv) 
unknown. In all cases, mutations are oriented based on the reference strand and their pyrimidine 
context.  
 
To sub-classify mutations based on their transcriptional strand bias, we consider the pyrimidine 
orientation with respect to the locations of well-annotated protein coding genes on a genome. For 
instance, when the coding strand (i.e., the strand containing the coding sequence of a gene; also 
known as the un-transcribed strand) matches the reference strand, a T:A>A:T will be reported as 
an untranscribed T>A (abbreviated as U:T>A; Fig. 2). In this case, the template strand (i.e., the 
strand NOT containing the coding sequence of a gene; also known as the transcribed strand) will 
be complementary to the reference strand and a G:C>C:G mutation will be reported as a 
transcribed C>G (abbreviated as T:C>G; Fig. 2). In rare cases, both strands of a genomic region 
code for a gene. Such mutations are annotated as bidirectional based on their pyrimidine context. 
For example, both a T:A>C:G and a A:T>G:C mutations in regions of bidirectional transcription 
will both be annotated as a bidirectional T>C (abbreviated as B:T>C). The outlined notations are 
applicable when describing mutations that are located within the transcribed regions of the 
genome. When a mutation is located outside of these regions, it will be classified as non-
transcribed. For example, both a C:G>T:A and a G:C>A:T mutations in non-transcribed regions 
will be annotated as a non-transcribed C>T (abbreviated as N:C>T). 
 
When considering doublet base substitutions or small indels in transcribed regions, for certain 
mutational events, it is not possible to unambiguously orient these mutations. More specifically, 
mutations containing both pyrimidine and purine bases cannot be unequivocally attributed to a 
strand. For example, a TA>AT doublet substitution or a 5’-CATG-3’ deletion cannot be oriented 
based on the pyrimidine context as both strands contain purine and pyrimidine bases. In contrast, 
a GG>TT doublet substitution or a 5’-CTTCC-3’ deletion can be oriented as one of the strands is 
a pure stretch of pyrimidines. Somatic mutations with ambiguous strand orientation have been 
classified in a separate unknown category (e.g., a TA>AT doublet substitution in a transcribed 
region is abbreviated as Q:TA>AT). In contrast, the classification of somatic indels and DBSs 
with clear strand orientation has been conducted in a manner similar to the one outlined for 
single base substitutions.  
 
Generation of Mutational Matrices and Additional Features 
Prior to performing analyses, the tool requires installing a reference genome. By default, the tool 
supports five reference genomes and allows manually installing any additional reference 
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genome. Installing a reference genome removes the dependency for connecting to an external 
database, allows for quick and simultaneous queries to retrieve information for sequence context 
and transcriptional strand bias, and increases the overall performance of the tool. 
 
After successful installation, SigProfilerMatrixGenerator can be applied to a set of files 
containing somatic mutations from different samples. The tool supports multiple commonly used 
input formats and, by default, transforms the mutational catalogues of these samples to the 
above-described mutational matrices and outputs them as text files in a pre-specified output 
folder.  
 
In addition to generating and plotting matrices from mutational catalogues, 
SigProfilerMatrixGenerator allows examining patterns of somatic mutations only in selected 
regions of the genome. The tool can be used to generate mutational matrices separately for: each 
individual chromosome, for the exome part of the genome, and for custom regions of the genome 
specified by a BED file. SigProfilerMatrixGenerator can also perform statistical analysis for 
significance of transcriptional strand bias for each of the examined samples with the appropriate 
corrections for multiple hypothesis testing using the false discovery rate (FDR) method. Overall, 
the tool supports the examination of significantly more mutational matrices than prior tools 
(Table 1) while still exhibiting a better performance (Fig. 3). 
 
Computational Optimization 
In addition to its extensive functionality (Table 1), the performance of 
SigProfilerMatrixGenerator has been optimized for analysis of large mutational datasets. More 
specifically, as part of the installation process, each chromosome of a given reference genome is 
pre-processed in a binary format to decrease subsequent query times. This pre-processing 
reduces a genomic base-pair to a single byte with binary flags that allow immediately identifying 
the reference base, its immediate sequence context, and its transcriptional strand bias. A single 
binary file is saved for each reference chromosome on the hard-drive; note that these binary files 
have similar sizes to ones of FASTA files containing the letter sequences of chromosomes.  
 
When SigProfilerMatrixGenerator is applied to a set of input files, the tool first reformats all 
input files into a single file per chromosome sorted by the chromosomal positions, e.g., for a 
human reference genome a total of 25 files are generated: 22 files are generated for the 
autosomes, two files for the sex chromosomes, and one file for the genome of the mitochondria. 
Then, the tool processes the input data one chromosome at a time. For example, for a human 
reference genome, it first loads the reference binary file for chromosome one (~250 megabytes) 
and all mutations located on chromosome one across all samples are assigned to their appropriate 
bins in the most extensive classification (e.g., SBS-6144 for single base substitutions). Note that 
the binary pre-processing of the reference chromosomes makes this a linear operation with 
identifying the appropriate category for each mutation being a simple binary check against a 
binary array. After processing all mutations for a particular chromosome, the tool unloads the 
chromosomal data from memory and proceeds to the next chromosome. When all chromosomes 
have been processed, the most extensive classification is saved and iteratively collapsed to all 
other classifications of interests. For example, for single base substitutions, the SBS-6144 is first 
saved on the hard-drive and then collapsed to SBS-1536 and SBS-384. Then, SBS-1536 and 
SBS384 are saved on the hard-drive and collapsed, respectively, to SBS-96 and SBS-24. 
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Similarly, SBS-96 and SBS-24 are saved on the hard-drive with SBS-24 being also collapsed to 
SBS-6, which is also recorded on the hard-drive. Overall, the computational improvements in 
SigProfilerMatrixGenerator rely on binary pre-processing of reference genomes, iterative 
analysis of individual chromosomes, and iterative collapsing of output matrices. These 
computational improvements have allowed computationally outperforming five other commonly 
used tools.  
 

Results 
The performance of SigProfilerMatrixGenerator was benchmarked amongst five commonly used 
packages: deconstructSigs [27], mafTools [28], SomaticSignatures [29], signeR [30], and 
Helmsman [31]. While some of these packages can perform various additional tasks (e.g., 
extraction/decomposition of mutational signatures), the benchmarking considered only the 
generation of mutational matrices. The performance was evaluated by measuring the CPU time 
and maximum memory necessary to generate mutational matrices based on randomly generated 
VCF files for 100 samples (one file per sample) with different total numbers of somatic 
mutations: 103, 104, 105, 106, and 107. To maintain consistency, each test was independently 
performed on a dedicated computational node with an Intel® Xeon® Gold 6132 Processor 
(19.25M Cache, 2.60 GHz) and 192GB of shared DDR4-2666 RAM. In all cases, the tools 
generated identical SBS-96 matrices.  
 
In addition to generating an SBS-96 matrix, SigProfilerMatrixGenerator also generates another 
twelve matrices including ones for indels and doublet base substitutions (Table 1). In contrast, all 
other tools can only generate a single mutational matrix exclusively for single base substitutions 
(Table 1). While offering additional functionality, SigProfilerMatrixGenerator exhibits an 
optimal performance and, in almost all cases, outperforms other existing tools (Fig. 3A). For 
example, for more than one million mutations, the tool is between 1.5 and 2 times faster 
compared to the next fastest tool, deconstructSigs. With the exception of Helmsman, 
SigProfilerMatrixGenerator requires less memory than any of the other tools making it scalable 
to large numbers of somatic mutations (Fig. 3B). Helmsman’s low memory footprint comes at a 
price of a significantly slower performance for larger datasets (Fig. 3A).  
 
Lastly, we evaluated whether the exhibited performance is independent of the number of samples 
by comparing the tools using a total of 100,000 somatic mutations distributed across: 10, 100, 
and 1000 samples (Supp. Fig 1). SigProfilerMatrixGenerator, deconstructSigs, Helmsman, and 
mafTools demonstrated an independence of sample number with respect to both CPU runtime 
and maximum memory usage. The memory usage of SomaticSigs is independent of sample 
count, however, the runtime increases linearly with the number of samples. The runtime of 
SigneR is somewhat independent of sample count, however, the memory increases linearly with 
the number of samples. 
 

Discussion 
SigProfilerMatrixGenerator transforms a set of mutational catalogues from cancer genomes into 
fourteen mutational matrices by utilizing computationally and memory efficient algorithms. 
Indeed, in almost all cases, the tool is able to outperform other tools that generate only a single 
mutational matrix. SigProfilerMatrixGenerator also provides an extensive plotting functionality 
that seamlessly integrates with matrix generation to visualize the majority of output in a single 
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analysis (Fig. 4). In contrast, most other tools have plotting capabilities solely for displaying an 
SBS-96 matrix (Table 1). Currently, SigProfilerMatrixGenerator supports only classifications of 
small mutational events (i.e., single base substitutions, doublet base substitutions, and small 
insertions and deletions) as we have previously demonstrated that these classifications generalize 
across all types of human cancer [14]. While classifications for large mutational events (e.g., 
copy-number changes and structural rearrangements) have been explored by us and others [24, 
32, 33] such classifications have been restricted to individual cancer types and it is unclear 
whether they will generalize in a pan-tissue setting. 
 
Importantly, SigProfilerMatrixGenerator is not a tool for analysis of mutational signatures. 
Rather, SigProfilerMatrixGenerator allows exploration and visualization of mutational patterns 
as well as generation of mutational matrices that subsequently can be subjected to mutational 
signatures analysis. While many previously developed tools provide support for examining the 
SBS-96 classification of single base substitutions, SigProfilerMatrixGenerator is the first tool to 
provide extended classification of single base substitutions as well as the first tool to provide 
support for classifying doublet base substitutions and small insertions and deletions.  
 
 

Conclusions 
A breadth of computational tools was developed and applied to explore mutational patterns and 
mutational signatures based on the SBS-96 classification of somatic single base substitutions. 
While the SBS-96 has yielded significant biological insights, we recently demonstrated that 
further classifications of single base substitutions, doublet base substitutions, and indels provide 
the means to better elucidate and understand the mutational processes operative in human cancer. 
SigProfilerMatrixGenerator is the first tool to provide an extensive classification and 
comprehensive visualization for all types of small mutational events in human cancer. The tool is 
computationally optimized to scale to large datasets and will serve as foundation to future 
analysis of both mutational patterns and mutational signatures. SigProfilerMatrixGenerator is 
freely available at https://github.com/AlexandrovLab/SigProfilerMatrixGenerator with an 
extensive documentation at https://osf.io/s93d5/wiki/home/. 
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Tables 

Table 1: Matrix generation and visualization functionality of six commonly used tools. M 
corresponds to providing functionality to only generate a mutational matrix; MP corresponds to 
providing functionality to both generate and plot a mutational matrix. * indicates that a tool can 

Tool 
SBS ID DBS 

6 24 96 384 1536 6144 28 83 415 8628 78 186 1248 2976 

SigProfilerMatrixGenerator 
Language: Python & R 

MP MP MP MP MP M MP MP MP M MP MP M M 

Helmsman [31] 
Language: Python 

  M*  M*     
 

    

deconstructSigs [27] 
Language: R 

  MP       
 

    

mafTools [28] 
Language: R 

MP  MP       
 

    

SomaticSignatures [29] 
Language: R 

  MP*  M*     
 

    

signeR [30] 
Language: R 

  MP*  M*     
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perform only one of the actions in a single run; for example, Helmsman can either generate a 96 
or a 1536 mutational matrix but not both in a single run. 

 
Figure Legends 
Figure 1: Classifications of single base substitutions, doublet base substitutions, and indels. 
A) Classification of single base substitutions (SBSs). The complete classification of an SBS 
includes both bases in the Watson-Crick base-pairing. To simplify this notation, one can use 
either the purine or the pyrimidine base. SigProfilerMatrixGenerator uses as a standard the 
pyrimidine classification. B) Classification of doublet base substitutions (DBSs). The complete 
classification of a DBS includes bases on both strands. To simplify this notation, in most cases, 
SigProfilerMatrixGenerator uses the maximum number of pyrimidines. C) Classification of 
small insertions and deletions. The complete classification includes the length of the indel and 
the number of repeated units surrounding the sequence. For deletions at microhomologies, the 
length of the homology, rather than the number of repeat units surrounding the indel, is used in 
the classification.   
 
 
Figure 2: Classifications of transcriptional strand bias. A) RNA polymerase uses the template 
strand to transcribe DNA into RNA. The strand upon which the gene is located is referred to as 
the coding strand. All regions outside of the footprint of a gene are referred to as non-transcribed 
regions. B) Single point substitutions are oriented based on their pyrimidine base and the strand 
of the reference genome. When a gene is found on the reference strand an A:T>T:A substitution 
in the footprint of the gene is classified as transcribed T>A (example indicated by circle) while a 
C:G>G:C substitution in the footprint of the gene is classified as un-transcribed C>G (example 
indicated by star). Mutations outside of the footprints of genes are classified as non-transcribed 
(example indicated by square). Classification of single base substitutions is shown both in regard 
to SBS-24 and SBS-384.  
 
 
Figure 3: Performance for matrix generation across six commonly used tools. Each tool was 
evaluated separately using 100 VCF files, each corresponding to an individual cancer genome, 
containing total somatic mutations between 1000 and 10 million. A) CPU runtime recorded in 
seconds (log-scale) and B) maximum memory usage in megabytes (log-scale). *SigneR was 
unable to generate a matrix for 107 mutations as it exceeded the available memory of 192GB. 
Performance metrics exclude visualization.  
 
 
Figure 4: Portrait of a cancer sample. SigProfilerMatrixGenerator provides a seamless 
integration to visualize the majority of generated matrices. One such functionality allows the user 
to display all mutational plots for a sample in a single portrait. The portrait includes displaying of 
each of the following classifications: SBS-6, SBS-24, SBS-96, SBS-384, SBS-1536, DBS-78, 
DBS-186, ID-28, ID-83, and ID-415. Each of the displayed plots can also be generated in a 
separate file. Detailed documentation explaining each of the plots can be found at: 
https://osf.io/2aj6t/wiki/home/. 
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