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Abstract  

 

Summary: The related Wilcoxon rank sum test and area under the receiver operator curve are ubiquitous in high 

dimensional biological data analysis. Current implementations do not scale readily to the increasingly large datasets 

generated by novel high-throughput technologies, such as single cell RNAseq. We introduce a simple and scalable 

implementation of both analyses, available through the R package Presto. Presto scales to big datasets, with functions 

optimized for both dense and sparse matrices. On a sparse dataset of 1 million observations, 10 groups, and 1,000 

features, Presto performed both rank-sum and auROC analyses in only 17 seconds, compared to 6.4 hours with base R 

functions. Presto also includes functions to seamlessly integrate with the Seurat single cell analysis pipeline and the 

Bioconductor SingleCellExperiment class. Presto enables the use of robust classical analyses on big data with a simple 

interface and optimized implementation.  

Availability and Implementation: Presto is available as an R package at https://github.com/immunogenomics/presto.  

Contact: soumya@broadinstitute.org 

Supplementary Information: Vignettes are available with the Presto package.  
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The Wilcoxon rank sum test (Wilcoxon, 1945; Pratt, 1959), also known as the Mann-Whitney U test, is a robust, 

nonparametric difference-of-means test. Since it assumes no underlying distribution, it is used widely in all fields of 

biology. Mathematically, it is closely related to a commonly-used metric, the area under the receiver operator curve 

(auROC). auROC is used to evaluate the power of a feature to distinguish two groups (Green and Swets, 1966). Both 

rank-sum and auROC are staple tools in high-dimensional genomics analyses, used for differential expression analysis in 

RNAseq and differential accessibility analysis in ATACseq. However, the current implementation of the rank-sum test in 

the wilcox.test function (R Core Team, 2019) cannot scale to the large datasets generated by single cell genomics 

technologies. Single cell RNAseq and single cell ATACseq datasets often contain data on millions of cells and thousands 

of features. At the same time, these large datasets often contain many zeros, with >90% sparsity in scRNAseq and >98% 

sparsity in scATACseq. Here, we present Presto, a fast implementation of the rank-sum test, auROC, and related 

summary statistics. Presto scales to millions of observations in seconds and has built-in optimizations for both dense and 

sparse datasets.  

 

Implementation details. We made use of several programmatic and mathematical tools to make Presto computationally 

efficient. We started with the vectorized multi-group approach to rank-sum in the MUDAN (Fan, 2018) and Pagoda2 

(Kharchenko et al, 2019) R packages. In the multi-group setting, observations belong to 1 of K groups. We repeat rank-

sum in a 1-versus-all fashion for each group individually. The vectorized implementation caches intermediate results that 

can be shared by each group. For instance, we rank the expression of a gene once across all groups and use this ranking 

to test each group individually. We implemented all computationally-intensive steps in C++. In these functions, we were 

careful to minimize the amount of memory allocation, performing many computations in place. Moreover, we wrote 

separate functions optimized for dense and sparse matrix inputs. For dense matrices, we used utilities available through 

the RcppArmadillo bindings (Eddelbuettel and Sanderson, 2014) to the C++ Armadillo package (Curtin and Sanderson, 

2016; Curtin and Sanderson 2018). These functions are efficient for dense inputs, since Armadillo is built against a BLAS 

backend that enables fast dense matrix operations. While Armadillo has support for sparse matrices, this support is does 

not benefit from BLAS utilities. Therefore, we performed matrix operations directly on the “x”, “i”, and “p” fields defined 

in the dgCMatrix format, defined in the R Matrix package (Bates and Maechler, 2018). Finally, we exploited the simple 

mathematical connection between the rank-sum U statistic and auROC to compute auROC. For two groups of sizes N1 

and N2, auROC = U / (N1*N2). Thus, once we compute the rank-sum U statistic, auROC is essentially computationally free.  

We handled ties and computed p-values in the same way that the base R wilcox.test function does when run 

with parameters unpaired=TRUE, correct=TRUE, exact=FALSE, alternative=“two.sided”. The main front end function, 

wilcoxauc, is implemented in R. We implemented wilcoxauc using the S3 function-oriented class system. Here, wilcoxauc 

is a base function class with instantiations for Seurat objects, SingleCellExperiment objects, and matrix-like objects. For 
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simplicity, we cast all dense matrix-like inputs (e.g. matrix, dgeMatrix, data.frame) as the base R matrix type and sparse 

inputs (e.g. dgCMatrix, dgTMatrix, TsparseMatrix) as the dgCMatrix type.  The next section details how to use the 

wilcoxauc function in R.  

 

Usage. The Presto R package has a simple interface. Given a feature-by-observation matrix X and label vector y, Presto 

does a one-versus-all analysis for each group and each feature individually and reports a summary table of all tests.  

 

library(devtools) 

install_github(‘immunogenomics/presto’) 

library(presto) 

res <- wilcoxauc(X, y) 

 

Presto also supports S4 objects commonly used in single cell genomics analysis, including Seurat (Stuart and Butler, 

2018) and SingleCellExperiment (Lun and Risso, 2019). We assume these structures already have the covariates (e.g. 

gene expression matrix) and group labels (e.g. cluster IDs) defined internally. Presto has a common interface for S4 

objects. The first argument is the object and the second the name of the group-defining variable.  

 

res <- wilcoxauc(object, “label”) 

 

For convenience, we include a utility function that summarizes the top abundant marker features for each group.  

 

top_markers(res) 

 

Finally, we note that many modern datasets, such as those generated with droplet based single cell RNAseq 

technologies (Macosko et al, 2015; Zheng et al, 2017), have a larger number of zero entries. These data can be 

compactly represented with a sparse matrix format, such as dgCMatrix, provided by the R Matrix package. Presto is 

optimized for both dense and sparse formats. When more than 30% of entries are zero, we recommend using the 

dgCMatrix format. More examples can be found in the R package documentation (?presto) and vignette.  
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Benchmarking. We benchmarked the computational performance of Presto on an Intel Xeon E5-2690 v3 processor, with 

no parallelization. We compared the runtime of three implementations on simulated datasets of 10 groups, 1,000 

features, and observations ranging from 100,000 (100K) to 1 million (1M). To demonstrate Presto’s performance with 

sparse data, we set 90% of entries to zero. For the base R (blue) implementation, we recorded runtimes from 38 minutes 

on 100K observations to 6.4 hours on 1 million. Presto analyzed the dense matrices in 7 to 83 seconds, with an average 

295X speedup over base R. Presto analyzed the sparse matrices in only 2 to 16 seconds, with an average 1448X speedup 

over base R.  

 

Conclusion. In this note, we present a modern implementation of classical methods. In the future, we plan to augment 

Presto with scalable versions of additional common tools. We hope this will allow analysts to scale their existing 

pipelines to large datasets with the minimum number of unnecessary  

technical interruptions.  
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Figure 1. Runtime benchmarks using base R wilcox.test (blue), Presto 

dense (orange), and Presto sparse (teal). Datasets ranged from 
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finishes fastest, in only 16 seconds, compared to 84 seconds with 

dense Presto and 6.4 hours with base R.  
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