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Kinship coefficients and FST, which measure genetic relatedness and the overall popula-
tion structure, respectively, have important biomedical applications. However, existing
estimators are only accurate under restrictive conditions that most natural population
structures do not satisfy. We recently derived new kinship and FST estimators for
arbitrary population structures [1, 2]. Our estimates on human datasets reveal a com-
plex population structure driven by founder effects due to dispersal from Africa and
admixture. Notably, our new approach estimates larger FST values of 26% for native
worldwide human populations and 23% for admixed Hispanic individuals, whereas the
existing approach estimates 9.8% and 2.6%, respectively. While previous work cor-
rectly measured FST between subpopulation pairs, our generalized FST measures ge-
netic distances among all individuals and their most recent common ancestor (MRCA)
population, revealing that genetic differentiation is greater than previously appreci-
ated. This analysis demonstrates that estimating kinship and FST under more realistic
assumptions is important for modern population genetic analysis.

Kinship coefficients and FST are defined as probabilities of identity-by-descent [3–5]. Kinship ma-
trices are crucial for accurate inference under population structure in many important biomedical
applications, including genome-wide association studies [6–13] and heritability estimation [14, 15].
However, the most commonly-used standard kinship estimator [9, 10, 13–19] is accurate only in the
absence of population structure [2, 20]. Likewise, current FST estimators assume that individuals
are partitioned into statistically-independent subpopulations [4, 5, 21–23], which does not hold for
human and other complex population structures. The human genetic population structure is re-
markably complex, shaped by geography and population bottlenecks in migrations out of Africa
[24–34] and admixture events [35–39]. We use human data to illustrate the improvements provided
by our new approach.

Models and methods. Our new kinship and FST estimators were derived assuming arbitrary pop-
ulation structures, and they yield nearly unbiased estimates [2]. Suppose there are n individuals
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genotyped at m biallelic autosomal loci, such as SNPs. Our kinship estimator ϕ̂new
jk is given by

Ajk =
1

m

m∑
i=1

(xij − 1)(xik − 1)− 1,

Âmin = min
u 6=v

1

|Su||Sv|
∑
j∈Su

∑
k∈Sv

Ajk,

ϕ̂new
jk = 1−

Ajk

Âmin
,

where the genotypes xij ∈ {0, 1, 2} count the number of reference alleles at locus i for individual j.
For simplicity, here Âmin uses a partition of individuals into subpopulations Su for u ∈ {1, ...,K}
used solely to estimate the minimum kinship, which is set to zero (ϕ̂new

jk has individual-level resolu-
tion; the general framework does not need subpopulations [2]). Under our model E[Ajk] = (ϕjk−1)v

contains the desired kinship coefficient ϕjk and a nuisance parameter v shared by all individuals.
Assuming zero kinship across the two least related individuals, E[Âmin] ≈ minj,k E[Ajk] = −v yields
the nuisance parameter, enabling consistent kinship estimates: ϕ̂new

jk
a.s.−−−−→

m→∞
ϕjk.

We compare to the widely-used standard kinship estimator

ϕ̂std
jk =

1

m

m∑
i=1

(xij − 2p̂i) (xik − 2p̂i)

4p̂i (1− p̂i)
, p̂i =

1

2n

n∑
j=1

xij ,

which has a complex bias non-linear in ϕjk in structured populations [2, 20]. The limit of ϕ̂std
jk as

the number of loci m→∞ is well-approximated by

ϕjk − ϕ̄j − ϕ̄k + ϕ̄

1− ϕ̄
,

where ϕ̄j = 1
n

n∑
k′=1

ϕjk′ is the mean kinship of individual j with all others and ϕ̄ = 1
n2

n∑
j′=1

n∑
k′=1

ϕj′k′ is

the overall mean kinship in the data [2]. This estimator is widely-used in approaches for structured
populations, including genetic association studies and heritability estimation [9, 10, 13–19].

The original FST measures inbreeding in a subpopulation relative to an ancestral population
[4], excluding local inbreeding if present [5]. Existing approaches estimate the mean FST between
two or more independent subpopulations relative to their MRCA population [21, 23, 40], but have
a downward bias otherwise [2]. In our new approach, inbreeding coefficients are estimated from
kinship (measured from the MRCA population) using f̂new

j = 2ϕ̂new
jj − 1 and the generalized FST

is estimated using F̂ new
ST =

∑n
j=1wj f̂

new
j (valid for locally-outbred individuals [1]), where wj are

weights to account for geographically-imbalanced sample sizes. Our generalized FST does not require
subpopulations, is the first to be applicable to arbitrary population structures [1], and our estimator
is accurate in this setting [2]. We compare to the existing FST estimators Weir-Cockerham [21],
HudsonK (for two subpopulations [23] generalized in [2]), and BayeScan [40]. These estimators
assume independent subpopulations and homogeneous inbreeding within subpopulations, which

2

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/653279doi: bioRxiv preprint 

https://doi.org/10.1101/653279
http://creativecommons.org/licenses/by-nd/4.0/


causes downward biases in more complex population structures and implicitly admit negative kinship
coefficients [2]. The classical FST interpretation—the proportion of variance explained by differences
between subpopulation pairs—is not appropriate when subpopulations are not independent, and is
not clearly defined in the absence of obvious subpopulations (such as for admixed individuals).
Instead, our generalized FST measures the genetic drift of individuals from the MRCA population,
which ensures valid underlying kinship coefficients [1].

Results. We first analyze the Human Origins datasets of native populations [41–43], which consists of
2922 individuals from 243 sub-subpopulations grouped into 11 subpopulations (Supplemen-
tary Information). Sub-subpopulation abbreviations are defined in [41–43], while the subpopulation
labels are defined in Fig. S1 (Supplementary Information). If these subpopulations were indepen-
dent and internally unstructured, as assumed by existing FST estimators, the kinship matrix would
have zero values between subpopulations and equal kinship within subpopulations (Fig. 1A). In-
stead, our approach reveals substantial kinship between subpopulations and heterogeneity within
subpopulations (Fig. 1C).

The kinship matrix of Fig. 1C can be interpreted under the African origins serial founder model,
as follows. Recall that a population size reduction (bottleneck) increases kinship and FST relative to
the ancestral population [3–5]. The first population split occured roughly between individuals from
Sub-Saharan African (KhoeSan-speaking hunter-gatherers (SAfrica) and Bantu-speakers and other
agro-pastoralists (MAfrica)) and individuals outside of Sub-Saharan Africa. This split resulted in
bottlenecks that increased kinship in each side relative to the ancestral value (which equals the

Figure 1 (following page): Population-wide kinship estimates in Human Origins. As a
visual aid, individuals are arranged into a hierarchy with subpopulations (rough continental clus-
ters, i.e., SAfrica) and sub-subpopulations (locations potentially separated by ethnicity or religion,
i.e., Lebanese_Christian). However, we estimate individual-level kinship without using this hi-
erarchy. Color corresponds to kinship (ϕjk) for every pair of individuals j (x-axis) and k (y-axis)
and inbreeding coef. (fj) along the diagonal. A. Kinship matrix assumed by the independent sub-
populations model prevalent in FST estimation: fixed ϕjk within subpopulations, ϕjk = 0 between
subpopulations. B. Biased standard kinship estimates. The overall downward bias causes many
negative estimates (blue) and strong distortions across the matrix (incorrectly assigns highest kin-
ship within SAfrica-MAfrica), as predicted by our theory. Also note comparable kinship estimates
between each of MAfrica, Europe, and EAsia, which contradicts the African origins model. C.
New kinship estimates. Our new estimates reveal substantial kinship between subpopulations and
heterogeneity within subpopulations. For an improved dynamic range, all displayed fj , ϕjk values
in panels B and C were capped at the 99 percentile of the estimated fj values of panel C (full fj
distribution in Fig. 3). Additionally, panel B was capped below to the 1 percentile of its distribution.
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Independent subpop. model
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kinship between the two subpopulations). The next split was roughly between West Eurasians
and the rest, again increasing kinship within each side. Among West Eurasians, kinship is higher
within Europe, reflecting another bottleneck. Americas (Native Americans) and Oceania have
the highest kinship values within, reflecting further bottlenecks in their trek out of Africa. Note
that the European admixture in Americas (calculated in Supplementary Information) is evident
in individuals with lower kinship relative to other Americas individuals and greater kinship with
Europe (Fig. 1C). Overall, our observations are coherent with previous work [27, 30, 31, 35], but our
approach is the first to use a nearly unbiased estimator of kinship coefficients under assumptions
aligned with the data. Our approach accurately estimates kinship at individual-level resolution and
successfully uncovers a complex population structure where individuals may be related to each other
in arbitrary ways.

The MRCA population of living humans is estimated to have existed in Africa 100-200K years
ago [26, 27, 34], which first split into the ancestral KhoeSan population (who speak so-called “click”
languages of the Kx’a, Tuu, and Khoe families, grouped into SAfrica) and the rest [26, 27, 31,
32, 34]. This MRCA population excludes ancestry from the Neanderthal and Denisovan introgres-
sions [36, 37], but their limited contribution makes it a reasonable approximation. In our esti-
mates, the minimum per-sub-subpopulations mean kinship is between Ju_Hoan_North (SAfrica)
and Kol_New_Britain (Oceania). Moreover, the 2114 pairs with the smallest kinship values all
consisted of pairs where one sub-subpopulation was from SAfrica (most commonly Ju_Hoan_North

and Ju_Hoan_South) and the other was from outside of SAfrica and MAfrica. Therefore, we infer
the first population split to have been between the ancestral KhoeSan population (SAfrica) and
the rest, agreeing with previous work using independent mtDNA [26], Y chromosome [34], and mi-
crosatellite data [27, 32] (not used by our approach), as well as SNPs [31]. High kinship between
SAfrica and MAfrica (Fig. 1C) suggests recent admixture [32] or an isolation-by-distance structure
[44].

The diagonal of the kinship matrix of Fig. 1C contains inbreeding coefficients fj , which are
individual-specific FST values (for locally-outbred individuals, which most humans are). Every in-
dividual is differentiated (first percentile fj = 0.149, where the zero value would correspond to the
fj of the child of the two most unrelated individuals in the data), and differentiation increases with
distance from southern Africa (shown geographically in Fig. 2 and using distributions in Fig. 3), as
expected under the African origins model and agreeing with previous work [26, 27, 29–34]. Remark-
ably, our estimated FST of 0.260 is substantially larger than estimates around 0.098 from existing
approaches (Fig. 3) and previous measurements based on FST [30, 45] or related variance component
models [31, 46, 47] — except for some AMOVA φST estimates [48] (pairwise FST estimates [23, 49–
52] are not generally comparable to our estimate). Existing approaches underestimate FST because
they assume zero kinship between subpopulations, clearly incorrect as seen in Fig. 1C, whereas our
new approach models arbitrary kinship between individuals and leverages kinship to estimate FST.

The popular standard kinship estimator [9, 10, 13–19] has a nonlinear bias in structured pop-
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Figure 2: Geographical distribution of population-level inbreeding. Colors in circles denote
the mean individual inbreeding fj within each Human Origins sub-subpopulation. These mean fj
values increase smoothly with distance from southern Africa, as expected under the African origins
serial founder model.
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ulations [2, 20]. Standard kinship matrix estimates have abundant negative values and strong
distortions (Fig. 1B versus our estimates in Fig. 1C, direct comparison in Fig. S2A). These esti-
mates disagree with the African origins model, assigning greater kinship within SAfrica-MAfrica
than to any other subpopulation, and comparable kinship between Europe, EAsia and MAfrica

(incorrect since MAfrica split first [23]). The biases in the standard kinship and existing FST esti-
mators are both fundamentally due to assuming that most kinship values are zero, and explicitly
or implicitly admit negative kinship values [2, 22]. Our new kinship estimator is developed for
arbitrary population structures and yields more interpretable estimates in human data.

Hispanic Latin Americans have a complex population structure, being recently admixed from
European (EUR), Native American (AMR), and Sub-Saharan African (AFR) populations [53–57]. Here
we show that Hispanics in the 1000 Genomes Project (TGP) do not have discrete subpopulations,
so the classical FST definition does not apply. Using our approach, we estimate the kinship matrix
of the 347 TGP Hispanic individuals (PUR: Puerto Rican; CLM: Colombian; PEL: Peruvian; MXL:
Mexican-American; standard kinship in Fig. 4A, our new approach in Fig. 4B). We also estimate
individual-specific admixture proportions of EUR, AMR, and AFR ancestry (Fig. 4C), detailed in Sup-
plementary Information. We confirm previous observations that relatedness in Hispanics varies
along a continuum driven by admixture [53–57]. In particular, since differentiation increases from
AFR to EUR to AMR (Fig. 3), the greatest kinship is between individuals with higher AMR ancestry,
and the lowest kinship is between individuals with higher AFR ancestry (Fig. 4B and C). Standard
kinship estimates are also biased and distorted in Hispanics (Fig. 4A and Fig. S2B) and lack the in-
terpretability of our estimates. Lastly, our approach estimates FST to be 0.233, which is comparable
to fj estimates for MAfrica and Europe in Human Origins (Fig. 3). In contrast, Weir-Cockerham
estimates an unrealistically small FST of 0.0260, which is downwardly biased because it requires
subpopulation labels (we used sampling locations: PUR, CLM, PEL, MXL; see the thin colored bar
outside each kinship matrix in Fig. 4A and B), which erases the considerable substructure within
subpopulations and models the large kinship values between individuals of different subpopulations
as zero. We emphasize that existing FST approaches were designed for and require non-overlapping,
independently evolving subpopulations, so they do not apply to individuals with variable admix-
ture proportions such as Hispanics (as shown here) and African Americans [32, 58]. Our results
are not a critique of those important advances, but a demonstration that modern data requires
new estimators. Our approach overcomes these challenges by estimating kinship without assum-
ing subpopulations (Supplementary Information) and estimating FST from these individual-specific
parameters.

Conclusion. Our analysis of the Human Origins and 1000 Genomes Project datasets reveals a
complex population structure with predominantly non-zero kinship values that vary along a con-
tinuum. Our new approach does not artificially partition individuals into subpopulations, which
enables us to capture population structure with individual-level resolution and for the first time
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Figure 4: Kinship of Hispanics in
1000 Genomes. The colors in the
kinship heatmaps correspond to ϕjk

kinship values for every pair of in-
dividuals j (x-axis) and k (y-axis),
and fj along the diagonal. The
color bars outside kinship matrices
mark the subpopulation (sampling lo-
cation) of every individual, which is
poorly correlated with kinship (panel
B) or admixture proportions (panel
C). A: Biased standard kinship es-
timates. Note the overall downward
bias causes negative estimates (blue),
discontinuities between fj (diagonal)
and ϕjk (off-diagonal), and distor-
tions (e.g., relatively higher kinship
between individuals with higher AFR

ancestry). Displayed ϕjk, fj values
are capped to the 1 and 99 percentiles
of their distribution. B: New kin-
ship estimates reveal a smooth popu-
lation structure without discrete sub-
populations, and much greater kin-
ship values (note the different color
scales for panels A and B). Indi-
viduals were ordered using seriation,
which places low ϕjk away from the
diagonal [59, 60]. C: Admixture
proportions of every individual for
Sub-Saharan African (AFR), European
(EUR), and Native American (AMR) an-
cestry (calculated in Supplementary
Information).

8

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2019. ; https://doi.org/10.1101/653279doi: bioRxiv preprint 

https://doi.org/10.1101/653279
http://creativecommons.org/licenses/by-nd/4.0/


yields accurate population-level kinship and FST estimates for world-wide human SNP data. New
approaches that make minimal assumptions about relatedness and structure are necessary for many
biomedical applications—including genetic association studies in multiethnic panels and admixed
individuals—and our new framework provides the foundation that enables this goal.

Data and Software. This approach is implemented in the R package popkin available online (https:
//cran.r-project.org/package=popkin and https://github.com/StoreyLab/popkin). Public
data and code reproducing these analyses are available at
https://github.com/StoreyLab/human-differentiation-manuscript.
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S1 Human Origins

S1.1 Data Processing

The Human Origins data described in the main text is merged from several sources [41–43] and
processed as follows. Both Original and Pacific in Table S1 refer to the full datasets (public and
non-public portions) described in [41–43] after removing non-autosomal loci and excluding ancient
individuals. The Final dataset described in the main text is the union of individuals in Original
and Pacific and the intersection of loci, after additional filters described below. This dataset was
processed using the plink2 software [61].

Table S1: Overview of Human Origins datasets and filters
Dataset Loci (m) Individuals (n) Sub-subpopulations Subpopulations
Original [42] 616,938 2583 214 11
Pacific [43] 593,124 356 38 2
Final 588,091 2922 243 11

We obtained the full (public and non-public) Human Origins data presented in [41–43] by con-
tacting the authors and agreeing to their usage restrictions. The public subset of these data is
available at https://reich.hms.harvard.edu/datasets. The Original dataset described in [41,
42] was obtained as a single, merged dataset. The Pacific dataset described in [43] was obtained as a
separate dataset. Geographical coordinates for these individuals were obtained from supplementary
data [41–43].

Both Original and Pacific were genotyped on the same microarray platform, but a small subset
of loci present in Original were removed from Pacific due to more stringent quality checks (David
Reich, personal communication). For that reason, we merged Original and Pacific by considering
the union of individuals but the intersection of loci (Table S1).

These datasets include labels that group individuals, called here sub-subpopulations. We removed
individuals from the singleton sub-subpopulations “Ignore_Adygei (relative_of_HGDP01382)”,
Saami_WGA, Wayuu, Ticuna, and Chane, as well as AA (African Americans) since they were the only
non-native sub-subpopulation. Then we removed non-polymorphic loci.

We then edited a few sub-subpopulation labels, as follows. We merged all individuals from the
four subgroups GujaratiA-D into Gujarati. Lastly, the label Southwest_Bougainville was short-
ened to SW_Bougainville in figures. The resulting 243 native sub-subpopulations were manually
grouped for visual aid into 11 subpopulations by taking into account geography, population history,
and our kinship estimates (Fig. S1).
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Figure S1: Grouping of Human Origins sub-subpopulations into K = 11 subpopulations.
Each circle represents a sub-subpopulation, which was placed near its sampling location but nudged
if necessary so circles do not overlap. The color of the circles corresponds to the subpopulation
cluster we assigned. This partition into subpopulation is based on geography, history, language
families, and our kinship estimates.

S1.2 Weights for individuals

The Final dataset has a wide distribution of sub-subpopulation sample sizes, with a median sub-
subpopulation size of 10 individuals, a minimum of 2 (Canary_Islander), and a maximum of 70
(Yoruba).

To calculate our generalized FST estimate, weights were constructed so that every subpopula-
tion is weighed equally, and every sub-subpopulation weighs equally within each subpopulation, as
follows. For every individual j, let nj be the number of individuals in the sub-subpopulation of j,
and mj be the number of sub-subpopulations in the subpopulation of j. The weights used are then
wj = 1

Knjmj
, where K is the number of subpopulations.

S1.3 Comparison of new and existing kinship estimates

A direct comparison of each our new kinship and inbreeding estimates on the real data to those
from the standard kinship estimator are presented in Fig. S2. We found previously that bias in the
standard kinship estimator varies for every pair of individuals depending on their mean kinship to
everybody else in the dataset [2]. This effect is evident in our comparisons, resulting in complex
patterns for the standard kinship estimates that are not linear and are not functions of the true
kinship values (estimated without bias by our new estimator).
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Biases in standard inbreeding coefficients (estimated as f̂ std
j = 2ϕ̂std

jk − 1; second row of Fig. S2)
are considerably more extreme compared to the biases of the kinship values between different indi-
vdiuals (first row of Fig. S2). In particular, standard inbreeding estimates often exceed 1, and in
the case of Hispanics from 1000 Genomes they are negatively correlated with their true values.

S1.4 Admixture analysis

We performed an admixture analysis to complement out analysis of kinship and FST. We used the
Admixture software [62] to infer K = 7 ancestry clusters from the Final dataset (see Table S1).
The admixture proportions can be visualized as stacked barplots on Fig. S3, where individuals
are ordered just as in the kinship matrix of the main text. These seven infered ancestry clusters
correspond approximately with the 11 subpopulations we constructed based on geography and other
criteria (Section S1.1) as follows (Fig. S3):

• Cluster 1 corresponds to SAfrica.

• Cluster 2 corresponds to MAfrica.

• Cluster 3 corresponds to Europe, NAfrica, MiddleEast and Caucasus.

• Cluster 4 corresponds to SAsia.

• Cluster 5 corresponds to EAsia and NAsia.

• Cluster 6 corresponds to Americas.

• Cluster 7 corresponds to Oceania.

We typically see that each ancestry cluster is concentrated in a certain geographical region, and this
ancestry is also present to a lesser extent in neighboring regions and diminishes with geographical
distance from its point of greatest concentration. This again argues for a complex population
structure where relatedness at the population level falls on a continuum rather than taking on
discrete values.

The most notable geographic discontinuities in ancestry were observed for cluster 3, which
is roughly West Eurasian ancestry. Unusually high proportions of this ancestry are observed in
most individuals of two sub-subpopulations of the Kamchatka Peninsula in Russia (Aleut and
Aleut_Tlingit in subpopulation NAsia), as well as the four Americas sub-subpopulations from
Canada (Chipewyan, Cree, Algonquin, and Ojibwa) and Chilote from Chile (Fig. S3). We also
observed an unusual reduction of cluster 5 ancestry in Aleut and Aleut_Tlingit relative to its
closest NAsia sub-subpopulations, and unusually low levels of cluster 6 ancestry in Chipewyan,
Cree, Algonquin, Ojibwa, and Chilote relative to the rest of Americas sub-subpopulations. These
data point to likely recent European admixture in those individuals.
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Figure S2: Comparison of new and existing kinship estimates. The x-axes are estimates
from the new kinship estimator, while the y-axes are estimates from the standard kinship estimator.
Inbreeding coefficients (second row) are compared separately from kinship coefficients (between
different individuals; first row) since the scales are very different for the standard kinship estimator
(but not for the new kinship estimator). Columns: A. Comparison of estimates in the Human
Origins dataset. B. Comparison of estimates in the 1000 Genomes Hispanics dataset.
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Figure S3: Admixture analysis of Human Origins with K = 7. The top row shows the full
set of admixture proportions for the K = 7 infered ancestry clusters and all 11 subpopulations in
Human Origins. All other rows show the same data with greater detail, including labels for every
sub-subpopulation. The seven ancestry clusters were ordered manually to correspond roughly with
distance from southern Africa. S6
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S2 1000 Genomes Project

S2.1 Data processing

The 1000 Genomes Project (TGP) “Phase 3” integrated call data [50, 51] is available at http://www.
internationalgenome.org/data (dated 2013-05-02). We started from the plink2-formatted version
available at https://www.cog-genomics.org/plink/2.0/resources#1kg_phase3. This dataset
was processed using the plink2 software [61]. Our analysis was restricted to autosomal biallelic SNP
loci ascertained in YRI, after removing loci with repeated identifiers (20,417,484 loci). Of these,
14,145,583 loci are polymorphic in Hispanics (PUR, CLM, PEL, MXL; Table S2).

Table S2: Overview of 1000 Genomes (TGP) Hispanics dataset
Dataset Loci (m) Individuals (n) Subpopulations
Full TGP (ascertained in YRI, other locus filters) 20,417,484 2504 26
Hispanics 14,145,583 347 4
Hispanics + Admixture Panels 6,216,713 665 7

S2.2 Admixture analysis

The Admixture analysis of the Hispanic individuals was performed with the addition of individuals
from the YRI, IBS, and CHB subpopulations to help anchor the K = 3 admixture clusters. Only loci
with minor allele frequency ≥ 10% across the 7 subpopulations (6,216,713 loci, see Table S2) were
input to the Admixture software [62]. The cluster associated with YRI was assigned to Sub-Saharan
African (AFR) ancestry, IBS to European (EUR) ancestry, and CHB to Native American (AMR)
ancestry by proxy (Fig. S4). There are no Native American subpopulations in 1000 Genomes, but
the high AMR ancestry predicted for many PEL and MXL individuals suggests that AMR ancestry
is not being underestimated by this procedure.

0.
0

0.
5

1.
0

Individuals

A
nc

es
tr

y 
fr

ac
.

PUR CLM PEL MXL IBS CHB YRI

EUR
AMR
AFR

Figure S4: Ancestry inference in Hispanic individuals. Admixture proportions of every
individual using YRI, IBS, and CHB as reference panels for Sub-Saharan African (AFR), European
(EUR), and Native American (AMR) ancestry, respectively.
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S2.3 Estimation of minimum kinship

The kinship matrix of the Hispanic individuals was estimated as follows. First, the Ajk values were
estimated, and the function seriate from the R package seriation was used with default values
to reorder the columns and rows of this matrix so that the lowest kinship values are pushed away
from the diagonal [59, 60]. We inspected the individuals at the extremes of the resulting ordering,
and found that four individuals with among the highest African admixture proportions also shared
the smallest kinship estimates in the data. The two most extreme clusters, (HG01108, HG01242) and
(HG01551, HG01241), were used to estimate Amin, which yields the final kinship estimates ϕ̂new

jk .
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