
Mutually exclusive autism mutations point to the
circadian clock and PI3K signaling pathways
Hannah Manning1, Brian J. O’Roak2, and Özgün Babur1,2,*
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ABSTRACT

Mutual exclusivity analysis of genomic mutations has proven useful for detecting driver alterations in cancer patient cohorts.
Here we demonstrate, for the first time, that this pattern is also present among de novo mutations in autism spectrum disorder.
We analyzed three large whole genome sequencing studies and identified mutual exclusivity patterns within the most confident
set of autism-related genes, as well as in the circadian clock and PI3K/AKT signaling pathways.

Main text
DNA sequencing studies have identified several genes whose mutations are strongly associated with autism spectrum disorder
(ASD) as well as a greater number of weakly associated genes that require further investigation. While over 1,000 of these
genes are catalogued and classified in the SFARI Gene database1, only 25 rank in the highest-confidence category (rank 1)
(Fig.1a). We need better methods to distinguish functionally impactful genetic mutations from those that are innocuous. More
importantly, we need methods to biologically contextualize these so-called functional mutations and to explain how and when
they contribute to ASD etiology.

A fundamental approach for discovering functional genomic alterations is to focus on genomic regions with high numbers of
variant calls in probands relative to background controls. However, such frequent mutations are rare in complex heterogeneous
disorders such as ASD. In the cancer research field, we and others have employed an approach that is uniquely well-suited to
this scenario: we simultaneously evaluate mutations within multiple genes to test whether their distribution across patients
is non-random2–4. This approach identifies “mutually exclusive” gene groups whose members—while mutated throughout
a disease cohort—are rarely co-mutated within an individual. The mutual exclusivity pattern indicates the existence of
substitutable functional mutations, which often align with known biological pathways. Such a pattern is characteristic of certain
subgroups of cancer-driving mutations and it contrasts with the random distribution of innocuous mutations (Fig. 1c). Here we
show that mutual exclusivity also exists in ASD datasets and that it presents a novel opportunity for detecting and characterizing
functional mutations that, to date, have been indistinguishable from randomly distributed background mutations.

We use three recent whole genome sequencing ASD datasets with de novo mutation calls (Fig 1b): (i) a dataset released by
Yuen et al.5 from the MSSNG project containing 1,625 individuals with ASD and 2 control cases, (ii) a dataset by Turner et
al.6 analyzing 516 ASD probands and 516 unaffected sibling controls from Simon Simplex Collection (SSC), and (iii) a dataset
published by An et al.7 analyzing 1,902 ASD probands and 1,902 unaffected sibling controls from the SSC cohort. Although all
samples in the Turner dataset were re-analyzed within the An dataset, it should be noted that the Turner study’s probands were
specifically selected for their lack of likely gene-disrupting (LGD) de novo mutations or large copy number variants (CNVs).

For proof of principle, we first test whether mutations of SFARI genes are distributed in a mutually exclusive fashion—as
these genes are the most likely to bear functional mutations. To do so, we transform each dataset into a gene by sample mutation
matrix and test for mutual exclusivity of the high-confidence SFARI genes with varying confidence thresholds (see Methods).
We determine that the most confident SFARI gene set (rank 1) has mutually exclusive mutations in both the Yuen dataset
(p = 0.0251) and in the combined Yuen and An dataset (p = 0.0108). This significance diminishes as we expand the gene set
with less-confident tiers (Fig. 2a, Suppl. Tab. 1a-e). Notably, the vast majority (91%) of the gene-associated de novo mutations
in these datasets are intronic. To understand if the observed mutual exclusivity is driven by coding mutations, we perform the
same analysis on the combined Yuen and An datasets (i) using only intronic mutations, and (ii) excluding intronic mutations.
While the intron-only test produces a nearly significant result for the SFARI rank 1 gene set (p = 0.0553, Suppl. Tab. 1f),
excluding intron mutations results in only one overlap but insignificant results (p = 0.6421, Suppl. Tab. 1g). We conclude
that, while intronic mutations may contribute to the observed mutual exclusivity, we lack the abundance of coding mutations
necessary to confirm or deny their contribution.
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Figure 1. Overview of resources in ASD and the concept of mutual exclusivity in cancer. a) Frequency of autism genes
in SFARI database grouped by their assigned ranks (lower rank indicates higher confidence). b) Contents of 3 whole-genome
ASD datasets used in this study. c) An example of mutual exclusivity from the TCGA Glioblastoma cohort wherein CDKN2A,
CDK4 and RB1 genomic alterations exhibit much less overlap than would occur randomly2. In this case, inhibition of either
CDKN2A or RB1, or activation of CDK4 is enough to unlock the cell cycle, and a second gene alteration in this group is
unnecessary for disease progression.

Next, we test biological pathways from the Reactome knowledgebase8 to identify processes harboring mutually exclusive
mutations. Reactome contains 1,576 pathways of various sizes. While exhaustively testing every pathway would not produce
significant results, limiting the search space to the most mutated 50 pathways identifies the Circadian Clock pathway within
the Yuen dataset (p = 0.0006, FDR = 0.03, Suppl. Tab. 2), and we find that the An dataset independently validates this result
(p = 0.0371, Suppl. Tab. 3). To identify more pathways, we again look to the combined Yuen and An datasets, but here we find
only the Circadian Clock pathway (Suppl. Tab. 4). Interestingly, using the combined Yuen and Turner dataset identifies the
Circadian Clock as well as two additional pathways—both of which are related to PI3K signaling (FDR = 0.0817, Fig. 2b,c,d,
Suppl. Tab. 5). It is possible that the sample selection criteria in the Turner dataset has, for reasons not intended nor yet
understood, enriched it for functional non-coding mutations in PI3K signaling.

In the combined Yuen and An dataset, the Circadian Clock pathway has 53 mutated member genes—15 of which are
catalogued by SFARI (although none of them are ranked 1, Fig. 2c, Suppl. Tab. 6, Suppl. Fig. 1). None of the member gene
contributions to the observed exclusivity are individually significant. In the combined Yuen and Turner dataset, the PI3K/AKT
Signaling pathway has 73 mutated member genes—11 of which are catalogued by SFARI (again, none of them are ranked 1,
Fig. 2d, Suppl. Tab. 7, Suppl. Fig. 2). For this pathway, the member gene ERBB4, which is of low-confidence among SFARI
genes (rank 5), has a significant contribution to the mutual exclusivity pattern (p = 0.0005, FDR = 0.0365). These 2 significant
pathways are totally disjoint in terms of their mutated members, while the other PI3K pathway—Constitutive Signaling by
Aberrant PI3K in Cancer—is a subset of the second pathway.

We perform three additional analyses to further validate our findings. First, we interrogate the reason for the observed
increase in PI3K/AKT Signaling pathway mutual exclusivity brought about by replacing the An dataset with the smaller Turner
dataset. Specifically, we ask whether Turner et al.’s unique sample selection is related to this difference rather than it being
entirely attributable to general differences in data generation and processing. To test this, we calculate mutual exclusivity by
using the combined Yuen and An dataset, but this time limiting the An samples to those 516 ASD probands that overlap with
Turner samples. We find that, while p-values slightly deteriorate, the Circadian Clock and PI3K/AKT Signaling pathways are
still significant in these results (p = 0.0001 and p = 0.0028, respectively, FDR = 0.07, Suppl. Tab. 8), so we conclude that
sample selection has a major role in the effect, and it cannot be solely explained by data processing differences. Second, we
assess the results for association with the ASD phenotype by replacing the ASD individuals with their neurotypical siblings
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Figure 2. Results and validation a) Mutual exclusivity test results on SFARI gene groups. The most confident group has
mutually exclusive alterations. “Combined” refers to the merged Yuen and An dataset. b) Significant results on Reactome
pathways using merged Yuen and Turner dataset. c) The top 20 member genes of the Circadian Clock pathway, ordered by the
significance of their individual contribution to the mutual exclusivity pattern observed in the merged Yuen and An dataset, are
listed. The “Rank” column shows the classification of the gene in the SFARI Gene database (empty for non-SFARI genes). The
“Mut#” column shows the number of samples in which the gene is mutated at least once. d) The most significant 20 members of
the PI3K/AKT signaling pathway in the merged Yuen and Turner dataset, arranged as in c. e) To verify the source of the mutual
exclusivity signal, we repeat our analyses on other combinations of the WGS datasets. The first 3 columns use datasets
individually while the remaining columns use combinations of the Yuen dataset with ASD or control samples from the Turner
or An datasets. P-values considered significant given FDR cutoff are printed in bold. f) Genes in the Circadian Clock pathway
are more likely to be mutated in ASD relative to the unaffected sibling controls. First x genes used are along the x axis, where
the genes are ordered by the significance of their individual contribution to mutual exclusivity. Here, mutual exclusivity was
tested in the Yuen dataset and mutational bias toward Autism was assessed in the An dataset.

from the Turner and An datasets (Fig. 2e, compare columns 4 versus 5 and 6 versus 7, Suppl. Tab. 1h,1i,9,10). Doing so
deteriorates the p-values such that we have no significant results with either combination of datasets. We conclude that the
observed mutual exclusivity is associated with the ASD phenotype. Third, we test whether the genes in the Circadian Clock
pathway are more likely to be mutated in ASD than in unaffected controls. A binomial test on the An dataset using all Circadian
Clock pathway members does not yield a significant result (p = 0.0947). However, if we sort the pathway members by their
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individual mutual exclusivity contributions (Suppl. Tab. 11), we find that the first 11 genes, taken together, are significantly
biased toward mutation in ASD in the An dataset (p = 0.0218, Fig. 2f). In this analysis, we use the Yuen dataset alone
for generating individual mutual exclusivity scores so that bias calculations and mutual exclusivity calculations are done on
independent datasets, thereby preventing possible confounding effects.

PI3K signaling is already popularly studied in autism, as abnormalities in this pathway have been shown to promote
the ASD phenotype in multiple reports9, 10. The circadian clock pathway, however, is relatively less studied at the genetic
level, despite the well-documented prevalence of circadian rhythm disruptions within individuals with ASD11, and higher
polymorphism of circadian clock related genes in ASD12. While it is still unclear if circadian rhythm abnormalities contribute
to or are a by-product of ASD, our results bolster the former hypothesis and nominate the circadian clock as a key process
whose alteration promotes the ASD phenotype. Here we demonstrate that mutual exclusivity analysis of de novo mutations is a
powerful methodology for identification and characterization of functional mutations in ASD, and that it will play an important
role in future research on ASD and other complex, multi-factorial disorders of unclear origins.

Methods

Resources
We downloaded the SFARI Gene database from https://gene.sfari.org//wp-content/themes/sfari-gene/
utilities/download-csv.php?api-endpoint=genes on March 29, 2019, and provide this copy in the supple-
mentary data.

We downloaded Reactome pathways as gene sets from the Pathway Commons13 database at https://www.pathwaycommons.
org/archives/PC2/v11/PathwayCommons11.reactome.hgnc.gmt.gz on March 29, 2019.

We downloaded the Yuen and Turner datasets from denovo-db14 version 1.6.1 at http://denovo-db.gs.washington.
edu/denovo-db.non-ssc-samples.variants.tsv.gz and http://denovo-db.gs.washington.edu/
denovo-db.ssc-samples.variants.tsv.gz on March 26, 2019. We limited the Yuen dataset to the samples listed
in their supplementary table 3 and ignored mutation calls coming from other tables that are not derived from whole genome
sequencing. We downloaded the An dataset from their supplementary table 2. For each of the datasets and in every analysis, we
ignored multiple mutations of the same gene in the same sample (i.e. we only considered whether the gene is mutated at least
once; additional mutations on the gene in the same sample were disregarded).

Detection of mutual exclusivity
Our mutual exclusivity detection approach is a hybrid of two previously published methods: MEMo3 and Mutex2. For a given
mutation matrix and a gene set of interest, we first calculate that gene set’s “overlap” in the matrix (Fig. 3). Within the gene
set, we define each sample’s overlap as one less than the number of mutated genes from the gene set in that sample (or 0 if
none are present). Summation of this number across all samples produces the overlap value for the gene set within the matrix.
Then, to produce a p-value for mutual exclusivity, we generate a null background distribution by shuffling the entire mutation
matrix 10,000 times, preserving the number of mutations on each gene and on each sample in each shuffle, and test whether
this produces the same or reduced overlap for the gene set. In addition to computing the significance for the gene set, we seek
to identify the contribution of individual members. We calculate a p-value for each member gene based on its overlap with all
other members collectively, using the same shuffled matrices as background.
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Figure 3. Demonstration of the mutual exclusivity detection method on a hypothetical dataset where a group—composed of
genes A, B and C—is evaluated. Dark rectangles indicate that the gene is mutated in the corresponding sample (i.e. column).
Red box borders highlight examples of mutations that exhibit “overlap”, i.e. are co-mutated with another gene from the group
of interest.

To generate the null background distribution, we employ a degree-preserving randomization method previously applied
in MEMo and originally adapted from the switching algorithm described in Milo et al.15. The algorithm preserves gene and
sample mutation counts in the matrix during shuffling, as described below:
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Define the mutation matrix as a bipartite graph from G (genes) to S (samples). Each edge is represented with (gi→s j)
where gi∈G and s j∈S. E is the total number of edges, and Q is a constant. For each of our 10,000 shuffle iterations:

Do Q times
Do E times

Select two existing random edges (gi→s j) and (gk→sl)
If there exist no such edges (gi→sl) and (gk→s j)

Then replace (gi→s j) and (gk→sl) with (gi→sl) and (gk→s j)

Although there is no theoretical optimal value for Q, Milo et al. demonstrate that Q = 100 is a practical value for a broad
variety of graphs. We follow this precedent and set Q to 100.

We extend MEMo’s group score with the idea of calculating individual gene scores—an idea we previously used in the
Mutex approach—which enabled us to detect ERBB4 individually and to generate ranked gene lists from the resulting gene sets.

We use the Benjamini-Hochberg procedure for false discovery rate (FDR) estimation for testing the most-mutated 50
Reactome pathways. We considered 0.1 as FDR threshold for significance. In the Supplementary Tables 2-5,8-10, a pathway’s
mutation count is equal to the sum of the “Coverage” and “Overlap” columns.

Calculation of mutational bias toward autism
In the An dataset, there are a total of 73,624 mutations in probands and 72,576 mutations in the control samples. For a randomly
selected mutation, the probability of belonging to a control sample is:

p = 72576
73624+72576 = 0.496

Using this probability, we define a Binomial distribution B(n, p) where n is the total number of mutations for a given gene
or a group of genes. On the Binomial distribution, we calculate a one-sided p-value for the number of mutations in the control
samples to be less than or equal to the observed value.

Software
We have implemented the method in Java and made it available via GitHub
(https://github.com/PathwayAndDataAnalysis/mutex-de-novo). We also provide a Snakemake16 pipeline
for automated reproduction of all results reported in this manuscript, which can be run sequentially on a single machine or in
parallel across a distributed system, according to the user’s resources.
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