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Abstract 

The ability to recognize and discriminate complex surface textures through touch is essential to the 

survival of living beings, including humans. Most studies of tactile texture perception have emphasized 

perceptual impacts of lower-order statistical structures of stimulus surfaces that can be described in 

terms of amplitude spectra or spatial-frequency/orientation subband histograms (e.g., root mean 

squares of carving depth and inter-ridge distance). However, real-world surfaces we encounter in 

everyday life differ also in higher-order statistics that appear in phase spectra or joint subband 

histograms. Though human vision has sensitivity to higher-order statistics, and some studies have 

revealed similarities between visual and tactile information processing, it remains obscure whether 

human touch has sensitivity to higher-order statistics. Here we show that patterns different from each 

other in higher-order statistics, which can be easily distinguished by vision, cannot be distinguished 

by touch. We 3D-printed textured surfaces transcribed from different ‘photos’ of natural scenes such 

as stones and leaves. The textures look sufficiently different, and the maximum carving depth (2 mm) 

was well above the haptic detection threshold. Nevertheless, observers (n=10) could not accurately 

discriminate some texture pairs. Analysis of these stimuli showed that the more similar the amplitude 

spectrum was, the more difficult the discrimination became, suggesting a hypothesis that the high-

order statistics have minor effects on tactile texture discrimination. We directly tested this hypothesis 

by matching the subband histogram of each texture using a texture synthesis algorithm. Haptic 

discrimination of these textures was found to be nearly impossible, although visual discrimination 

remained feasible due to differences in higher-order statistics. These findings suggest that human 

tactile texture perception qualitatively differs from visual texture perception with regard to insensitivity 

to higher-order statistical differences. 

 

Significance 

Humans sense spatial patterns in the surrounding world through their eyes and hands. Researchers 

have revealed a detailed hierarchical processing of image features for visual texture perception, while 

that for haptic texture perception remains obscure. One big bottleneck in tactile research has been 

difficulty in controlling stimulus patterns, but this issue is being resolved by recent technological 

progress. Here we move a step ahead by using a high-resolution 3D printer. We invented textured 

surfaces that were 3D-printed from visual images, and controlled low- and high-order statistics of the 

surfaces by changing features of the original images. Behavioural experiments showed that human 

observers have sensitivity to lower-order statistics, which is in line with previous studies, but we could 

not observe any positive evidence of sensitivity to higher-order statistics. Although recent studies have 

emphasized the similarity between touch to vision with regard to spatiotemporal processing, the 

present findings indicate a qualitative difference between the two modalities. That is, touch differs 

from vision not only in spatio-temporal resolution but also in (in)sensitivity to high-level image 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/653550doi: bioRxiv preprint 

https://doi.org/10.1101/653550
http://creativecommons.org/licenses/by-nd/4.0/


statistics. Our findings support the view that the two modalities sense spatial information using 

different and complementary strategies. 

 

 

Introduction 

Most objects in the world are covered by surfaces with a variety of textures. By sensing surface 

textures, we, and many other animals, are able to specify distinct surface areas, identify materials, and 

estimate surface conditions. Vision and touch are the two main sensory modalities contributing to 

surface texture perception. Here we analyze tactile texture processing by referring to recent theories 

of visual texture perception.  

Early studies on visual texture segregation revealed that the condition for two adjacent 

textures to be perceptually segregated is the presence of significant differences in the histogram of 

local orientation and spatial frequency (Gabor wavelets) (Julesz, 1962; Bergen & Adelson, 1988), 

which is presumably represented by the response distribution of V1 neurons. Recent studies examining 

the perceptual discrimination of natural textures further showed that two textures are perceptually 

indistinguishable (become a metameric pair) in peripheral vision when they are matched not only in 

terms of V1 image statistics, but also in terms of the joint statistics of V1 responses, to which V2 and 

the higher cortical areas are responsive (Freeman & Simoncelli, 2011; Freeman et al., 2013; Ziemba 

et al., 2016). Human observers can visually discriminate V2 metamer textures (with identical Gabor 

and joint statistics), but only when using elaborated attentive spatial processing by central vision 

(Freeman et al., 2013; Rosenholtz, 2016).  

In this paper, we divide image statistics into two levels, with the boundary to separate the 

lower and higher orders being set between Gabor statistics (Julesz, 1962) (level #2 in Fig. 1) and joint 

statistics (Freeman & Simoncelli, 2011) (level #3 in Fig. 1). Approximately speaking, the former 

statistics is associated with the Fourie amplitude spectrum and with the second-order statistics in the 

terminology of Julesz (1962, see also Klein & Tyler, 1986; Hansen & Hess, 2006), while the latter 

statistics is associated with the phase spectrum. As noted above, visual texture perception is sensitive 

to higher-order statistics, in addition to lower-order statistics.  

The somatosensory system has a spatial-information processing stream analogous to that of 

the visual system. First, a spatiotemporal pattern of skin deformation is sampled by mechanoreceptors. 

The signals from the mechanoreceptors are then pooled, suppressed by surrounds, and sent to the 

cortex via peripheral afferent neurons. Some peripheral afferents may be able to carry some orientation 

information (Delhaye et al., 2018; Pruszynski & Johansson, 2014), but orientation selectivity is much 

more common and robust in the primary somatosensory cortex (S1, area 3b) (e.g., Bensmaia et al., 

2008). The tactile receptive field of S1 neurons can be approximated by Gabor functions (DiCarlo et 

al., 1998, 2000), as are the visual receptive field of V1 neurons. Somatosensory processing becomes 
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more elaborate beyond S1 (e.g., Thakur et al., 2006). For example, some neurons in S2 have selectivity 

for higher-order shape features, such as the curvature of line stimuli, similar to that of visual neurons 

in V4 (Yau et al., 2009). 

Here we investigated the performance of the tactile system in discriminating a variety of 

texture patterns (artificial textures made of numerous Gabors, and visual natural textures). All the 

patterns were easy to discriminate by vision. Through the analysis of the tactile discrimination 

performance, we considered what sorts of texture differences the tactile system is sensitive to, and, 

more specifically, whether it can utilize higher-order image statistics (at or beyond level #3 in Fig. 1) 

as does visual texture perception. There is little psychophysical evidence that tactile texture 

discrimination is sensitive to higher-order image statistics. The major spatial property of tactile texture 

perception intensively investigated in the past is roughness (Bensmaia, 2009; Klatzky et al., 2013; 

Hollins et al., 1993, 2000; Tiest, 2010; Tiest and Kapers, 2006). (Other properties, such as hardness 

and stickiness, are not purely spatial.) The stimulus spatial parameters that are known to affect 

roughness, such as the spatial period and inter-ridge spacing (e.g. Goodwin et al., 1989; Lederman, 

1983; Lederman et al., 1972; Sathian et al., 1989, Taylor and Lederman, 1975), can be described in 

terms of lower-order image statistics. However, the neural responses to shapes/curvatures (Yau et al., 

2009, 2013) suggest potential sensitivity to joint statistics. 

Most previous tactile texture studies used relatively simple artificial stimuli (e.g., dots, 

gratings (Bensmaia and Hollins, 2005; Goodwin et al., 1989; Hollins and Bensmaia, 2007; Lederman, 

1983; Lederman and Taylor, 1972; Sathian et al., 1989, Taylor and Lederman, 1975)) or went with 

daily natural surfaces (e.g., fabric, wood, metal (Weber et al. 2013; Yokosaka et al. 2017)). With these 

stimuli, it is not easy to examine the contribution of higher-order image statistics separately from those 

of lower-order ones. Here we overcame this limitation using a high-resolution 3D printer. By carving 

the surface of a sample material with the printer, we transcribed complex visual patterns including 

natural image textures into patterns of surface depth modulation. By manipulating the image statistics 

of the printed patterns, we were able examined whether tactile texture perception can utilize higher-

order texture statistics.  
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Fig. 1. Hypothetical diagram of hierarchical information processing in touch, inspired by visual 

processing. 

 

Results 

We evaluated human tactile accuracy in discriminating a pair of 3D-printed textures using 

an ABX task (Kingdom & Prins, 2010). After passively scanning three textures, A, B, and X in order, 

with the fingertip of the right index finger, the observer had to judge whether X was a 180°-rotated 

version of A or B (Fig. 2B). Since X was rotated, observers could not perform the task based on simple 

pattern matching. The maximum depth of the surface texture was approximately 2 mm, which was 

well above the minimum detectable depth magnitude (Bolanowski et al., 1988; Gescheider et al., 2001, 

2002). Most previous studies on tactile texture perception asked observers to judge a specific 

roughness feature (e.g., “rate the roughness from 0 to 9” or “report which one was rougher”). In 

contrast, our method allowed us to account for any perceptual feature, including roughness, that the 

observers could use to discriminate stimuli. Furthermore, it enabled us to find two physically different 

textures that are ‘metameric’ (perceptually indiscriminable in any way).  

In the first series of experiments, discrimination performance was measured for three sets of 

five textures (Fig. 2A). The first two sets were spatially bandpass random noise patterns, each made 

of numerous Gabor components. The variables across textures were the center frequency (CF) for the 

first set and the bandwidth (BW) for the second set. The last set consisted of five natural visual textures 

(hereafter referred to as natural scenes (NS)).  

The discrimination performance of ten observers obtained with the CF-variable set was very 

good (Fig. 2C, top panel): a one-octave difference in the CF was sufficient for nearly perfect 

discrimination, except for the high-frequency pair (CF4 and CF5). The results are consistent with 

previous findings obtained with analogous conditions (e.g., Bensmaia, 2009; Klatzky et al., 2013; Tiest, 

2010). Varying the BW, on the other hand, is a novel approach in the quest for haptic sensitive stimulus 
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variables. While discrimination accuracy of a one-octave difference in BW was 0.66 at best, that of a 

three-octave difference attained 0.95 (Fig. 2C, middle panel). Variations in the CF and BW are changes 

in lower-order image statistics (visible in the amplitude spectrum). The results therefore indicate that 

the tactile texture perception is sensitive to differences in low-order image statistics, although the 

tactile discrimination was not as good as the visual one (which is nearly perfect for the gray-level 

version of the stimuli).  

For the third set, we printed textured surfaces transcribed from visual images of natural 

textures (i.e., irregular patterns of stones, leaves, actiniae, etc. Fig. 2A). We matched across textures 

the average and variance of the intensity (carving depth), while leaving the other statistical differences 

intact. Visually, five textures had very different spatial patterns. Nevertheless, the ten observers could 

barely discriminate most of the pairs by touch (Fig. 2C, bottom). Anecdotal reports from our observers 

suggest that the texture pattern (i.e., how the stimuli would look) was hard to guess and 

indistinguishable from other stimuli. The exception was NS3, which they described as somewhat 

‘spikier’ than the rest. In summary, the same observers who could discriminate CF and BW stimuli 

could not discriminate most of the NS stimuli. Supplemental Fig. S1 shows the multi-dimensional 

scaling (MDS) of additional pairwise similarity judgments with CF, BW, and NS stimuli. In agreement 

with the results of the main discrimination experiment, NS stimuli are clustered in Fig. S1. 
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Fig. 2 ABX texture discrimination task for 3D-printed stimuli. (A) Visual images (256×256 pixels) 

were converted into 3D carvings (40×40×10-12 mm) by taking intensity values as height maps. The 

intensity level (the mean and standard deviation) was matched across images. The bottom panels are 

log amplitude spectra of NS images (i.e., the amplitude of each spatial frequency component in the 

Fourier spectrum, averaged across orientations. See also Fig. 4A for details.) (B) Time course of the 

ABX experiment. Passive scan condition. Observers placed their index finger on the first resting 

cushion and the linear stage started to move at 40 mm/sec. After the finger contacted the tactile 

stimulus and swiped for one second, the stage stopped on the next resting cushion. This was repeated 

three times, once each for an A, B and X stimulus, with X a rotated version of A or B. Observers were 

asked to report verbally whether the third stimulus was the first or second one. No feedback signal 

was provided. (C) Results. Discrimination performance (proportion correct) for each stimulus pair is 

shown by numbers and colors in a matrix format. The 95% confidence interval of the chance 

performance is 0.42-0.57 and that for 99.5% is 0.38-0.62 

 

 Since haptic performance is known to be significantly affected by the touching mode, we 

repeated our ABX experiment for NS stimuli with three other touching modes. In the main experiment, 
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we used the passive scan mode to match the speed and trajectory of scanning across different stimuli 

and different observers as much as possible. On the other hand, active scanning, in which observers 

can freely move their finger to explore the stimulus surface, may be able to provide richer spatial 

information than passive scanning (Kenshalo, 1978; Paillard et al., 1978). We therefore conducted the 

ABX experiment with the active scan mode. While the performance was slightly improved (average 

probability of 0.70 for passive scan; 0.76 for active scan, Fig. 3 left panel), the pattern of the results 

was similar to that in the passive scan condition. This is in good agreement with previous findings that 

tactile texture perception, including that of roughness and orientation, is relatively insensitive to 

changes in the exploration speed (Johnson and Yoshioka, 2002; Taylor and Lederman, 1975) and 

exploration method (Heller, 1989; Lamb, 1983; Olczak et al., 2018; Verrillo et al., 1999; Yoshioka et 

al., 2011). The other two modes were concerned with possible summation effects. Since the tactile 

system shows drastic spatial and temporal summation particularly with sub-threshold stimuli 

(Gescheider et al., 1999, 2005), texture discrimination performance might be seriously violated for 

complex textures like NS that give rapidly changing input in space and time. To reduce potentially 

negative effects of temporal/spatial summation on texture perception, we tested the static touch mode, 

where temporal information was limited, and the vibration mode, where spatial information was 

limited. In neither case did performance improve (Fig. 3, middle and right panels). In summary, the 

results indicate that some NS pairs are metameric regardless of the mode of touching. These trends 

across touching modes were the same for CF and BW stimuli (See Supplemental Fig. S2). 

 

 

Fig. 3. Texture discrimination for NS stimuli with the other touching modes. In the active scan 

condition, observers could freely explore the stimuli for one second with their index finger. In the 

static touch condition, observers put their finger on the stimuli for one second. They were not allowed 

to tangentially move/scan their finger over the stimuli. In the vibration condition, observers’ finger 

was vibrated by a piezo-electric actuator (MU120, MESS-TEK, Japan). The vibration pattern was one 

of the texture height profiles swept along a horizontal line. The observers could not discriminate some 

pairs of NS stimuli regardless of the touching mode. 
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 The results obtained with the CF and BW stimuli indicate that tactile texture perception is 

sensitive to (some sorts of) differences in the amplitude spectrum or in the lower-order statistics. We 

next consider how well the discrimination performance for the NS stimuli can be explained by the 

differences in the amplitude spectrum. It is known that natural visual textures tend to have the 

amplitude spectrum falling with the spatial frequency by a factor of f-a (Field, 1987). Our NS stimuli 

also have such amplitude spectra, which are similar to one another (Fig. 2A), although the slope of the 

spectrum differs for some textures. To analyze whether the similarity of amplitude spectra can explain 

the discrimination performance of tactile textures, we first integrated the amplitude differences 

between the paired textures over frequency (Fig. 4A) and then regressed the net amplitude difference 

to the discrimination performance by using a logistic regression analysis for all CF, BW, and NS 

conditions. Figure 4B shows the estimated performance plotted against the human performance. 

Although we did not consider orientation, the correlation was fairly high: R2=0.65 and 0.81 for the 

overall correlation and NS condition correlation, respectively. That is, the more similar the amplitude 

spectrum was, the more difficult the tactile texture discrimination became.  

 

 

Fig. 4. The discrimination performance for the natural visual texture can be explained by the amplitude 

difference. (A) Calculation of the amplitude difference. Step1 [#1]: The amplitude spectrum of each 

texture image is calculated through a 2D fast Fourier transformation (FFT). Step 2 [#2]: The amplitude 

of each spatial frequency component is averaged across different orientations on a log scale. Step 3 

[#3]: The amplitude spectrum is sampled at constant intervals. Step 4 [#4]: The differences between 

the amplitude spectra of paired textures are used to explain the discrimination performance in Fig. 2. 

(B) Correlation between the human discrimination performance in the passive scan condition and the 

performance estimated by logistic regression analysis based on amplitude differences. 

 

The results obtained so far can be ascribed solely to tactile texture processing sensitive to 

lower-order statistics, suggesting a hypothesis that tactile texture processing is unable to use higher-
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order statistics (e.g., joint Gabor statistics, phase spectra), to which visual texture perception is 

sensitive. This hypothesis predicts that textures with identical lower-order (subband) statistics are 

haptically indistinguishable (i.e., become a metameric pair) even if they differ from one another in the 

higher-order statistics. To test this, we made five images with identical subband histograms (Fig. 5A, 

bottom panels M1-M5) by matching the subband histogram of four NS images (NS2-NS5) to that of 

NS1 (based on Heeger and Bergen, 1995, see Methods). Visually, the matched images looked different 

from one another, and they were similar to the original images with regard to global patterning. 

However, haptic discrimination performance was nearly chance, 0.53 on average, and 0.61 at best. 

The result of the MDS analysis of the pairwise similarity ratings also supported this conclusion: NS 

stimuli are similar but somehow distributed in perceptual space, while they are concentrated around 

the base stimulus (NS1) when their histograms are matched (See Supplemental Fig. S3). 

 

Fig. 5. Original and matched NS stimuli. (A) Original NS images and histogram-matched NS images. 

Matched stimuli (M1-5) were based on different original images (NS/O1-5) but shared the subband 

histogram of NS1. (B) Results. Observers who could discriminate a few pairs of original NS stimuli 

could not discriminate NS-matched stimuli. 

 

General discussion 

In this paper, our intent is to shed light on the similarities and differences in spatial-information 

processing mechanisms between vision and touch, the two major sensory modalities to perceive 
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surface textures. The main question is whether these mechanisms are qualitatively similar in 

processing or whether they differ according to the accessible levels of stimulus features/statistics. We 

directly examined whether human observers can detect differences in higher-order texture statistics of 

3D-printed stimuli, whose height patterns were manipulated with regard to image statistics. The key 

finding was that observers were unable to discriminate surface textures as long as the textures shared 

the same lower-order statistics (e.g., subband histograms). Our tentative understanding here is that the 

tactile spatial pattern processor can take into account some statistics related to the local amplitude 

spectrum (level #1 and #2 in Fig. 1), including the center frequency and bandwidth, but not those 

related to the phase spectrum or joint statistics (at level #3 in Fig. 1). There are qualitative differences 

in spatial-information processing between vision and touch.  

 

Simulation of skin deformation and neural activity in periphery 

We wonder whether the observed insensitivity to the higher-order statistics reflects processing 

characteristics of the central nervous system or simple information loss in the periphery, i.e., the 

elasticity of the skin and noisy sparse sampling by mechanoreceptors. To make our best guess of how 

the difference in spatial texture information is represented in peripheral neural activation, we simulated 

responses of tactile afferents using the computational model ‘TouchSim’ (Saal et al., 2017). The beauty 

of this model is that it can provide the responses of hundreds of distributed afferents on a millisecond 

scale, though it works under some simplified assumptions (e.g., it does not incorporate lateral 

sliding/forces). Using this model, we examined whether sufficient information for texture 

discrimination remains at peripheral stages.  

We simulated the spike timings and spatial distributions of the afferents while the index 

finger pad scanned our subband-matched NS stimuli. We calculated the firing similarity across stimuli 

in terms of a spike distance metric (Victor and Purpura, 1997), following the original ‘TouchSim’ study 

(Saal et al., 2017). We found that the firing similarities between pairs of identical texture stimuli with 

independent neural noise were always higher than those between pairs comprising two different 

stimuli, regardless of the type of afferent (Fig. 6). This suggests that an ideal central encoder of the 

peripheral signals, which could fully utilize information including higher-order statistics, would be 

able to discriminate subband-matched stimulus pairs. Therefore, our finding of insensitivity to the 

higher-order statistics likely reflects processing characteristics of the central nervous system rather 

than information loss in the periphery mechanisms. It should be noted that unlike in the psychophysical 

ABX task, we did not rotate the texture when comparing the simulated neural responses between 

identical stimuli. This is because the firing similarity measure we used does not explicitly compute the 

similarity in higher-order statistics represented in terms of the relationship between neighboring 

afferent firings.  
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Fig. 6. Similarity of neural firing patterns when the subband-matched stimuli were touched. The 

responses of tactile fibers of the index finger pad to NS-matched stimuli were simulated by the 

computational model ‘TouchSim’ (Saal et al., 2017). The similarity of simulated neural firing patterns 

was evaluated in terms of the Victor distance (Victor and Purpura, 1997). The distance between 

simulated firings was smaller (lighter colour) when the same stimulus (diagonal patches) was scanned 

than when two different stimuli were scanned (darker colour). See detail in method. 

 

Relationship with roughness perception 

Roughness has been explored extensively and is recognized as a major feature in haptic texture 

perception (Bensmaia, 2009; Klatzky et al., 2013; Hollins et al., 1993, 2000; Tiest, 2010; Tiest and 

Kappers, 2006). Past studies have reported a variety of properties of roughness perception, including 

remarkable discrimination performance—we can detect even nanometre-scale differences (Skedung 

et al., 2013). Concerning the relationship with the current study, roughness perception can be ascribed 

to the tactile responses to lower-feature statistics, such as density or the deviation of surface elements 

(#1, #2 in Fig.1). As far as we are aware, the known characteristics of texture roughness perception do 

not conflict with our hypothesis that the tactile system is insensitive to higher-order feature statistics.  

Compared with the texture patterns used in previous roughness studies, the ones used in the current 

study were much more complex. In addition, our observers could use texture differences in dimensions 

other than roughness to accomplish the ABX discrimination task. However, we do not exclude a 

possibility that they mainly relied on what previous studies called roughness in performing the 

discrimination task. We therefore considered whether the current results can be accounted for by 

previously proposed roughness indexes. Since the carving depth (the mean and standard deviation) 

was normalized and equated across our NS stimuli, industrial indexes of surface roughness, such as 

the arithmetical mean height of a surface (Ra) and maximum height of a surface (Rz), cannot explain 

the discrimination performance for the NS stimuli (Kuroki et al., 2018). Other types or roughness 

indexes are based on neural responses. We computed two neural roughness indexes—the mean 

impulse rate of high-frequency PC afferents (Bensmaia & Hollins, 2005; Hollins & Bensmaia, 2007) 

and spatial variation of low-frequency SA afferents (Connor et al., 1990, 1992)—from the output of 
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‘TouchSim’. Note that these indexes do not take into account higher-order statistics, so we did rotate 

the texture and add spatial jitter derived from contact position variability when repeating the simulated 

neural responses. We found the simulated indexes to indicate similar or even higher discrimination 

performance for NS-original and NS-matched stimuli compared to the observed behavioural 

performance (See Supplemental Fig. S4). The predictions of these indexes might be improved by 

adjustment of noise parameters. Further investigation is warranted to determine how well these or 

other neural roughness indexes can explain tactile perception of complex texture patterns like the ones 

we introduced. 

 

Relationship with shape perception 

Although our findings indicate that tactile texture perception is insensitive to higher-order statistics, 

they do not exclude a possibility that tactile shape perception has sensitivity to some higher-order 

features. Tactile shape perception shows high sensitivity to stimulus orientation. Edge orientation 

acuity was reported to be around 20 degrees (Bensmaia et al., 2008; Olczak et al., 2018) or even 

smaller (Pruszynski et al., 2018). Furthermore, human touch can discriminate more complex spatial 

patterns such as letters of the alphabet. The performance of tactile letter recognition is reported to be 

fairly high and positively correlated with its visual counterpart (Craig, 1979). One may interpret this 

result to suggest the ability of the tactile shape perception to discriminate some spatial phase 

differences. Tactile shape perception and tactile texture perception have been studied nearly 

independently by using different types of stimuli. Shape perception has been tested with simple/local 

stimuli such as raised simple line/curvature patterns, while texture perception has been tested with 

complex/global stimuli, including natural textures. While shape perception focuses on a specific 

location in the stimulus, texture perception should grasp the holistic statistical nature of the field 

under crowding conditions as in the current experiments. We therefore do not assume that texture 

perception can be explained by the same mechanism as that for shape perception. Indeed, shape 

processing and texture processing may be segregated in somatosensory cortex. Cutaneous inputs are 

initially processed in primary somatosensory cortex — starting from Brodmann areas 3b to 1 and 2 

— and are known to be hierarchically processed (See review for Delhaye et al., 2018; Sathian, 

2016). Neurons in areas 3b and 1 show both roughness and orientation tuning, while those in higher 

areas such as area 2 (Fitzgerald et al., 2006; Yau et al., 2013) and parietal opercular cortex (Yau et al., 

2009) show sensitivity to higher-order shape features (i.e., particular curvatures). Lesions in parietal 

opercular cortex are known to impair shape recognition but not roughness recognition (Roland, 

1987), suggesting independence of these two processes. At present, we have no evidence of the 

contribution of a neural mechanism sensitive to higher-order features (curvature) to surface texture 

perception. 
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Future directions 

 To analyze the sensitivity of the tactile system to image statistics using a method similar to 

that used in vision research, we transcribed gray-scale visual images into surface depth maps. Due to 

the difference in the sensing process, however, we can only assume a rough correspondence of the 

sensor response pattern between the two modalities. To overcome this limitation, we used ‘TouchSim’ 

(Saal et al., 2017) to evaluate our hypothesis in this study, but more direct evaluation would be 

necessary in future. 

Overall reversal of the signal sign (contrast polarity) affects some low-level statistics (e.g., 

the intensity histogram), but not the local amplitude spectrum. It is known that visual texture 

perception is sensitive to the sign of the input signals — it responds to positive (white) and negative 

(black) elements in an asymmetric way (e.g., Chubb et al., 2007). The signal sign may have even have 

stronger effects on our tactile stimuli, since a sign reversal swaps convex elements with concave ones, 

thereby introducing a large change in skin deformation patterns in particular for texture patterns 

consisting mainly of pin or hole elements. Indeed, we found that human observers could discriminate 

the original and the sign-reversal version for our NS stimuli (See Supplemental Fig. S5). This finding 

is obviously inconsistent with the idea that tactile texture discriminability is predicted by the local 

amplitude spectrum of the stimulus depth map. However, it may not be inconsistent with our basic 

hypothesis that low-level image statistics as represented by population activation in the primary 

somatosensory cortex is sufficient to predict tactile texture discriminability. The problem here is that 

precipitous height patterns are not precisely transferred to sensor response patterns due to the 

intermediate finger skin mechanism. One way to cope with this problem is to insert a non-linear 

mapping process between stimulus depth maps and sensor responses. For example, half-wave 

rectification of a texture pattern (leaving convex signals only) before calculating the amplitude 

spectrum will produce a significant difference between the original and sign-reversed version. 

To have good control over higher-order image statistics of texture patterns, we used natural 

visual images carved on plastic-like material, and found them hard to discriminate by touch. One might 

suspect that the reason we failed to find tactile sensitivity to higher-order statistics was because we 

used textures very unnatural to the tactile system. Isn’t the tactile system sensitive to higher-order 

image statistics that are useful in discriminating and recognizing natural textures we touch in our daily 

lives? Are higher-order image statistics potentially available for the human tactile system informative 

at all for daily tactile perception? To address these questions, it is necessary to sample and analyze 

image properties of numerous natural haptic textures we daily encounter.  

A small number of our observers could distinguish some pairs of NS-matched stimuli (See 

supplemental Fig. S6). Whether they could successfully detect certain higher-order statistics or they 

just used conspicuous local features to solve the task remains unknown, and warrants further 

investigation. 
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The current findings may have implications for haptic engineering, where information 

reduction is essential. Some studies in this area tried to record and reproduce texture sensations. 

Wiertlewski et al. (2011) physically recorded vibrations between the finger and some flat or regularly 

grated stimuli and reproduced them without considering the phase/distribution. They found good 

correlation in discrimination ability between the original stimuli and their reproductions. They 

concluded that what is important in texture perception is spatial spectrograms, i.e., amplitude and 

spectral information. This is in good agreement with our results.  

From a general viewpoint, the current finding may be compatible with the recent findings 

that the human tactile system is able to average textural information over different skin locations 

(Kahrimanovic et al., 2009; Kuroki et al., 2017; Rahman and Yau, 2019), in that all of these findings 

indicate that tactile texture perception is based on relatively simple averaging computation. This 

hypothesis warrants further investigation.  

 

Concluding remarks 

Recent 3D printing technology allows us to control the spatial pattern of tactile stimuli as accurately 

and flexibly as in the case of visual stimuli. This powerful methodology makes it possible to apply a 

variety of experimental paradigms developed in vision research to tactile research. As we 

demonstrated here, 3D printers will be powerful tools for future investigations of tactile spatial 

computation.  

Several studies have investigated the relationship of touch with vision, as this study did. 

While several past influential studies (Amedi et al., 2001; Kitada et al., 2006; Merabet, 2004; Yau et 

al., 2009; Zangaladz et al., 1999) emphasized the similarities between the two modalities, our study 

rather highlighted the differences (see also Lederman et al., 1990; Whitaker et al., 2008). By doing so, 

we could clarify in what way spatial sensation by touch is different from spatial sensation by vision. 

While many people may share the intuition that tactile texture sensation is qualitatively different from 

visual texture sensation, here we showed, for the first time, that the qualitative differences arise from 

(in)sensitivity to higher-order image statistics. 

 

Methods 

Generating visual texture stimuli 

Since our tactile stimuli were created by 3D-printing according to a height map, we dealt with the 

height map as a visual image and controlled its image statistics as in the visual texture literature. The 

image we used was either artificial Gaussian band-pass noise or a natural scene texture. For the 

artificial noise, we first applied the two-dimensional fast Fourier transform to a white noise image and 

extracted specific spatial frequency components by using a two-dimensional Gaussian band-path filter. 

There were two stimulus conditions of filter parameter manipulation: the center frequency (CF) and 
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bandwidth (BW) conditions (Fig. 2A, top and center). The CF condition used five center frequencies 

of the band-path filter (2, 4, 8, 16, and 32 cycles/image) while keeping the BW 1.5 octaves. The BW 

condition used five filter bandwidths (0.5, 1.0, 1.5, 2.0, and 2.5) while keeping the CF 8 cycles/image. 

In addition to the artificial noise, we used the natural scenes (NSs). For this NS condition, five images 

were chosen from the natural texture category of the McGill Calibrated Colour Image Database 

(Olmos and Kingdom, 2004). The intensity level (the mean and standard deviation) were normalized 

and equalized across images (Fig. 2A, bottom). 

 

Generating tactile texture stimuli 

Tactile stimuli were custom-built for the experiment by using a 3D printer (16-micrometer resolution) 

(Objet 260 Connex3, Stratasys, USA) with transparent plastic-like material (VeroClear-RGD810, 

Objet, USA). Each visual texture stimulus was converted into a 3D model by taking intensity values 

as a height map. The printed object was 40×40×10-12 mm. The contrast difference between complete 

black (0) and complete white (255) in an image was transcribed to a height (thickness of stimuli; black 

means deep) difference of 2 mm. Printing accuracy, measured with a wide-area 3D measurement 

system (VR-3100, KEYENCE, Japan), was within 0.056 mm on average. Prior to the experiment, the 

surface of the stimuli was lightly covered with baby powder (Baby Powder, Johnson & Johnson, USA) 

to ensure constant contact between the finger and stimuli by avoiding large stick-slips. 

 

Generating tactile vibration stimuli 

A piezoelectric actuator (MU120, MESS-TEK, Japan) was used as stimulator to reproduce the line 

scan of the texture height profile swept along a horizontal line. The stimulator normally deformed the 

skin with a maximum of 800 N force vibrated by a position control method so that it could accurately 

produce the required displacement with a tolerance of few nanometers. The diameter of the stimulator 

was 12.0 mm, and its edges were separated from the rigid surround of the metal boards by a 1.0-mm 

gap (following (Verrillo, 1963)). The rigid surround limits the spread of surface waves of the skin. The 

stimulator always contacted the finger throughout the experiment. The line on the textured surface to 

be converted into vibration was randomly chosen for each trial. Note that due to actuator limitations, 

the original height difference was linearly reduced to fit within 120 μm (roughly 1/10 scale).  

 

Subjects 

Thirty-eight naïve observers and two of the authors (12 males) with normal tactile sensitivity (by self-

reports), aged from 21 to 46 years (32.3±7.66) participated the experiments. All gave informed consent 

approved by the NTT Communication Science Laboratory Research Ethics Committee, and all 

procedures were conducted in accordance with the Declaration of Helsinki.  
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Procedures 

ABX experiment with CF, BW, and NS modulation.  

Groups of ten observers participated for each passive, active, static, and vibration condition, with 

partial overlaps of observers across conditions. An observer sat at a table and placed the index finger 

of the right hand on home position with their right arm on an arm rest. They performed experiments 

with eyes open to maintain their arousal level, but they could not see the tactile stimuli, the equipment, 

nor experimenter, which were occluded by a black curtain. 

In general, observers touched three stimuli, A, B, and X, each for one second, where X was 

a rotated version of A or B, and they verbally reported which one was X, the first or second. Since X 

was rotated, observers could not perform feature matching using trivial keys. Paired stimuli (A and B) 

were randomly chosen from five stimuli of the same modulation (CF, BW, or NS). This procedure is 

called an ABX task (Kingdom & Prins, 2010), and one of the advantages of this task is that it is less 

affected by labeling problems. If the observers are asked to directly evaluate the similarity between 

paired stimuli, these stimuli must be labeled, and their responses may be influenced by labeling 

difficulties and/or confusion between labels. On the other hand, with the ABX task, the observer can 

report the relative similarity between X and A and X and B, even if A and B are not clearly labeled.  

There were four different touching mode conditions. Other than in the vibration condition, the 

experimenter set three predetermined stimuli (A, B, X) on a linear stage (ERL2, CKD, Japan) before 

each trial started. By automatically moving the stage, the experimenter was able to guide the three 

stimuli directly beneath the finger. Thus, observers did not have to move the wrist to touch them. In 

the passive scan condition, each trial started with the experimenter’s ‘ready’ call. An observer put their 

right index finger at the rest position at the right edge of the linear stage and pressed the start button 

on the PC monitor with their left hand to trigger the stage movement. The linear stage started to move 

under observers’ right index finger from left to right for approximately 1.5 seconds with a speed of 40 

mm/s so that the rightmost one of three stimuli swiped the finger for one second. After a one second 

pause, the stage automatically moved again for the second stimulus to swipe, stopped, then moved 

again for the third stimulus to swipe. After the third scan, observers lifted their fingers and made a 

binary verbal report as to which of the first two stimuli (the first or the second) was the same to the 

last one. The stage moved back to its initial position and the experimenter changed the stimuli on the 

stage for the next trial. In active scan condition, observers lifted their right index finger above the first 

stimulus position and pressed the start button. They freely scanned the stimulus surface for one second 

and lifted their finger again. Then, the stage started to move and the second stimuli came right under 

their finger. Observers never touched the stimuli when the stage was moving; they touched them three 

times each for one second when the stage had stopped. In the static touch condition, observers put 

their fingers on static (not moving) stimuli three times each for one second, in similar time course to 

other conditions. In the vibration condition, the stage and stimuli were replaced with the piezoelectric 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/653550doi: bioRxiv preprint 

https://doi.org/10.1101/653550
http://creativecommons.org/licenses/by-nd/4.0/


actuator. Observers placed their right index finger on the actuator and pressed the start button on the 

monitor with their left hand. After about one second, the actuator vibrated three times each for one 

second with 1.5-second gap. Only in this condition did observers report by button clicking instead of 

verbally. To mask any subtle sound made by the actuator, observers wore ear plugs and white noise 

was played continuously from headphones throughout this condition. 

There were three kinds of modulation (CF, BW, and NS), five modulation gradations, four touching 

modes (passive scan, active scan, static touch, and vibration), and 12 repetitions for each combination. 

In total, 360 trials were conducted for each touching mode, and sessions were roughly divided into ten 

blocks. No block lasted longer than 15 minutes. Within each block, the kind of modulation and the 

gradations were randomized and the touching mode was fixed.  

 

ABX experiment with NS original and NS matched modulation. 

Ten observers participated. The equipment and procedure were almost identical to those of the passive 

scan condition in the ABX experiment, except for the stimulus. The experiment was conducted with 

two kinds of modulation (original and matched NS), five modulation gradations, one touching mode 

(passive scan), and 12 repetitions for each combination.  

 

Logistic regression analysis based on amplitude differences. 

To investigate whether the discrimination performance can be explained by the amplitude differences 

in the textures, we used a logistic regression analysis. As shown in Fig. 4A, the amplitude of each 

spatial component was calculated on a log scale and sampled to ten points in 0.7-octave intervals. The 

difference between the amplitude spectra of paired textures was calculated at each sampled point. We 

used the ten values as predictor variables for each discrimination performance as follows. 

 

, 

 

where x is the predictor variable, β its coefficients, y the human discrimination accuracy for each pair, 

N the number of pairs, and P the number of the predictor variables. We used Matlab function fmincon 

for the optimization. By the sparse logistic regression, five of the ten predictor variables survived, and 

were used in estimating the performance shown in Fig. 4B. 

 

Generating the subband-matched images 
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To test if textures with identical lower-order (subband) statistics were haptically indistinguishable, we 

made five images with identical subband histograms (Fig. 5A, bottom panels M1-M5) by using a 

texture synthesis algorithm (Heeger & Bergen, 1995). In this algorithm, the steerable pyramid 

transform is utilized. Specifically, each image was decomposed into several spatial-frequency and 

orientation bands by convolving the image with spatially oriented linear filters and by subsampling. 

Using the transformed subbands, this algorithm synthesizes the texture by matching the histograms of 

transform coefficients of the seed image to those of the target image. We used original image 1 

(NS/O1) as the target for the synthesis. The original algorithm uses a white noise image as the seed 

image. However, since we aimed to make a set of textures while preserving the higher order statistics 

of each original texture (O1 - O5), we used the original texture as the seed image. To make the matched 

images in Fig. 5, we adopted four spatial frequencies bands and four orientation bands. 

 

Simulation 

We simulated spatio-temporally distributed firing patterns of three different types of tactile afferent by 

using the computational model “TouchSim”, which can reproduce major response characteristics that 

have been clarified by previous research (Saal et al., 2017). The original parameters of the model were 

based on measured spiking data obtained with monkeys. The simulated responses of afferents closely 

match the known spiking responses of actual afferents (both precise millisecond spike-timings and 

firing rates) to various classes of stimuli (for example, vibrations, edges, and textured surfaces).  

Responses to NS matched stimuli were simulated. The stimulus was scanned across the skin. The 

contact area was defined as a rectangle (20-mm length and 10-mm width) and the resolution (input 

spacing, defined as pin spacing in ‘TouchSim’) was set to 0.1 mm. The skin contact area was indented 

at the center of the index fingertip with the averaged depth of 1 mm, moved across the stimuli at a 

speed of 40 mm/s for one second. Realistically distributed afferents (288 SA, 569 RA, and 102 PC in 

index fingertip ‘D2d’) were simulated with a 1-ms resolution. The simulation was repeated 12 times 

for each stimulus, with afferent distribution, stimulus contact area, and scan direction fixed. 

Since we simulated temporally and spatially distributed firings, higher-order statistical information, if 

any, should be embedded in the firing pattern. To quantitatively test whether this pattern is similar 

when touching the same stimulus compared to when touching different stimuli, we conducted metric 

space analysis. In particular, we calculated the Victor distance (Victor and Purpura, 1997) following 

the previous ‘TouchSim’ study (Saal et al., 2017). This analysis enables us to compare the similarity 

of the timing of the spikes by introducing cost parameter q, which we set to 100 (corresponding to 10 

ms) in this study. For each afferent model, the Victor distance was calculated between all pairwise 

combinations of the simulated trials for five stimuli. Obtained distances were normalized by the total 

number of spikes in the pair and then averaged for the same kind of afferent model and for the same 

pair of stimuli (Fig. 6).  
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