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Bulked segregant analysis (BSA), coupled with next generation se-
quencing (NGS), allows the rapid identification of both qualitative
and quantitative trait loci (QTL), and this technique is referred to
as BSA-Seq here. The current SNP index method and G-statistic
method for BSA-Seq data analysis require relatively high sequencing
coverage to detect major single nucleotide polymorphism (SNP)-trait
associations, which leads to high sequencing cost. Here we devel-
oped a simple and effective algorithm for BSA-Seq data analysis and
implemented it in Python, the program was named PyBSASeq. Using
PyBSASeq, the likely trait-associated SNPs (ltaSNPs) were identified
via Fisher’s exact test and then the ratio of the ltaSNPs to total SNPs
in a chromosomal interval was used to identify the genomic regions
that condition the trait of interest. The results obtained this way are
similar to those generated by the current methods, but with more
than five times higher sensitivity, which can reduce the sequencing
cost by ~80% and makes BSA-Seq more applicable for the species
with a large genome.
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Bulked segregant analysis (BSA) has been widely utilized1

in the rapid identification of trait-associated genetic mark-2

ers for a few decades (1, 2). The essential part of a BSA3

study is to construct two bulks of individuals that have con-4

trasting phenotypes (e.g., tallest plants vs. shortest plants5

or resistant plants vs. susceptible plants) from segregating6

populations. If a gene does not contribute to the trait pheno-7

type, its alleles would be randomly segregated in both bulks;8

whereas if a gene is responsible for the trait phenotype, its9

alleles would be enriched in either bulk, e.g. one bulk has10

more allele A while the other bulk has more allele a. BSA11

was primarily used to develop genetic markers for detecting12

gene-trait association at its early stage (1, 2). The application13

of next generation sequencing (NGS) technology to BSA has14

eliminated the time-consuming and labor-intensive marker15

development and genetic mapping steps and has dramatically16

sped up the detection of gene-trait associations (3–20). This17

technique was termed either QTL-seq or BSA-Seq in different18

publications (5, 6, 21), we adapted the latter here because19

it can be applied to study both qualitative and quantitative20

traits.21

The widely used approach in analyzing BSA-Seq data is22

the SNP index method (5). For each SNP, the base that is23

the same as in the reference genome is termed reference base24

(REF), and the other base is termed alternative base (ALT);25

the SNP index of a SNP is calculated by dividing its ALT26

read with the total read (REF read + ALT read) in a bulk.27

The greater the Δ(SNP index) (the difference of the SNP28

indices between bulks), the more likely the SNP contributes29

to the trait of interest or is linked to a gene that controls the30

trait. The second approach is the G-statistic method (21). For31

each SNP, a G-statistic value is calculated via G-test using32

the REF read and ALT read values in each bulk. The SNP 33

with a high G-statistic value would be more likely related 34

to the trait. Both methods identify SNP-trait associations 35

via quantifying the REF/ALT enrichment of a single SNP, 36

and some of the major QTLs can be detected only with high 37

sequencing coverage (3, 5, 22), which leads to high sequencing 38

cost and limits the application of BSA-Seq to the species with 39

a large genome. 40

In BSA studies, bulking enriches the trait-associated alleles 41

in either bulk. The more a gene contributes to the phenotype, 42

the more its alleles are enriched, and so are the SNPs within 43

the gene (one bulk contains more REF read while the other 44

bulk contains more ALT read). The SNPs flanking this gene 45

should be enriched as well due to linkage disequilibrium, the 46

closer the SNP to the gene, the more enrichment is achieved. 47

Such SNPs are termed trait-associated SNPs (taSNPs). We 48

developed a novel, simple, and effective algorithm for analysis 49

of the BSA-Seq data via quantifying the enrichment of trait- 50

associated SNPs in a chromosomal interval. A Python script, 51

PyBSASeq, was written based on this algorithm. The sequence 52

data of Yang et al. (3) was used to test our algorithm, and 53

the PyBSASeq method detected more QTLs than the current 54

methods (3, 22) even with lower sequencing coverage. 55

Materials and Methods 56

The sequencing data used in this study were generated by Yang 57

et al. (3). Using the G-statistic method, Yang et al. identified six 58

major cold tolerance QTLs in rice and five of them were consistent 59

with the then available QTL database or previous publications. 60

The Oryza sativa subsp. japonica rice cultivar Nipponbare was 61

used as one of the parents in generating the F3 population of 62

the BSA-Seq experiment and its genome sequence was used as 63

the reference sequence for SNP calling in our study. The Python 64

implementation of the PyBSASeq algorithm is available on the 65

website https://github.com/dblhlx/PyBSASeq, and its detailed usage can 66

be found on the website as well. The Python implementation of the 67

SNP index method and the G-statistic method can be accessed on 68

https://github.com/dblhlx/. 69

Significance Statement

BSA-Seq can be utilized to rapidly identify DNA polymorphism-
trait associations, and PyBSASeq allows the detection of such
associations at much lower sequencing coverage than the
current methods, leading to lower sequencing cost and making
BSA-Seq more accessible to the research community and more
applicable to the species with a large genome.
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Table 1. The first five rows of the GATK4 output file

CHROMa POSb REFc ALTd 834927.ADe 834927.GQf 834931.ADe 834931.GQf

1 29 759 C G 0,2 6 0,2 6
1 31 071 A G 25,39 99 33,29 99
1 31 478 C T 27,38 99 48,32 99
1 33 667 A G 21,46 99 39,32 99
1 34 057 C T 29,37 99 32,31 99
a The chromosome on which the SNP is located; b The position of the SNP on the chromosome;
c The base sequence of the SNP that is the same as the one from the reference genome; d The base sequence that is different from REF;
e The allele depths (AD) of the SNP in the first bulk (ID: 834927) or the second bulk (ID: 834931). This column contains two numbers,
the first one is the REF read (ADREF) and the second is the ALT read (ADALT); f The genotype quality of the SNP in the first bulk
(ID: 834927) or the second bulk (ID: 834931).

SNP calling. The raw sequences (SRR834927 and SRR834931) for70

BSA-Seq analysis were downloaded from NCBI using fasterq-dump71

(https://github.com/ncbi/sra-tools) and the sequences were trimmed72

and quality control was performed using fastp at the default set-73

ting (23). The trimmed sequences were aligned to the ‘Nippon-74

bare’ reference genome sequence (Release 41, downloaded from75

https://plants.ensembl.org/Oryza_sativa/Info/Index) using BWA (24–26).76

SNP calling was carried out following the best practice of Genome77

Analysis Toolkit (GATK) (27) and Genome Analysis Toolkit 478

(GATK4) tool documentation on the GATK website https://software.79

broadinstitute.org/gatk/documentation/tooldocs/current/. The GATK4-80

generated .vcf file usually contains the information for two bulks;81

we termed them the first bulk (fb) and the second bulk (sb), re-82

spectively. Using the GATK4 tool, the relevant columns (CHROM,83

POS, REF, ALT, fb.AD, fb.GQ, sb.AD, sb.GQ) of this .vcf file84

were extracted to create the input file in .tsv (tab separated value)85

format for the Python script; Table 1 shows the first five rows of86

this .tsv file.87

SNP filtering. The GATK4-identified SNPs were filtered using the88

following parameters in order: 1) the unmapped SNPs or SNPs89

mapped to the mitochondrial or chloroplast genome; 2) the SNPs90

with a ‘NA’ value in any of the above columns; 3) the SNPs with91

more than one ALT bases; 4) the SNPs with GQ score less than 20.92

Sliding windows. The sliding window algorithm was utilized to aid93

the visualization (plotting) in BSA-Seq data analysis. The window94

size was 2 Mb and the incremental step was 10 000 bp. Empty95

windows would be encountered if the amount of SNPs is too low96

or the SNP distribution is severely skewed. If a sliding window97

has zero SNP, its ltaSNP/totalSNP ratio will be replaced with the98

value of the previous sliding window. If the first sliding window99

of a chromosome is empty, the string ‘empty’ will be assigned to100

this sliding window as a placeholder that will be replaced with a101

non-empty value of the nearest window later.102

Statistical methods. The number of REF/ALT reads of a SNP is103

defined as allele depth (AD) in GATK4. Here they are represented104

as ADREF and ADALT, respectively, and a ‘1’ or ‘2’ is added to its105

subscript when appropriate to indicate which bulk it belongs to;106

the same can be applied to the sequencing depth as well. In some107

rare occasions, the GATK4-generated depth per sample (DP) of a108

SNP can be greater or less than the sum of the ADs in a bulk, here109

DP was defined as below for all the SNPs:110

DP = ADREF + ADALT111

Fisher’s exact test. Python module scipy.stats.fisher_exact(ctbl) was112

used for Fisher’s exact test; ctbl is a 2×2 contingency table compris-113

ing all the AD values of a SNP in both bulks and is represented as114

a numpy array ([[ADREF1, ADALT1], [ADREF2, ADALT2]]). This115

module returns a pair of numbers, and the second number is the116

p-value of the Fisher’s exact test.117

Calculation of G-statistic. The following formula was used for this118

purpose, where O is the observed AD, E is the expected AD under119

the null hypothesis, and ln denotes the natural logarithm.120

G = 2
∑

i

Oi × ln(Oi/Ei)121

Simulation of ADREF/ADALT for threshold calculation. The python 122

module numpy.random.binomial(DP, alleleFreq) was used to cal- 123

culate the simulated ADREF (smADREF) and simulated ADALT 124

(smADALT) of a SNP in a bulk; alleleFreq is the frequency of the 125

ALT base in the bulk under the null hypothesis that the SNP is not 126

associated with the trait, and its value was obtained via simulation 127

(see the smAlleleFreq function of the Python script for details). The 128

module returns the smADALT, and the smADREF can be calculated 129

as below: 130

smADREF = DP − smADALT 131

Calculation of theΔ(SNP index) and G-statistic thresholds. For each 132

SNP in the SNP dataset, smADREF1/smADALT1 of bulk 1 and 133

smADREF2/smADALT2 of bulk 2 were obtained as described above. 134

Using these AD values, the Δ(SNP index) was calculated with the 135

equation below and the G-statistic was calculated as previously 136

stated. This process was repeated 10 000 times, the 99% confidence 137

interval of the 10 000Δ(SNP index) values was used as the significant 138

threshold for the SNP index method, and the 99.5th percentile of 139

the 10 000 G-statistic values was used as the significant threshold 140

for the G-statistic method. 141

Δ(SNP index) =
smADALT 2

DP2
−

smADALT 1
DP1

142

143

Results 144

Identify SNPs likely associated with the trait of interest. In 145

BSA-Seq studies, each bulk contains many individuals that 146

could be either homozygous (REF or ALT) or heterozygous in 147

any SNP locus, and the bulk is collectively sequenced. Hence 148

most SNPs identified via the SNP calling pipeline contains 149

both the reference base (REF) and the alternative base (ALT) 150

in each bulk. Due to phenotypic selection via bulking, the 151

REF/ALT base of a trait-associated SNP would be enriched 152

in either bulk, and the ALT (or REF) read proportions should 153

be significantly different between the bulks. Fisher’s exact 154

test was performed to identify such SNPs using the ADREF 155

and ADALT of each SNP in both bulks. A small p-value of the 156

Fisher’s exact test suggests that the ALT proportion difference 157

of a SNP between bulks is more likely caused by bulking and 158

a SNP with its p-value less than 0.01 was considered more 159

likely associated with the trait and was termed ltaSNP here. 160

240 351 ltaSNPs were identified among total 1 303 084 filtered 161

SNPs (see materials and methods section for the filter criteria), 162

and the chromosomal distribution of SNPs was summarized 163

in Table 2. The chromosomes 8, 1, 2, 10, and 5 contained 164

the most ltaSNPs and had the highest ltaSNP/totalSNP ra- 165

tios, correlating perfectly with the chromosomes carrying the 166

verified QTLs (3, 22). 167

Enrichment of ltaSNPs. The ltaSNPs should cluster around the 168

genes controlling the trait phenotype on the chromosomes due 169

2 | https://doi.org/10.1101/654137 Zhang et al.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2019. ; https://doi.org/10.1101/654137doi: bioRxiv preprint 

https://github.com/ncbi/sra-tools
https://plants.ensembl.org/Oryza_sativa/Info/Index
https://software.broadinstitute.org/gatk/documentation/tooldocs/current/
https://software.broadinstitute.org/gatk/documentation/tooldocs/current/
https://software.broadinstitute.org/gatk/documentation/tooldocs/current/
https://doi.org/10.1101/654137
https://doi.org/10.1101/654137
http://creativecommons.org/licenses/by/4.0/


DRAFT

0

5000

10000

15000

20000

N
um

be
r o

f S
N

P
s

Chr1 Chr2 Chr3 Chr4 Chr5 Chr6 Chr7 Chr8 Chr9 Chr10 Chr11 Chr12

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

lta
S

N
P

/to
ta

lS
N

P

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 0 1 2 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
Genomic position (×10 Mb)

A

B

Figure 1. Genomic distributions of SNPs and ltaSNPs/totalSNP ratios. The red horizontal lines are the thresholds. (A) The ltaSNPs (black) and total SNPs (blue). (B) The ratio
of ltaSNPs and total SNPs.

Table 2. Chromosomal distribution of SNPs

ltaSNP totalSNP ltaSNP/totalSNP

1 52 093 160 780 0.324
2 48 912 125 059 0.391
3 3502 45 927 0.076
4 3743 62 317 0.060
5 15 482 102 474 0.151
6 7653 159 857 0.048
7 12 679 128 658 0.099
8 54 372 132 646 0.410
9 1709 57 971 0.029
10 28 711 98 646 0.291
11 5235 180 319 0.029
12 6260 48 430 0.129

Genome-wide 240 351 1 303 084 0.184

to linkage disequilibrium. Using the sliding window technique,170

the number of ltaSNPs was plotted across all the chromosomes171

to test if this was the case. We found the ltaSNP plot ap-172

proximately matched with the major peaks in plots produced173

by the SNP index method and the G-statistic method (3, 22)174

(Figure 1A). However, counting the absolute number of ltaS-175

NPs is not an ideal way to measure the ltaSNP enrichment176

because SNPs were distributed unevenly across and between177

chromosomes (Figure 1A); if a gene that conditions the trait178

is located in a region with fewer SNPs, it would be missed179

using this approach. Thus, we used the ratio of ltaSNPs to180

total SNPs in a chromosomal region to measure the ltaSNP181

enrichment. The ltaSNP/totalSNP ratios were plotted for all182

the chromosomes (Figure 1B), and the plot pattern matched183

very well with that produced by the G-statistic method (3, 22).184

The most obvious difference between Figure 1A and figure185

1B was the first peak on chromosome 2 and the peaks on186

chromosomes 3, 6 and 9; these regions contained fewer SNPs,187

but the ltaSNPs enrichment was relatively high.188

Under the null hypothesis that the SNPs were not asso- 189

ciated with the trait, resampling was utilized to obtain the 190

threshold to determine which peak in Figure 1B was statisti- 191

cally significant. For each SNP in the dataset, its simulated 192

ADREF and ADALT were calculated as detailed in the materi- 193

als and methods section and then the simulated ADREF and 194

ADALT from both bulks were used to perform Fisher’s exact 195

test. A SNP with its p-value less than 0.10 was considered a 196

ltaSNP (A high cut-off p-value results in a high threshold). 197

The amount of SNPs that are the same as the average number 198

of SNPs per sliding window were randomly selected from the 199

SNP dataset and the simulated ltaSNP/totalSNP ratio (total 200

SNPs was the sample size) in the sample was recorded. This 201

process was repeated 10 000 times, and the 99.5th percentile 202

of these 10 000 values was used as the significant threshold 203

for the detection of peak-trait associations. The threshold 204

obtained this way was 0.087. In addition to the six major 205

QTLs (two of them on chromosome 2) verified in the work of 206

Yang et al. (3), one or more new peaks on all chromosomes 207

except chromosomes 5 and 10 were also above the threshold 208

(Figure 1B). 209

Sequencing coverage affected the detection of SNP-trait as- 210

sociation. Using the Lander/Waterman equation (28), the 211

sequencing coverage of SRR834927 and SRR834931 was es- 212

timated to be 84× and 103×, respectively. It would be very 213

costly to achieve such high sequencing coverage for the or- 214

ganisms with a large genome. Thus, we wanted to know how 215

decreasing sequencing coverage would affect the detection of 216

SNP-trait associations. To achieve lower sequencing cover- 217

age, we sampled 40%, 30%, and 20% of the raw sequence 218

reads using the seqtk program (https://github.com/lh3/seqtk) 219

with random seeds 123, 160, and 100, respectively. The ltaS- 220

NPs were identified from these sequence subsets and the ratios 221

of ltaSNP/totalSNP were plotted along all the chromosomes 222
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Figure 2. Genomic distribution of ltaSNP/totalSNP ratios at different sequencing coverage levels. The red horizontal lines are the thresholds. (A) 40% of the original sequence
reads. (B) 30% of the original sequence reads. (C) 20% of the original sequence reads.

as above. The results revealed that the plotting patterns were223

very similar at different sequencing coverage levels (Figure 2);224

with decreasing sequencing coverage, the total SNPs decreased225

slightly, while the number of ltaSNP and the ltaSNP/totalSNP226

ratio decreased substantially (Table S1). Because the thresh-227

old did not change as much, more and more minor SNP-trait228

associations were missed with decreasing sequencing coverage.229

However, with 40%, 30%, or even 20% of the original se-230

quencing coverage, more QTLs were detected than the current231

methods with the original sequencing coverage (3, 22).232

Sensitivity comparison. The above data indicated that the233

PyBSASeq approach had higher detection power. However,234

different methods were used to generate the SNP datasets235

(3, 22), which might lead to different detection sensitivities.236

To rule out this possibility, we implemented the SNP index237

method and the G-statistic method in Python and tested all238

the three methods with the same SNP dataset. First, we239

tested if the results of Yang et al. and Mansfeld and Grumet240

can be replicated using our scripts. As in the studies men-241

tioned above, the SNP dataset was filtered with the following242

criteria: fb.GQ ≥ 99, sb.GQ ≥ 99, fb.DP ≥ 40, sb.DP ≥ 40,243

fb.DP+sb.DP ≥ 100, and fb.DP+sb.DP ≤ 400. Although244

the SNP datasets were generated in different ways (GATK4245

vs. GATK vs. Samtools) and no smoothing besides the slid-246

ing window algorithm was applied in our scripts, the results,247

including the plot patterns, the G-statistic values, and the248

Δ(SNP index) values and its confidence intervals, were very249

similar (3, 22), and the positions of the peaks/valleys matched250

almost perfectly between different approaches (Figure S1). A251

non-parametric method was used to calculate the threshold252

in the G-statistic method by Yang et al. and Mansfeld and253

Grumet, and different approaches were used to remove the254

G-statistic values from the QTL regions. Thus the thresholds255

were a little different in these studies and so was the QTL256

detection results (3, 22). In our G-statistic script, we used257

simulation for threshold calculation (see the materials and258

methods), and the thresholds obtained this way were consis-259

tent across all the chromosomes and was less conservative than260

the previously reported approaches. Using the high sequencing261

depth SNP subset, similar results were obtained by both the262

SNP index method and the G-statistic method: the six major263

QTLs and a minor QTL on chromosome 2 were detected (Fig-264

ure S1). However, the PyBSASeq approach had the highest 265

sensitivity using the same filtering criteria, and it can detect 266

more minor QTLs than other methods even if the whole SNP 267

dataset was used (Figures 1B, 2, and S1). 268

As in PyBSASeq, we also tested how decreasing sequencing 269

coverage would affect the detection of the SNP-trait associ- 270

ations in these two methods. Using the original sequencing 271

reads, the SNP index method had relatively low detection 272

power, the major QTL on chromosome 5 was missed and the 273

peak (valley) representing the major QTL on chromosome 10 274

was barely beyond the threshold. With decreasing sequencing 275

coverage, the Δ(SNP index) did not change much, but the 276

thresholds increased dramatically, the QTLs on chromosomes 277

2, 5, and 10 were missed at 40% of the original sequencing 278

coverage and all the QTL were missed at 30% or lower of the 279

original sequencing coverage (Figure 3). For the G-statistic 280

method, with the original sequencing reads, all the 6 major 281

QTLs can be detected. With decreasing sequencing cover- 282

age, the G-statistic values decreased substantially, whereas 283

the threshold increased slightly; the QTLs on chromosomes 284

2, 5, and 10 were missed at 40% of the original sequencing 285

coverage, the peaks representing the QTLs on chromosomes 1 286

and 8 were barely above the threshold at 30% of the original 287

sequencing coverage, and all the QTLs were missed at 20% of 288

the original sequencing coverage (Figure 4). 289

Discussion 290

PyBSASeq detected more than 10 minor QTLs along with all 291

of the major QTLs detected via the current methods when run 292

with the entire SNP dataset based on the original sequencing 293

reads (Figures 1B, 3A, and 4A). Plant cold tolerance is a 294

complex quantitative trait controlled by many genes (29, 30). 295

The additional QTLs detected via PyBSASeq may represent 296

the minor QTLs that have small phenotypic effects. Filtering 297

out the SNPs with a low DP value increased the sensitivity 298

of the current methods (Figures S1, 3, and 4), but doing so 299

increased the sensitivity of PyBSASeq as well (Figures S1C and 300

1B). Decreasing the sequencing coverage substantially reduced 301

the detection power of all the methods (Figures 2, 3, and 4). 302

At 20% of the original coverage (17× in the first bulk and 21× 303

in the second bulk) all QTLs were missed using the current 304

methods; however, all the verified major QTLs plus two minor 305
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Figure 3. Genomic distribution ofΔ(SNP index) at different sequencing coverage levels. The red curves indicate the 99% confidence intervals. (A) The original sequence
reads. (B) 40% of the original sequence reads. (C) 30% of the original sequence reads. (D) 20% of the original sequence reads.

QTLs can still be detected via PyBSASeq, manifesting that306

PyBSASeq is at least five times more sensitive.307

Because of its high sensitivity, the intervals of the QTLs308

(chromosomal regions above the threshold) are quite wide309

(Figure 1). An extreme case is chromosome 8 where all of its310

ltaSNP/totalSNP ratios are greater than the threshold, which311

does not imply that all the SNPs on chromosome 8 are involved312

in conditioning the cold tolerance trait. The SNPs in the313

causal locus are enriched because of phenotypic selection via 314

bulking while the SNPs flanking the causal locus are enriched 315

because of linkage disequilibrium. Any recombination event 316

between the SNPs that affects the trait of interest and the 317

SNPs flanking the causal gene would reduce the enrichment 318

of the flanking ltaSNPs, thus SNPs in the causal locus should 319

have the highest enrichment and should be located in the peak 320

region. Therefore, there are only two QTLs on chromosome 321
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Figure 4. Genomic distribution of G-statistic at different sequencing coverage levels. The red curves are the G-statistic thresholds. (A) The original sequence reads. (B) 40% of
the original sequence reads. (C) 30% of the original sequence reads. (D) 20% of the original sequence reads.
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8: a minor one on the proximal arm while a major one on322

the distal arm of the chromosome. All three methods use the323

sliding window algorithm to detect the SNP-trait associations324

and should have the same level of resolution if the sliding325

window settings (window size and incremental step) are the326

same.327

Both the SNP index method and the G-statistic method328

identify SNP-trait associations by measuring REF/ALT en-329

richment of a single SNP; whereas the PyBSASeq method330

identifies SNP-trait associations by measuring ltaSNP enrich-331

ment in a chromosomal region. The average number of SNPs332

was 6984 in a sliding window, much higher than the average333

sequencing coverage in either bulk (84× in the first bulk and334

103× in the second bulk), which could be why PyBSASeq335

has much higher statistical power. GATK is widely used for336

SNP and small InDel calling and the new version of GATK4337

is also capable of copy number and structural variant calling.338

PyBSASeq is designed to analyze the GATK-generated variant339

calling data, though it has only been tested for analysis of the340

SNP and small InDel calling data, it should be able to handle341

the GATK4-generated copy number variant and structural342

variant data as well.343

Conclusions344

The high sensitivity of PyBSASeq allows the detection of SNP-345

trait associations at reduced sequencing coverage, leading346

to reduced sequencing cost. Thus, BSA-Seq can be more347

practically applied to species with a large genome.348
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Supplementary Information 425

Table S1. Chromosomal distribution of SNPs at different sequencing coverage levels

Chromosome
40% of the original coverage 30% of the original coverage 20% of the original coverage

ltaSNP totalSNP ltaSNP/totalSNP ltaSNP totalSNP ltaSNP/totalSNP ltaSNP totalSNP ltaSNP/totalSNP
1 28 501 150 662 0.189 20 464 144 815 0.141 11 122 133 953 0.083
2 23 760 116 704 0.204 16 531 111 944 0.148 8727 103 470 0.084
3 1492 43 650 0.034 1030 42 307 0.024 592 39 406 0.015
4 1628 59 037 0.028 1127 56 702 0.020 674 52 609 0.013
5 6865 96 583 0.071 4892 93 201 0.052 2776 86 864 0.032
6 3302 150 246 0.022 2404 145 069 0.017 1361 134 562 0.010
7 5122 120 045 0.043 3549 115 430 0.031 1925 106 121 0.018
8 26 933 123 411 0.218 19 378 118 699 0.163 10 652 108 581 0.098
9 825 55 088 0.015 680 53 291 0.013 424 49 768 0.009
10 13 039 92 815 0.140 9477 89 639 0.106 5526 82 996 0.067
11 2622 171 170 0.015 1963 165 570 0.012 1313 154 588 0.008
12 2589 46 061 0.056 1775 44 596 0.040 995 41 051 0.024
Genome-wide 116 678 1 225 472 0.095 83 270 1 181 263 0.070 46 087 1 093 969 0.042
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Figure S1. Replication of the SNP index method and the G-statistic method in Python. (A) The SNP index method. The red curves indicate the 99% confidence intervals. (B)
The G-statistic method. The red curves indicate the G-statistic thresholds. (C) The PyBSASeq method included here for comparison. The red lines are the thresholds.
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