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Abstract

While template-free protein structure prediction protocols now produce good quality

models for many targets, modelling failure remains common. For these methods to be

useful it is important that users can both choose the best model from the hundreds to

thousands of models that are commonly generated for a target, and determine whether

this model is likely to be correct. We have developed Random Forest Quality

Assessment (RFQAmodel), which assesses whether models produced by a protein

structure prediction pipeline have the correct fold. RFQAmodel uses a combination of

existing quality assessment scores with two predicted contact map alignment scores.

These alignment scores are able to identify correct models for targets that are not

otherwise captured. Our classifier was trained on a large set of protein domains that are

structurally diverse and evenly balanced in terms of protein features known to have an

effect on modelling success, and then tested on a second set of 244 protein domains with

a similar spread of properties. When models for each target in this second set were

ranked according to the RFQAmodel score, the highest-ranking model had a

high-confidence RFQAmodel score for 67 modelling targets, of which 52 had the correct

fold. At the other end of the scale RFQAmodel correctly predicted that for 59 targets

the highest-ranked model was incorrect. In comparisons to other methods we found that
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RFQAmodel is better able to identify correct models for targets where only a few of the

models are correct. We found that RFQAmodel achieved a similar performance on the

model sets for CASP12 and CASP13 free-modelling targets. Finally, by iteratively

generating models and running RFQAmodel until a model is produced that is predicted

to be correct with high confidence, we demonstrate how such a protocol can be used to

focus computational efforts on difficult modelling targets.

Introduction 1

Template-free protein structure prediction protocols routinely produce hundreds to 2

thousands of models for a given target [1]. Users need to be able to identify if a good 3

model exists in this ensemble. The final step in a typical structure prediction pipeline is 4

therefore to select a representative subset of five or fewer models as output [2]. This 5

model selection step is critical, and the community’s ability to select good models is 6

assessed as part of the Critical Assessment of protein Structure Prediction (CASP) 7

experiments [3]. 8

Protocols for model quality assessment can be divided into three classes: 9

single-model methods, quasi-single model methods, and consensus methods [2]. 10

Single-model methods calculate a score for each model independently, and this score 11

does not take into account any of the other models generated for a particular target. 12

The objective function optimised during protein structure prediction can usually be 13

used as a single-model quality estimator, but better results have been reported if 14

different scores are used for modelling and ranking [2]. Examples of single-model scores 15

include ProQ3D [4] and the ROSETTA energy terms [5]. For quasi-single model 16

methods, the score of a given model is calculated based on its relative score compared 17

to a subset of all models (reference set) produced for the target, for example 18

MQAPsingle [6]. Consensus methods, such as Pcons [7], perform pairwise comparison of 19

the predicted structures to identify clusters of similar models or regions, and assume 20

that structures with high consensus are more likely to be correct. 21

Predicted contacts derived from co-evolution analysis of multiple sequence 22

alignments have been used as single or quasi-single model methods to improve model 23

quality assessment (e.g. [7, 8]). Existing contact-based methods for quality assessment 24
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often consider the proportion of predicted contacts that are satisfied in each model (i.e. 25

how many of the pairs of residues predicted to be in contact are within a certain 26

threshold distance) [7]. ModFOLD6, a quasi-single model quality assessment method, 27

includes a term describing the local agreement with predicted contacts for each residue 28

in the model [9]. An alternative way to use predicted contact information is to align 29

predicted contact maps for a particular target to the observed contacts maps of models. 30

Contact map alignment has been used to select regions of models to be hybridised [10] 31

or to perform protein threading [11]. Until now, contact map alignment has not been 32

used for model quality assessment, but the principles that govern these techniques 33

should also be applicable for quality assessment tasks. 34

In combination with recent advances in model quality due to better contact 35

prediction techniques, improvements in model quality assessment have made 36

template-free protein structure prediction more reliable (e.g. [7, 8]). The most recent 37

CASP competition demonstrated remarkable progress in the field: the 38

highest-performing method produced a model in the correct fold (TM-score ≥0.5) in the 39

top five models for 23 of 32 free-modelling target domains, although performance 40

decreases when considering only the top model. This level of predictive ability has 41

driven efforts to perform large-scale modelling of significant numbers of protein families 42

without a member of known structure [10,12]. While these studies offer reliable 43

topologies for many protein families, the recall of their quality assessment protocol 44

remains low enough that some predictions with the correct topology may not be 45

identified. Furthermore, such studies were limited by the computational expense of 46

model generation, opting either to produce models for a subset of these families of 47

unknown structure [10] or to produce a reduced number of models per target [12]. 48

In this paper, we introduce RFQAmodel, a random forest quality assessment 49

classifier developed to evaluate models produced by template-free protein structure 50

prediction pipelines. The classifier combines existing quality assessment scores with 51

predicted contact map alignment scores. Unlike most established quality assessment 52

methods, RFQAmodel is trained to evaluate whether models are in the correct fold 53

(TM-score ≥ 0.5) rather than estimating the absolute model quality. For each model, 54

RFQAmodel outputs an estimated probability that the model is correct. This 55

probability can be used to estimate whether the model is correct with high, medium, or 56
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low confidence, or if modelling is predicted to have failed. 57

We compiled Training and Validation sets each comprising 244 structurally diverse 58

protein domains. We ensured that these sets were well-balanced in terms of protein 59

length, number of effective sequences [7], SCOP class [13], and other properties that are 60

known to have an effect on modelling success. We used our sequential protein structure 61

prediction protocol SAINT2 [1] to generate 500 models for each of the 488 protein 62

domains. Using the Training set, we show that predicted contact map alignment scores 63

are as effective for ranking models as existing state-of-the-art quality assessment scores. 64

Furthermore, the models ranked highly by these contact map alignment scores are 65

different from those ranked highly by conventional scores. We incorporate several 66

state-of-the-art quality assessment scores alongside contact map alignment scores into a 67

random forest classifier, RFQAmodel, which classifies models as correct (i.e. in the 68

correct topology) or incorrect, and outperforms the component quality assessment 69

scores. Of the 244 targets in the Validation set, RFQAmodel predicts that the 70

highest-ranking model may be correct for 185 targets, of which 86 are correct (out of a 71

possible 142 for which at least one correct model was generated by SAINT2). The 185 72

are further split by RFQAmodel into those where the highest-ranking model is 73

predicted to be correct with high confidence, 67 targets, of which 52 are correct. Of the 74

59 targets predicted to be modelling failures, 5 had at least one correct model, and none 75

had a correct highest-ranking model. We demonstrate that similar results are achieved 76

when applied to the server models submitted to CASP12 and CASP13. Finally, we 77

demonstrate how RFQAmodel can be used to estimate when sufficient models have been 78

generated for a particular target, enabling more efficient use of computational power. 79

Materials and methods 80

Training and Validation Sets 81

To construct our Training and Validation data sets, we used the mapping between 82

Pfam [14] domains and PDB [15] structures as available on the EBI repository in 83

February 2017. To represent each of these families, we selected the first protein chain 84

listed for that family (SI Table 1). 85
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We annotated each of the protein chains according to the 2.06 stable build of 86

SCOPe [13]. If the protein chain selected to represent a Pfam family was not annotated 87

in SCOPe, we tested all the remaining members of the family sequentially (as ordered 88

on the mapping) to maximise the number of Pfam families with SCOPe annotations (SI 89

Table 2 and SI Fig 1). 90

We excluded all families longer than 250 residues, and performed a culling and 91

cleaning process (SI Section 2) that resulted in a data set of 488 structurally diverse 92

protein domains (SI Table 3). The average length and number of effective sequences, 93

Beff , as defined in [7] (see SI Section 3), of these domains were similar to those of the 94

original PDB-mapped and SCOPe-annotated Pfam domain sets. 95

The 488 protein domains were divided into Training and Validation sets of equal size. 96

For each SCOP class, we selected two domains at a time in order of increasing Beff and 97

randomly assigned one to the Training and the other to the Validation set. We used the 98

Beff of the multiple sequence alignments used for contact prediction. While this ensured 99

that the sets have similar Beff medians and have roughly the same number of protein 100

domains for each SCOP class, the overall length and resolution distributions differed 101

between sets (SI Fig 2). In particular, proteins in the Validation set with Beff <100 102

tended to be longer than proteins on the Training set with Beff <100, which suggests 103

that the Validation set may be more challenging for protein structure prediction. 104

Protein Structure Prediction 105

To produce models for all targets in our Training and Validation sets, we used our 106

fragment-assembly protocol SAINT2 [1] (for details, see SI Section 4 and [1]) with the 107

parameters given in the original publication, with the exception of secondary structure 108

prediction. We used DeepCNF Q8 to predict secondary structure, as DeepCNF Q8 had 109

a slightly higher precision for targets with large Beff values, and results in marginal 110

improvements in fragments with predominantly loop secondary structure (see 111

SI Section 4.1). 112

In order for SAINT2 to produce the best possible model, the optimal number of 113

models to generate is 10,000 [1]. However, for the purpose of developing a quality 114

assessment protocol, we estimated that only 500 models were required to produce 115
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correct models for a sizeable number of targets (see SI Section 5). 116

We used SAINT2 to produce 500 models for each target in our Training and 117

Validation sets. We assessed the number of modelling successes - targets for which at 118

least one correct model (TM-score ≥ 0.5 [16]). was produced - as well as the TM-score 119

of the best model produced for each target. 120

CASP12 and CASP13 Test Sets 121

To test our classifier on models produced by methods other than SAINT2, and to 122

compare its performance to other quality assessment methods, we used the stage2 server 123

models used in the blind test of model quality assessment methods at CASP12 and 124

CASP13. These consist of the 150 top-ranking server models submitted for 60 targets 125

each for CASP12 and CASP13 targets. The models, model quality predictions, and 126

model quality evaluations were accessed from the CASP website 127

(http://www.predictioncenter.org/download area/). This resulted in a total of 17,976 128

models for 120 targets. The lengths of the target structures range from 41 to 863 129

residues, with an average length of 289 residues. 130

Model Validation 131

To assess the quality of the models produced by SAINT2, we used TM-align to calculate 132

TM-score [16]. We consider all models with a TM-score ≥ 0.5 to be in the correct 133

topology [17]. 134

Classification Features 135

For model classification, we used a set of 58 features, which can be divided into three 136

groups: target-specific (3), model-specific (12), and ensemble-specific (43). The 137

target-specific features are calculated from the target’s sequence, and are common to all 138

models produced for that target. The model-specific features are calculated for each 139

model, and include five existing single-model quality assessment scores, a consensus 140

method quality assessment score, two scores based on the predicted contacts, and three 141

predicted contact map alignment scores. The ensemble-specific features are summary 142

statistics (maximum, median, minimum, and spread) of our model-specific features 143
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calculated across all models produced for each target. For all methods we used SAINT2 144

models and the predicted contacts generated by metaPSICOV. We note that many of 145

the assessment scores used were not originally trained using these inputs, so their 146

performance may be worse than expected. 147

Target-specific features (3): The domain length, the Beff , and the total number 148

of predicted contacts output by metaPSICOV with a score greater than 0.5. 149

Single-model quality assessment scores (5): The final modelling score output 150

by SAINT2, and the global score output by ProQ3D and component scores ProQ2D, 151

ProQRosFAD and ProQRosCenD [4]. ProQRosCenD and ProQRosFAD are based on 152

the Rosetta centroid and full atom [5] energy functions, respectively, which were 153

calculated on relaxed models with repacked side chains. Relaxation was carried out 154

using the ab initio relax protocol of Rosetta 3.7 as described in [4]. For ranking models, 155

we have additionally considered the SAINT2 score without its contact component 156

(SAINT2 Raw); this was not included as a feature in the random forest classifier. 157

Consensus quality assessment score (2): We used the global score output by 158

Pcons [18] with standard parameters. We also include PcombC [12], a weighted sum of 159

three features: the ProQ3D global score, the Pcons consensus score, and the proportion 160

of predicted contacts present in the model (positive predictive value, PPV). 161

Contact-based features (2): The contact component of the SAINT2 score 162

(see [1] for more details) and the proportion of satisfied predicted contacts (positive 163

predictive value, PPV). Here, we considered a predicted contact to be a satisfied if the 164

C-β atoms (C-α in the case of glycine) of the two residues predicted to be in contact 165

were less than 8Å apart in the model output by SAINT2. 166

Predicted contact map alignment scores (3): We used BioPython [19] to 167

calculate an observed contact map for each model, with an 8Å distance cut-off between 168

residue C-β atoms (C-α in case of glycine). We aligned the observed contact maps to 169

the predicted contact maps produced from the output of metaPSICOV stage1. Two 170

methods of contact map alignment were tested: map align [10], and 171

EigenTHREADER [11]. Map align uses a dynamic programming algorithm to perform 172

local contact map alignment and identify consensus regions. We used as features the 173

best hit score and the best hit length produced by map align. EigenTHREADER uses 174

eigenvector decomposition and dynamic programming to align the principal eigenvectors 175
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of the two maps. For an ensemble of structures, EigenTHREADER assesses which of 176

the models is most likely to be in the same fold as the one described by the reference 177

predicted contact map, assigning a relative score per model. We used the score output 178

by EigenTHREADER for each model as a feature. 179

Ensemble-specific features (43): The maximum, minimum, median, and spread 180

(the difference between the maximum and the median) of 10 of our 12 model-specific 181

features, excluding map align’s hit length and the proportion and absolute number of 182

satisfied predicted contacts, for which only the maximum value for each target is 183

included. These features were calculated per target across all models. 184

Results 185

Modelling Results 186

Correct models were produced for 151 out of 244 protein domains in our Training set, 187

and 145 out of 244 protein domains in our Validation set. This corresponds to around 188

60% of the targets in each set, in line with numbers reported previously [1]. 189

When considering the modelling results according to three Beff bins (SI Fig 7A), our 190

results corroborate previous findings that modelling is more likely to succeed when more 191

effective sequences are available [8]. We observe a modelling success rate of 46% for our 192

Training set at Beff values below 100, and a success rate of 69% for Beff ≥ 1000. Across 193

our three Beff bins (SI Fig 7A), we observe comparable modelling results for the 194

Training and Validation sets, both in terms of the success rate and the distribution of 195

the TM-scores of the best model for each target, with marginally worse performance for 196

Validation set targets with Beff values below 100. 197

We also find that modelling success rates vary by SCOP class (SI Fig 7B). For our 198

Training set, SAINT2 produced a correct model for 85% of all-α targets, 65% of α/β 199

targets, 61% of α+β targets, and 30% of all-β targets. Comparable modelling success 200

rates and distributions of TM-score of the best models were obtained for Training and 201

Validation sets across all four SCOP classes. 202

Modelling success rates also depend on domain length (SI Fig 7C). We separated the 203

targets in our Training and Validation sets into four domain length bins (50 to 99, 100 204
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to 149, 150 to 199, 200 or more residues). As expected, modelling success rate decreases 205

as targets increase in length. For our Training set, SAINT2 produced a correct model 206

for 83% of the targets that were 50 to 99 residues-long, for 65% of targets that were 100 207

to 149 residues-long, for 41% of targets that were 150 to 199 residues-long, and 39% of 208

targets longer than 200 residues. When considering the combined effect of Beff and 209

domain length, SAINT2 failed to produce a correct model for all targets longer than 200 210

residues with a Beff < 100 (see SI Fig 8). 211

Given the effect of these three features on modelling success, it is important to 212

ensure that Training and Validation sets have similar distributions of domain length, 213

effective sequences, and SCOP classes. A validation set that is comprised of shorter 214

targets, or that contains more targets with a high Beff , or a disproportionate number of 215

α-helical targets may lead to overestimation of classification performance. 216

Comparing Quality Assessment methods 217

To assess the usefulness of including predicted contact map alignment scores as features 218

for model quality assessment, we compared these scores with ten other model quality 219

estimators: three SAINT2 scores and seven existing quality assessment scores. We 220

ranked the 500 models produced by SAINT2 for each of the 244 targets in our Training 221

set according to each of these model quality scores. For each score, we assessed the 222

number of targets for which the highest-ranking model was correct (TM-score ≥ 0.5). 223

Given that the quality of models is dependent on the availability of a sufficient number 224

of effective sequences (Beff), we stratified this comparison across three Beff bins (Fig 1). 225

We consider modelling to be a success if at least one correct model is produced for a 226

target. For Beff ≥ 1,000, SAINT2 produced correct models for 86 out of 124 targets 227

(“Total Successes” in Fig 1). The two best methods for selecting correct models in this 228

Beff bin were the SAINT2 score and EigenTHREADER’s predicted contact map score; 229

the highest-ranking models of these methods were correct (TM-score≥ 0.5) for 58 and 230

57 targets, respectively. The predicted contact potential of the SAINT2 score, 231

SAINT2 Contact, also identified correct models for 57 targets, while only 38 were 232

identified when this potential is excluded (SAINT2 Raw). Within this Beff bin, the 233

length of the map align predicted contact map alignment selected correct models for the 234
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Correct Highest Ranking Model: Training Set

Fig 1. Number of targets out of the 244 targets in our Training set for which a correct
model was produced and selected as the highest-ranked model according to 13 methods.
Three SAINT2 scores (SAINT2, SAINT2 Contact and SAINT2 Raw), seven existing
quality assessment scores (ProQ3D, ProQRosCenD, ProQRosFAD, Pcons, PcombC,
ProQ2D and PPV), and three predicted contact map alignment scores
(EigenTHREADER, Map align and map length) are shown, as well as all methods
combined (“Consensus”) and the total number of targets with a correct model (“Total
Successes”), for three Beff bins and across all bins. The total number of targets in each
Beff bin is indicated with a dashed line.

smallest number of targets, followed by PPV, the proportion of predicted contacts 235

satisfied in the model. ProQRosCenD, a score based on the centroid knowledge-based 236

energy potential Rosetta Centroid, also identified fewer correct models than the other 237

scores, with a similar performance to SAINT2 Raw. 238

When considering 100 ≤ Beff < 1,000, SAINT2 produced correct models for 48 out 239

of 83 targets (“Total Successes” in Fig 1). PcombC performed the best at identifying 240

correct models for this Beff bin, with correct highest-ranking models for 28 targets, 241

followed by the SAINT2 score and ProQ3D, each with 23 correct highest-ranking 242

models. For Beff < 100, SAINT2 produced correct models for 17 out of 37 targets. For 243

these targets ProQ2D was the most successful, selecting a correct model for eight 244

targets. Similar results were observed when considering the models output by SAINT2 245

for the Validation set (SI Fig 9). 246

As expected, these results demonstrate that methods using predicted contact 247

information perform well on targets with more sequence data available, while 248

knowledge-based scores are more informative for targets with less of this data. Overall, 249

the SAINT2 score and EigenTHREADER identified correct highest-ranking models for 250

83 targets each, more targets than any other method (Fig 1). The best three methods, 251

SAINT2, EigenTHREADER and PcombC identify correct models for different targets. 252
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Of the targets correctly identified by EigenTHREADER, 12 are not identified using 253

SAINT2, and 17 are not identified by PcombC (SI Fig 10A). Incorporating 254

EigenTHREADER scores when ranking the models produced by SAINT2 may therefore 255

improve our ability to identify correct models. While these three methods are the major 256

contributors (SI Fig 10B), we included all 12 methods into our random forest classifier 257

as all methods had some predictive power. 258

RFQAmodel: model quality assessment 259

Among the Validation set of 244 targets, 142 have a correct model within the 500 260

models produced by SAINT2. Selecting the highest-ranking model according to the 261

SAINT2 score results in a correct model for 86 targets in this set. However, as the 262

SAINT2 score cannot easily be compared between targets, it is difficult to infer for 263

which targets the highest-ranked models are correct. We have trained a classifier, 264

RFQAmodel, that assesses each model produced for a target and outputs a score, 265

between 0 and 1, that the model has the correct fold. 266

We assessed the performance of RFQAmodel on our Validation set. Using a Receiver 267

Operating Characteristic (ROC) curve, RFQAmodel achieved an area under the curve 268

(AUC) of 0.95 for classifying all models for all targets as correct or incorrect, higher 269

than all the individual component scores, including the best individual quality 270

assessment score, Pcons (0.91), EigenTHREADER (0.84), and the SAINT2 score (0.77), 271

as well as the other quality assessment scores ProQ2D (0.90), ProQ3D (0.89), 272

ProQRosFAD (0.88), and PcombC (0.79) (SI Fig 11). In practice, we are interested in 273

the classification of the highest-ranked model per target as correct or incorrect; for this 274

task, RFQAmodel also outperforms the component methods (Fig 2 and SI Fig 11B). 275

We divided the score output by RFQAmodel into four broad categories based on the 276

Training set data: correct with high (>0.5), medium (between 0.3 and 0.5), or low 277

(between 0.1 and 0.3) confidence, or predicted modelling failures (≤0.1) (SI Fig 12). 278

The models for a given target were ranked according to the RFQAmodel score, and 279

targets were categorised based on the RFQAmodel score of the highest-ranking model. 280

For each level of confidence, we assess whether the highest-ranking model (Top1) or the 281

best of the top five highest-ranking models (Top5) is correct (Fig 3). 282
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Fig 2. Classification of Validation Set targets.
The number of targets with a correct highest-ranking model (true positives, TM-score ≥
0.5) plotted against the false positive rate on a logarithmic scale, for the 244 targets in
our Validation set. Curves are shown for the six highest-performing methods in Fig 1;
curves for all component methods are shown in SI Fig 11. The grey dotted line indicates
the total number of targets that had at least one correct model.

Validation Set

Predicted Modelling Failure

High Confidence

Medium Confidence

Low Confidence

Successful targets:

142/244 (58%)

Number of correct models:

17,073/122,000 (14%) 

Top1:

P: 86/244 (35%) 

R: 86/142 (61%) 

Top5:

P:   114/244 (47%) 

R:   114/142 (80%) 

RFQAmodelMODELLING RESULTS

67

50

68

Top1   P:  52/67 (78%)    R:  52/63 (83%)

Top5   P:  60/67 (90%)    R:  60/63 (95%)

Top1   P:  21/50 (42%)    R:  21/38 (55%)

Top5   P:  30/50 (60%)    R:  30/38 (79%)

Top1   P: 13/68 (19%)    R:  13/36 (36%)

Top5   P: 21/68 (31%)     R:  21/36 (58%)

59 Top1   FN: 0/59 (0%)  

Top5   FN: 1/59 (1.7%)  

Fig 3. An overview of our classification protocol for the 244 modelling targets in our
Validation set. The results of modelling (left, Section 3.2) and model quality assessment
using RFQAmodel (right, Section 3.3) are shown. Modelling is considered successful for
a given target if at least one model is correct (TM-score ≥ 0.5). For modelling results,
models are ranked according to the SAINT2 score. For RFQAmodel results, models are
ranked according to the RFQAmodel score. The precision (P) and recall (R) of the
highest-ranked model (Top1) and the best of the top five highest-ranked models (Top5)
are shown. For predicted modelling failures, the number of false negatives (FN) are
shown.
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When the models for each target in the Validation set are ranked according to the 283

RFQAmodel score, the highest-ranking (Top1) model is correct for 86 of 244 targets. 284

This is exactly the same as the number of correct highest-ranking models when ranked 285

according to SAINT2; the difference is that RFQAmodel assigns a likelihood that each 286

model is correct. RFQAmodel predicts that modelling has failed (≤0.1) for all models 287

for 59 targets. For 5 of these targets there was at least one correct model in the 500, but 288

the highest-ranked model was not correct for any. Excluding these 59 targets reduces 289

our Validation set from 244 to 185 targets, of which 137 have a correct model. 290

The highest-ranking (Top1) model was predicted to be correct with low confidence 291

for 68 targets. This model was correct for 13 of these targets (19% precision), and 21 292

targets had a correct model in the top five (Top5) highest-ranking models (31% 293

precision). 294

The highest-ranking model was predicted to be correct with medium confidence for 295

50 targets. The highest-ranked model was correct for 21 of these targets (42% 296

precision), and the best out of the top five highest-ranking models was correct for 30 297

targets (60% precision). 298

The highest-ranking model was predicted to be correct with high confidence for 67 299

targets. This model was correct for 52 out of these 67 high-confidence targets (78% 300

precision), and the best out of the top five highest-ranking models was correct for 60 of 301

these targets (90% precision). 302

When considering the combined results for the 117 targets with highest-ranking 303

models predicted to be correct with high or medium confidence, this model was correct 304

for 73 targets (62% precision), and the best out of the top five highest-ranking models 305

was correct for 90 of these targets (77% precision). 306

Comparison to methods used in large-scale studies 307

We compared RFQAmodel to two methods that have been used to evaluate the success 308

of large-scale predictions of unknown protein structures by Michel et al. [12] and 309

Ovchinnikov et al. [10]. In the study by Michel et al., the authors used the PcombC 310

score cut-off that achieved a false positive rate (FPR) of 0.01 and 0.1 on the 311

benchmarking set to predict whether models were correct (TM-score ≥ 0.5) [12]. 312
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PcombC is one of the scores used in RFQAmodel, so it is unsurprising that 313

RFQAmodel is able to achieve better performance (Fig 2). Compared to PcombC, 314

RFQAmodel performs similarly at an FPR of 0.01, but identifies a correct model for 315

more targets at 0.1 (see Fig 2). 316

To compare RFQAmodel with the method used in Ovchinnikov et al., we calculated 317

the mean pairwise TM-score of the 10 models with the highest ProQ3RosCenD score 318

out of the 500 models generated for each target, and classified targets above 0.65 as 319

correct [10]. This method classified 21 targets as correct, of which 19 had a correct 320

highest-ranking model. A similarly high precision was achieved using ProQ3RosFAD 321

instead of ProQ3RosCenD (19 out of 22). Using RFQAmodel, a similar precision with 322

higher recall can be achieved with a cut-off of 0.7, with 26 of 29 targets having a correct 323

highest-ranking model (Fig 4, solid lines). Using the high confidence cut-off for 324

RFQAmodel we achieve 78% precision and 37% recall. At this level of recall, the 325

ProQRosCenD method achieves a precision of 36% (Fig 4, dashed lines). The difference 326

between the methods appears to be the ability of RFQAmodel to identify correctly 327

modelled targets with fewer correct models (Fig 4). 328

CASP12 and CASP13 Quality Assessment 329

RFQAmodel was trained and validated on models generated using SAINT2. In order to 330

test its performance on models generated by other methods, we used RFQAmodel to 331

classify models for the 57 CASP12 and 72 CASP13 Quality Assessment targets (see 332

Methods). We used the stage2 set: the 150 highest-ranking models per target selected 333

from the server predictions, with up to five models contributed by 93 different methods. 334

The targets are not divided into constituent domains for the evaluation of quality 335

assessment methods in CASP. As RFQAmodel is designed to assess the output of 336

template-free protein structure prediction protocols as correct or incorrect, here, we only 337

evaluate its performance on the 33 CASP12 and 34 CASP13 targets containing domains 338

classified as free-modelling targets. RFQAmodel performs well on models of the easier 339

template-based modelling targets, which tend to be globally more accurate (SI Table 4). 340

We used RFQAmodel, trained on the SAINT2 Training set, to classify models in the 341

CASP12 and CASP13 sets as either correct or incorrect. Of the 67 free-modelling 342
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Fig 4. Using convergence or RFQAmodel to identify correct models.
The TM-score of the highest-ranking model for each of the 244 targets in the Validation
set according to ProQRosCenD and RFQAmodel, against the mean pairwise TM-score
of the 10 highest-ranking models (ProQRosCenD, left) or the score of the
highest-ranking model (RFQAmodel, right). Targets with a mean pairwise TM-score
greater than 0.65 are predicted to be correct (solid line, left); a similar precision is
achieved with an RFQAmodel cut-off of 0.7 (solid line, right). A pairwise TM-score
cut-off of 0.37 (dashed line, left) achieves a similar recall to the high confidence cut-off
of RFQAmodel (dashed line, right). Targets for which fewer correct models were
generated among the 500 models are shown with lighter circles.

targets, 47 targets had at least one correct model. When classified using RFQAmodel, 343

31 targets had a high confidence highest-ranking model, of which 21 were correct (68% 344

precision, 31% recall). 345

To assess the performance against other quality assessment techniques, we compared 346

RFQAmodel to the predictions submitted to CASP13 for free-modelling targets. These 347

blind predictions were submitted between May and July 2018, and made publically 348

available in December 2018. We find that RFQAmodel performs similarly to the top 349

performing methods at classifying individual models and the highest-ranking model as 350

correct or incorrect (Fig 5). 351
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Fig 5. Classification of CASP13 free-modelling targets.
Receiver Operating Characteristic (ROC) Curves for the classification of all models into
whether they were correct (TM-score ≥ 0.5) or incorrect according to RFQAmodel and
four quality assessment scores submitted for the 34 free-modelling targets in the
CASP13 set. The area under the ROC curve (AUC) for each method is shown in
brackets. B) The number of targets with a correct highest-ranking model (true
positives) plotted against the false positive rate on a logarithmic scale. The grey dotted
line indicates the total number of targets that had at least one correct model.

Iterative model generation and quality assessment 352

The optimal number of models to generate using SAINT2 is 10,000, but RFQAmodel 353

may enable us to focus our computational efforts more efficiently by identifying the 354

targets for which fewer models are sufficient to generate good models. It may be 355

possible to improve modelling results by iteratively generating more models for the 356

predicted modelling failures and applying RFQAmodel until modelling it predicted to 357

have succeeded with the required confidence. 358

In order to assess this application, we chose five targets for which RFQAmodel 359

predicted the highest-ranking model to be correct with low confidence or modelling 360

failures based on the initial 500 models. We then iteratively generated 10,000 models in 361

intervals of 500 models; at each interval we reassessed the model ensemble and 362

compared the TM-score of the best of the top5 highest-ranking models (Fig 6). As 363

generating and assessing 10,000 models is computationally expensive, carrying out this 364

analysis on all 244 targets in the Validation set is infeasible. 365

For one target, 2FZPA, no correct models were generated, and RFQAmodel 366

classified the highest-ranking model as failed or low confidence for all ensemble sizes. 367
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Fig 6. RFQAmodel classification improves with ensemble size.
A) Six targets that were initially classified by RFQAmodel as low confidence or failed
were chosen. The TM-scores of the models are shown in boxplots, as the number of
models generated for each target is increased in increments of 500 from 500 to 10,000.
The best model (highest TM-score) is highlighted with a black circle. The TM-score of
the best of the top5 highest-ranking model according to RFQAmodel for each ensemble
size is indicated with a filled circle, coloured according to the Confidence. B) The native
structure of 2OKQA (centre) compared to the highest-ranked model according to
RFQAmodel after 500 models were generated (left) and after 5,500 models were
generated (right), at which point a high confidence RFQAmodel score was achieved.

For another target, 2CAYB, the confidence increased from low to medium confidence, 368

but a correct model was never identified. For 1IN0A, a high-confidence model was 369

identified once the ensemble size reached 4,000, and this model was correct. 370

Interestingly, if model generation continues, the quality of the highest-ranking models 371
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decreases after 6,000 models. For the remaining three targets, RFQAmodel selected 372

better models with higher confidence as the ensemble size increased (2B1QA, 2OKQA 373

and 2OSDA). For example, for 2OKQA the highest-ranked model of the initial 500 374

models had a low-confidence RFQAmodel score of 0.3 (TM-score 0.38). After 1,000 375

models were generated, the highest-ranked model had a medium-confidence score of 0.44 376

(TM-score 0.53). Once the ensemble size reaches 5,500 the highest-ranked model had a 377

high-confidence RFQAmodel score of 0.53, and a TM-score of 0.59 (Fig 6B). These 378

results demonstrate how RFQAmodel could be used to guide computational efforts and 379

thus and increase the number of targets for which we have a good predicted structure. 380

Discussion 381

We show, as have others, that both modelling and quality assessment are more likely to 382

succeed for targets that are shorter, mostly alpha-helical, or have higher Beff values 383

(e.g. SI Fig 7) [1, 8, 20]. Previous attempts at estimating quality assessment success have 384

used training and test sets that were not balanced in length and number of effective 385

sequences (e.g. [12]), which may result in inconsistent performance when applied to 386

other sets. In order to ensure as accurate an estimate of performance as possible, we 387

designed our Training and Validation sets to be well-balanced in terms of these features. 388

Using our Training set we built RFQAmodel, which uses the contact map alignment 389

scores EigenTHREADER and map align in addition to existing quality assessment 390

scores to estimate model quality. For targets with sufficient sequence information, we 391

found that EigenTHREADER identifies correct models for more targets than a number 392

of existing single-model, consensus, and hybrid model quality scores (Fig 1). Eight of 393

these targets were not captured by the two other top performing methods, SAINT2 and 394

PcombC. This indicates that predicted contact map alignment scores are, at least to 395

some extent, orthogonal to existing model quality assessment scores. 396

Unlike many existing quality assessment scores, RFQAmodel was designed to output 397

a score that indicates the likelihood that a model is correct. On our Validation set it 398

identifies, with high confidence, a single correct model for 67 of 244 targets with 78% 399

precision. RFQAmodel outperformed the component quality assessment methods, in 400

agreement with previous studies where combining methods improves 401
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performance [4, 12,21]. When compared to methods used to identify successfully 402

modelled targets in large-scale protein structure prediction studies [10, 12], RFQAmodel 403

achieved a higher recall and was able to identify successfully modelled targets with 404

fewer correct models in their ensemble. This suggests that by using RFQAmodel it may 405

be possible to identify more modelling successes in large-scale studies. 406

While RFQAmodel was developed and trained using our template-free protein 407

structure prediction protocol, SAINT2, we assessed its suitability for use with other 408

protocols. We tested RFQAmodel on ensembles of models from a large number of 409

different protocols for 56 CASP12 and CASP13 free-modelling targets. RFQAmodel 410

classified the highest-ranking model as correct with high confidence for 38% of targets 411

with 81% precision and 85% recall. While this demonstrates that RFQAmodel can be 412

used to classify models generated by methods other than SAINT2, the performance of 413

RFQAmodel may be improved by training on models from a variety of other protocols. 414

RFQAmodel was not trained for other quality assessment tasks, such as predicting 415

the absolute quality of models. Furthermore, unlike some methods (including ProQ3D 416

and PCons), RFQAmodel does not estimate the local (per-residue) quality of models. 417

However, we found that it performed comparably to the top-performing methods in 418

CASP13 at selecting a correct model for each target. 419

Finally, our protocol is able to reduce the computational cost of protein structure 420

prediction, which is a common limitation for large-scale studies. The assignment of 421

confidence enables us to identify the targets for which 500 models are sufficient to 422

generate good models with high confidence. We can then iteratively generate more 423

models for the medium, low confidence, or failed targets and apply RFQAmodel until 424

modelling is predicted to have succeeded with high confidence, focussing computational 425

efforts more efficiently. 426

Supporting information 427

SI Table 1 Properties of the 8,005 protein chains representing each of the 428

Pfam domains mapped to PDB structures. 429

SI Table 2 Properties of the 4,728 protein chains with SCOPe annotations 430
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chosen to represent unique Pfam families mapped to PDB structures. 431
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free-modelling and template-based modelling targets. 435
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