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ABSTRACT:  

CRLF2 overexpression in B-ALL patients with an IGH-CRLF2 translocation activates JAK-

STAT, PI3K and ERK/MAPK signaling pathways. Although inhibitors of these pathways are 

available, investigating alternate targets could reduce treatment-associated toxicities. 

Comparing RNA-seq from IGH-CRLF2 and non-translocated patients we defined a translocation 

gene signature. Next, we assembled a B-ALL cancer-specific regulatory network using 529 B-

ALL patient samples from the NCI TARGET database coupled with priors generated from 

ATAC-seq peak TF-motif analysis. The network was used to infer differential changes in TF 

activities predicted to control IGH-CRLF2 deregulated genes, thereby enabling identification of 

translocation-associated pathways and potential new therapeutic targets. 
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INTRODUCTION: 

 Acute lymphoblastic leukemia (ALL) is the most common cancer in children1. Historically, 

clinical criteria have driven risk stratification for these patients, however over time many genetic 

alterations have been identified as prognostic predictors. Several groups have described varied 

genetic signatures associated with pediatric ALL with the aim of elucidating their contributions to 

leukemogenesis2,3. Improved risk stratification based on genetic signature has altered treatment 

and led to significant improvements in overall survival1. However, about 20% of patients fail 

current treatment strategies or die following relapse. Moreover, adults with ALL have a worse 

prognosis and an average overall survival of 35-50%1. Therefore, it is important to gain a better 

understanding of the mechanisms by which genetic alterations drive leukemogenesis to refine 

therapies that target the disease-essential pathways involved4.  

Genetic alterations that lead to overexpression of the cytokine receptor-like factor 2 

(CRLF2) gene have been associated with a high-risk subset of pediatric patients with B-cell 

acute lymphoblastic leukemia (B-ALL). The CRLF2 gene encodes the thymic stromal 

lymphopoietin receptor (TSLPR) which forms a heterodimer with IL-7 receptor alpha (IL7RA) to 

bind TSLP5. Binding of TSLP to the IL7RA-TSLPR complex signals the phosphorylation of 

Janus kinase 1 (JAK1) and Janus kinase 2 (JAK2), leading to the activation of the JAK-STAT 

signaling pathway6. Studies have shown that stimulation of TSLP in B-ALL not only induces 

activation of the JAK-STAT pathway, but also activates the PI3K/mTOR7 and ERK/MAPK 

signaling pathways1.  

CRLF2 overexpression occurs in 5-15% of patients with B-ALL and in 50-60% of 

pediatric B-ALL patients with Down syndrome6,8. CRLF2 overexpression in B-ALL can occur 

either from a chromosomal translocation between CRLF2 and the immunoglobulin heavy chain 

locus (IGH) on chromosome 14 (IGH-CRLF2) or from an interstitial deletion of the 

pseudoautosomal region of the X/Y chromosomes resulting in the fusion of CRLF2 to the 

P2RY8 gene (P2RY8-CRLF2)9. CRLF2 deregulation very rarely occurs via activating mutations 
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of CRLF2. The IGH-CRLF2 translocation occurs in precursor cells and is thought to result from 

aberrant rejoining during V(D)J-recombination10,11. This translocation is most commonly found in 

adolescents and adult patients and is typically associated with a poor prognoses, while the 

P2RY8-CRLF2 fusion is found in younger patients1.  

CRLF2 chromosomal alterations are often accompanied by mutations in JAK1, JAK2 

and Ikaros (IKZF1) genes. Several groups have suggested that aberrant CRLF2 signaling 

cooperates with mutant JAK and IKZF1 activity to promote the development of leukemia9,12,13. 

As a result, the focus has shifted towards the use of signal transduction inhibitors (STIs) to 

target JAK-STAT, PI3K and MAPK signaling pathways1.  Although, STIs have shown promise in 

early clinical trials14-16,  broad application of signal transduction inhibitors is challenging due to 

the interconnected roles of their targets in biological processes (i.e. JAK kinases) including 

immunity and hematopoiesis17. Moreover, it has been shown that mutated JAK2 is required for 

the initiation of leukemia, but it is not necessary for its maintenance 18. Therefore, there is a 

need to more closely investigate the genome-wide impact of the IGH-CRLF2 alteration in B-ALL 

to aid in the identification of novel therapeutic targets.  

To do so, we first sought to identify transcriptional regulators that control differentially 

expressed genes associated with the IGH-CRLF2 translocation through a comparative analysis 

of translocated versus non-translocated (Non-T) IGH-CRLF2 B-ALL samples in both patients 

and cell lines. While robust genome-wide changes in gene expression were separately 

observed in patients and cell lines, only a small subset of changes were consistent amongst the 

two groups. Thus, we chose to define the IGH-CRLF2 associated gene set using only patient 

samples. We constructed a B-ALL transcriptional network to define the interactions between 

transcription factors (TFs) and the genes they regulate19-21 using 529 B-ALL patient samples 

from the NCI TARGET database. We inferred the targets of TFs linked to the gene set 

associated with the IGH-CRLF2 cohort using the Inferelator algorithm 22,23, along with RNA-seq, 

ATAC-seq, and TF-motif analysis. The network was then used to predict differential transcription 
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factor activity (TFA) in IGH-CRLF2 versus non-translocated (Non-T) samples. This approach 

enabled the identification of ten potential regulators of differentially expressed genes (including 

DNMT1, EGR1, FOXP1, ZBTB7A). The differentially expressed gene targets of these TFs are 

enriched in anticipated and novel CRLF2-associated pathways. Transcription of several of these 

gene targets (IL1RAP, LEF1, PPP1R13B, etc.) change across all patients and cell line samples. 

It is of note that these genes have been implicated in both Acute myeloid leukemia (AML)24,25 

and ALL26,27. Thus, it is plausible that the genes along with their regulators could contribute to 

the maintenance of leukemia and be potential candidates for therapeutic targeting in IGH-

CRLF2 B-ALL. The network-based approach we applied has been similarly implemented in 

several other systems to infer regulatory interactions that have been experimentally validated28-

31.   

 

RESULTS:  

Genome-wide transcriptional changes in primary IGH-CRLF2 patient samples  

Traditional chemotherapy is non-specific and targets rapidly dividing cells. As a result, 

toxicity results in injury to healthy cells, causing further morbidity and at times, can be dose-

limiting 32. To reduce overall toxicity and improve prognosis, most research has been directed 

towards understanding the underlying molecular pathology of the leukemia. In this study, we 

focused on identifying pathways associated with the IGH-CRLF2 translocation (Fig. 1a) with the 

goal of finding new potential therapeutic targets in this subset of B-ALL patients. 

Gene expression profiles associated with the IGH-CRLF2 translocation were identified 

by comparing RNA-sequencing from 17 primary B-ALL patient samples, with the translocation 

(n=13) with non-translocated (Non-T, n=4) patients. Differential analysis performed using 

DESeq233 uncovered a total of 1,179 de-regulated genes with an adjusted p-value of less than 

0.01 and |log2FoldChange| >1 (Fig. 1b). Of these 507 genes (~43%) were up-regulated and 669 

(~57%) down-regulated in the IGH-CRLF2 translocated patients. To determine whether the 
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gene expression changes were localized to the translocated chromosomes we analyzed the 

percentage of differentially expressed genes per chromosome. The results clearly demonstrate 

that expression changes are distributed across all chromosomes and there is no enrichment of 

deregulated genes on chromosome 14 or the pseudoautosomal region of X/Y (Supplementary 

Fig. 1a).  

To further analyze the changes in gene expression between the IGH-CRLF2 and the 

Non-T patient samples we performed a principal component analysis. This revealed a clear 

separation between the two groups of patients (Supplementary Fig. 1b). In addition, 

hierarchical clustering of the 1,179 differentially expressed genes not only separates the IGH-

CRLF2 and Non-T samples, but also clearly divides the IGH-CRLF2 patients into two groups, 

referred to as Group 1 and Group 2 (Fig. 1c). These two groups could not be distinguished by 

the presence or absence of activating mutations in JAK and IKZF1 which were found in most of 

the translocated cohort: 12/13 and 10/13 IGH-CRLF2 patients, respectively (Fig. 1c). As 

expected the IGH-CRLF2 translocation clearly results in the up-regulation of CRLF2 

(log2FoldChange= 5.53) in the translocated versus Non-T control patient samples as shown by 

RNA-seq tracks on IGV (Fig. 1d), suggesting activation of JAK-STAT signaling. Furthermore, 

SOCS6, a suppressor gene of cytokine signaling34, is statistically significantly down-regulated 

(log2FoldChange= -1.68) in IGH-CRLF2 samples (Supplementary Fig. 1c), further supporting 

the observation that JAK-STAT1,4 signaling is activated in these samples.  

Using the log2 fold changes of the 1,179 differentially expressed genes, ingenuity 

pathway analysis (IPA) was performed. Positive and negative z-scores indicate pathways that 

are activated or repressed respectively in the IGH-CRLF2 samples. The IPA analysis 

(Supplementary Fig.  1d) identified 20 significant pathways, the majority of which (19/20) had 

negative z-scores, indicating that the majority of the pathways are repressed. The PI3K and 

ERK pathways were included in the repressed cohort which was unexpected as activation of 

these pathways is normally linked to CRLF2 overexpression7, Additionally, the JAK-STAT 
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signaling pathway did not emerge as being statistically enriched according to the gene set we 

defined, despite the fact that translocated patients have activating mutations in JAK  genes. One 

possible explanation for this outcome is that heterogeneity between patient samples leads to 

noise in gene expression changes which blurs the analysis. In summary, analysis of RNA-seq 

data in primary patient samples identifies many significant transcriptional changes associated 

with the translocated IGH-CRLF2 chromosomal alteration. Furthermore, hierarchical clustering 

of the patient samples using the differentially expressed gene list, not only clearly distinguishes 

IGH-CRLF2 patients from Non-T, but also defines two distinct IGH-CRLF2 group of patients.  

Differential analysis between the two distinct Group 1 and Group 2 patients results in 

456 differentially expressed genes. Although pathway analysis results in no significant pathway 

enrichment we identified six differentially expressed genes involved in p53 signaling, including 

the proto-oncogene MDM2 and p53 regulator MDM4 that are down-regulated in Group 1 (Fig. 

1e). We postulated there maybe a link between p53 signaling and relapse but were not able to 

confirm whether p53 signaling in one subtype provides any advantage in this context, as there 

were 25% (1 of 4) Group 1 patients that relapsed, compared to 33% (3 of 9) of patients in Group 

2.  

 

IGH-CRLF2 patient samples have limited changes in chromatin accessibility  

To further investigate the impact of the IGH-CRLF2 translocation, we hypothesized IGH-

CRLF2 transcriptional changes could be accompanied by changes in chromatin accessibility. To 

test this hypothesis, we performed ATAC-sequencing and compared chromatin accessibility in 

IGH-CRLF2 versus Non-T patient samples (18 IGH-CRLF2 and 6 Non-T). These patient 

numbers are different to the numbers used for RNA-seq analysis as some of the patient 

samples for RNA-seq did not pass quality control. Differential analysis of all the ATAC-seq 

peaks identified 162 regions that were more accessible and 126 regions with reduced 

accessibility in the IGH-CRLF2 translocated condition (Fig. 2a). The majority of ATAC-seq 
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peaks were not significantly differential, indicating accessibility is for the most part stable 

between IGH-CRLF2 and Non-T patient samples. Significant accessibility changes were evenly 

distributed across promoters, gene bodies, and intergenic regions (Supplementary Fig. 2b). 

Differential peaks were assigned to promoters (within 3kb of TSS), UTRs, exons and 

introns of genes (Fig. 2b). About 82.6% (238) of differential ATAC-seq peaks were associated 

with genes (n=224), either on promoters or gene bodies. Of the genes that had at least one 

differential ATAC-seq peak in the promoter or gene body, 14.2% (32) were significantly 

differentially expressed in IGH-CRLF2 versus Non-T patient samples. The majority of the 

differential ATAC-seq peaks that overlap differentially expressed genes were regulated in the 

same direction, with the exception of 7 ATAC-gene pairs (Fig. 2b). In the example shown in Fig. 

2c, three significantly more accessible peaks were associated with overexpressed DPP4 in 

IGH-CRLF2 patients. Conversely, the down-regulated PKIA gene was linked to a significant 

reduction in accessibility (Supplementary Fig. 2c). We also observed several instances where 

a significant change in accessibility was linked to a gene whose expression was not affected by 

the IGH-CRLF2 translocation (Supplementary Fig. 2d). Importantly, the majority of 

transcriptional changes were not associated with significant changes in chromatin accessibility 

near the promoter or within the gene bodies (Fig. 2d), as demonstrated for the RRAS gene and 

two other examples shown in Fig. 2e, Supplementary Fig. 2e-f. Thus, we conclude that 

overall, the IGH-CRLF2 translocation leads to limited genome-wide chromatin accessibility 

changes and accessibility remains stable even at promoter regions of differentially expressed 

genes. However, we postulated that differences in transcription factor (TF) binding at stable 

ATAC-seq peaks could influence gene expression changes and turned to patient-derived cell 

lines as a model to address this question. 

 

Transcriptional changes in patient IGH-CRLF2 derived cell lines are not recapitulated in 

patient samples 
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The patient-derived cell lines used in our analysis were MHH-CALL-435 (CALL) and 

MUTZ536 (MUTZ) that harbor IGH-CRLF2 translocations, and a control non-T pre-B leukemic 

cell line, SMS-SB37 (SMS). As seen in the RNA-seq tracks of Fig. 3a, CRLF2 is clearly 

overexpressed in the IGH-CRLF2 translocated CALL and MUTZ cell lines, compared to the 

Non-T SMS control. Principal component analysis (PCA) of cell line RNA-seq samples 

(Supplementary Fig. 3a) indicates that the majority of the variance (71%) lies between IGH-

CRLF2 cell lines and Non-T cell lines, while about 26% of variance separates the two 

translocated cell lines. Thus the PCA analysis indicates that the IGH-CRLF2 translocation is the 

major cause of differences between the two conditions, consistent with what was observed in 

patient samples.  

Differential gene expression analysis of CALL versus SMS (3,045 DE genes) and MUTZ 

versus SMS (2,702 DE genes) identified thousands of differentially expressed genes (Fig. 3b), 

with roughly equivalent numbers of up and down-regulated genes in each case. The number of 

overlapping differentially expressed genes (ie those likely to be related to the translocation 

event) is shown in Fig. 3c. As with the patient samples, the gene expression changes were 

distributed across all chromosomes (Supplementary Fig. 3b).  

As shown in Fig. 3d, the log2 fold change of (CALL/SMS) and (MUTZ/SMS) 

demonstrated that about 97% of the genes were in convergent orientation (960 up-regulated, 

772 down-regulated). However, of the common 1,732 convergent differentially expressed genes 

in the cell lines, only 221 overlapped with the differentially expressed genes found in 

translocated versus non-T patient samples (Fig. 3e). Furthermore, only 181 out of the 221 

genes were in convergent orientation (Fig. 3f), indicating that the profile of gene expression 

changes in cell lines may not be the best representation of what is occurring in patients. 

Furthermore, no significantly enriched pathways were identified from the overlapping gene set.  

To identify the gene list that best separates the translocated class from the non-

translocated class, we performed PCA using the differentially expressed genes from cell lines 
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(Set 1) and patient samples (Set 2). The PCA results associated with the 1,792 differentially 

expressed genes from Set 1, demonstrate a clear separation between translocated cell lines 

and non-translocated cell lines. In contrast, the patient samples cluster together and do not 

separate according to the PC scores calculated using Set 1 genes (Fig. 3g – upper panel). In 

contrast, when the PCA associated with Set 2 was performed (1,176 differentially expressed 

genes in patients), we found a clear separation between cell lines and patients on the first 

principal component that separates the IGH-CRLF2 from Non-T condition on the second 

principal component, indicating that Set 2 genes are more representative of the effect of the 

translocation in both primary patient samples and cell line samples (Fig. 3g – lower panel).  In 

summary, we found many significant transcriptional changes in cell lines but only a subset of 

these were recapitulated in patients. On the other hand, the top 500 patient-associated 

transcriptional changes can be used to not only distinguish between patients and cell lines 

(PC1), but also clearly separate the IGH-CRLF2 samples from the Non-T samples (PC2).  

 

Chromatin accessibility changes in IGH-CRLF2 translocated cell lines are more 

numerous than those in patient samples 

 Our analyses reveal little compatibility in expression changes between IGH-CRLF2 and 

Non-T in cell lines and patient samples. To investigate this further we analyzed chromatin 

accessibility using ATAC-sequencing. Significant ATAC-seq peaks were called and a reference 

peakome of 41,111 peaks was created to include all possible ATAC-seq peaks across the three 

cell lines, CALL, MUTZ, and SMS. DESeq2 analysis on the cell line peakome identified 2,550 

altered ATAC-seq peaks between CALL and the SMS control, and 2,718 between MUTZ and 

the SMS control (Fig. 4a). The overlap between the two comparisons identified 1,396 

differentially accessible ATAC-seq peaks (Fig. 4b), of which 99.7 % (1392/1396) were in 

convergent orientation (Fig. 4c). This number is incompatible with the total number of 

differentially accessible ATAC-seq peaks (288) identified in patient samples. However, we 
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postulated that regions that were changing in patients should change similarly in cell lines. To 

determine this, we ranked all differential ATAC-seq peaks in patient samples (Fig. 2a) according 

to fold change and adjusted p-value, and took the 162 most accessible peaks and 126 least 

accessible peaks in IGH-CRLF2 patient samples and calculated the ATAC signal of the cell 

lines at these regions. The limited alterations in accessibility in patients were weakly 

recapitulated in cell lines as shown in Fig. 4d However, compared to the stability of ATAC-seq 

peaks in patients, we observed more alterations in acessbility in cell lines. This finding further 

supports the conclusion that using cell lines as a model to study the IGH-CRLF2 translocation is 

not ideal. Therefore, all the downstream analysis focused solely on the transcriptional changes 

identified in patient samples. 

 

Construction of a B-ALL regulatory network using ATAC-motif derived priors 

 CRLF2 overexpression activates a signaling cascade that involves many TF regulators 

and gene targets. Although, we identified a subset of gene expression changes that could be 

important for the pathogenesis of the leukemia, it is not clear how all of these genes are 

regulated and connected. Here, our aim was to first identify which TFs could potentially be 

regulating the differentially expressed genes we identified, and second to infer the relationship 

between these TFs and their target genes. To address this, we performed TF-motif analysis, 

using FIMO38, at ATAC-seq peaks that fall within promoter regions (20kb upstream of TSS) of 

all genes genome-wide. We used a hyper-geometric test to test for enrichment of TF-motifs at 

differentially expressed genes, which resulted in 102 unique significant TF motifs enriched at 

significantly up- and down-regulated genes with four motifs DMRTC2, DUXA, PITX1, and PITX3 

were found in both sets (Fig. 5a). Thus, motif enrichment analysis resulted in a list of 102 

unique potential TF regulators that could be important for the regulation of the IGH-CRLF2 

associated gene signature.  
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To better understand the relationship between the candidate TF regulators identified in 

Fig. 5a and the genes they potentially regulate, we sought to infer a transcriptional regulatory 

network using the Inferelator algorithm22,23. The main limitation of network inference is the 

sample size, to model transcriptional interactions in a B-ALL specific context requires a large 

dataset that included hundreds of B-ALL patient samples, not limited to samples with an IGH-

CRLF2 rearrangement. Making use of the TARGET initiative we analyzed 529 B-ALL RNA-seq 

samples and obtained a normalized gene expression matrix that could be used for the 

construction of a B-ALL specific regulatory network.  

Recent studies have incorporated prior information of TF target genes from different data 

types, like ChIP-seq, ATAC-seq, and TF-motif analysis to considerably improve network 

inference 28-30,39. Here, we focused on combining chromatin accessibility data together with TF-

motif analysis of the IGH-CRLF2 cohort to generate priors and infer the B-ALL network (Fig. 

5b). We selected only regulatory interactions of TFs that were significantly enriched at 

promoters of differentially expressed genes between IGH-CRLF2 and Non-T patient samples 

(102 TFs – Fig. 5a). Transcription factor activities estimated using the ATAC-seq motif derived 

priors and the gene expression matrix obtained from the TARGET database were used for the 

Inferelator algorithm (Fig. 5b). Finally, a B-ALL specific regulatory network involving 102 TFs 

and 37,086 interactions with combined confidences > 0.5 was inferred. The number of gene 

targets inferred for each individual TF is shown in Supplementary Fig. 4a, and the number of 

differentially expressed gene targets in the IGH-CRLF2 cohort are shown in Supplementary 

Fig. 4b.  

 

Defining a sub-regulatory network with TFs affected by CRLF2 alteration 

 Transcriptional regulatory networks shed light on the relationship between transcription 

factors (TFs) and their gene targets. Here, we constructed a B-ALL specific regulatory network 

involving 102 TFs that may be important regulators of the IGH-CRLF2 gene signature. To 
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narrow down the list, we created a sub-network and identified TF regulators in the IGH-CRLF2 

cohort that were altered either at the mRNA level or the protein activity level. First, we analyzed 

the expression levels of all genes encoding the 102 TF regulators and identified five TF 

regulators that were significantly differentially expressed between IGH-CRLF2 and Non-T 

patients (Supplementary Fig.  4c). Next, we determined TFs that had differences in their 

activity in the IGH-CRLF2 cohort. Transcription factor activity (TFA) is commonly estimated from 

mRNA levels, however since posttranslational modifications can influence TF activity, use of 

mRNA as a proxy for TFA is not the best approach. If prior knowledge of interactions involving 

TFs and their target genes is available it can considerably improve TFA estimation and network 

inference28,30. Thus, to estimate the activities of the 102 TFs identified from motifs of significantly 

up- and down-regulated genes in the IGH-CRLF2 versus Non-T patients, a normalized gene 

expression matrix was used. This was combined with priors of TF-gene interactions identified 

from the inferred B-ALL regulatory network (Fig. 5b). Sixteen TFs had significant differences in 

the mean estimated TFA in the IGH-CRLF2 cohort (Supplementary Fig. 4b) and five had 

significantly altered levels of expression giving a total of twenty significant TF regulators 

(ZNF713 was identified in both analyses (Fig. 5c). TFs with no significant differences in mean 

TFA are shown in Supplementary Fig. 5a. We note that many TFs with significantly altered 

activity are implicated in cancer. For instance, FOXP1, a member of the forkhead family of 

transcription factors is known to play important roles in B-cell development and lymphoid 

malignancies40 and could therefore potentially contribute to tumorigenesis in B-ALL patients with 

the IGH-CRLF2 alteration.  

We previously suggested that heterogeneity between patients could lead to noise in the 

IGH-CRLF2 gene signature. To filter gene expression changes we focused on inferred target 

genes of TFs that are affected by CRLF2 overexpression, either at the transcriptional level or TF 

activity level. The 6,545 regulatory interactions in Fig. 5c describe the relationship between 

significantly differential TFs and their gene targets. Of these, 387 interactions are regulatory 
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interactions involving differentially expressed genes (329 out of a total of 1177 unique genes - 

28%) in the IGH-CRLF2 versus Non-T patient cohort (Fig. 6a,b). We define the filtered list of 

329 differentially expressed genes and their twenty TF regulators as the CRLF2 specific sub-

network (Fig. 6c). The number of differentially expressed gene targets for each TF regulator is 

shown in Supplementary Fig. 6a. As seen in Supplementary Fig. 6b, several differentially 

expressed gene targets are regulated by more than one TF.  

 

Differentially expressed gene targets of TFs with predicted altered activity are enriched in 

expected and novel CRLF2-associated pathways 

 We performed pathway analysis focusing on the differentially expressed gene targets in 

the CRLF2-altered sub-network (Fig. 7a) and identified 21 enriched pathways including the 

anticipated activation of canonical JAK-STAT, PI3K, and ERK pathways. Thus, in contrast to our 

initial analysis which focused on all differentially expressed genes in the IGH-CRLF2 

translocated versus Non-T patient samples, we were able to identify known CRLF2-associated 

pathways including the JAK-STAT signaling pathway. These findings validate the approach 

taken in order to identify a more CRLF2-relevant differentially expressed gene list. In Fig. 7a, 

differentially regulated genes (33) are labeled and connected with the appropriate pathway. For 

example, PI3K up-regulation of signaling is linked to the differential expression of SOCS6, 

RALB, RRAS, and PTPN6. Additionally, the FLT3 signaling41,42 pathway, which is known to be 

associated with CRLF2 overexpression, is identified as being upregulated.  

The other pathways identified by our analyses could also be playing an important role in 

CRLF2-overexpressing B-ALL. As such, we wanted to define a handful of interesting genes that 

could have the highest potential as therapeutic targets. For this, we compared all 33 

differentially expressed genes in the patient samples and in each pairwise cell line comparison 

(CALL versus SMS, and MUTZ versus SMS). Although, we previously found that patient-derived 

transcriptional changes and cell line-derived transcriptional changes do not strongly overlap, 
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there are some patient-derived transcriptional changes that are recapitulated in the cell lines. 

Thus, we compared log2 fold changes and significance of the 33 differentially expressed genes 

across all patient and cell line comparisons (Fig. 7b) and identified six common genes. 

Upregulation of IL1RAP, LEF1, CD79B, CTGF, and repression of PPM1H, PPP1R13B was 

robust across all IGH-CRLF2 patient and cell lines. Previous studies24-27,43,44 implicate the 

majority of these genes in hematologic malignancies but their affect on IGH-CRLF2 B-ALL is not 

known. Therefore, analysis of the changes in TF activity and gene target mRNA level in the 

CRLF2 affected sub-network identified a list of genes that are strong candidates for targeted 

therapies in IGH-CRLF2 translocated leukemia.  

 

Discussion 

Patients with B-ALL who carry the IGH-CRLF2 translocation are at increased risk for 

refractory disease and relapse. This alteration leads to CRLF2 overexpression and activation of 

JAK-STAT and other associated pathways1. Available treatments include non-specific cytotoxic 

chemotherapies which are often effective but responsible for many of the toxicities seen in these 

patients. The addition of Tyrosine-Kinase Inhibitors and JAK inhibitors in the treatment of 

leukemias has allowed for targeted treatments with fewer toxicities, however, alternate pathway-

specific therapies are needed to further tailor treatment. To better study the impact of the IGH-

CRLF2 translocation, we analyzed RNA-seq from rearranged IGH-CRLF2 and Non-T B-ALL 

patient samples and identified hundreds of differentially expressed genes, but were unable to 

link these changes to the expected pathway alterations associated with the IGH-CRLF2 

translocation. We subsequently analyzed ATAC-seq data to evaluate the effect of this genetic 

alternation on DNA accessibility. We found accessibility to be mostly stable near the promoters 

of genes with altered gene expression and conclude that chromatin accessibility is not driving 

changes in the transcriptional landscape. Instead, we inferred binding of specific proteins at 

accessible sites at differentially expressed gene promoters that influence transcription. 
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Leveraging hundreds of available B-ALL RNA-seq samples from the TARGET database along 

with prior knowledge of TF-motifs at accessible promoters, we inferred a global B-ALL network. 

Deeper investigation of the TF regulators and their targets in this network identified a candidate 

list of potential therapeutic targets.  

 IL1RAP, one of the significantly overexpressed candidates we identified in IGH-CRLF2  

rearranged patients, encodes a component of the interleukin complex. Upregulation of this gene 

is known to occur in Acute myeloid leukemia (AML), another lymphoid malignancy associated 

with poor prognosis25. Using antibodies targeting the IL1RAP receptor expressed on the surface 

of immature AML cells, Agerstam et al. demonstrated clear antileukemic effects in xenograft 

models.. Targeting IL1RAP also blocks IL-1 signaling and inhibits proliferation of human AML 

cells25. Using antibodies, RNA interference, and deletion of IL1RAP, a more recent study 

demonstrated it was possible to inhibit pathogenesis in vivo and in vitro without disrupting 

normal hematopoietic function24. IL1RAP plays an important role in potentiating AML cells, and 

there is strong evidence for its therapeutic effects in AML. However, its function in B-ALL is not 

known.  

 Other candidates, LEF1 and PPP1R13B have also been implicated in cancer. Lymphoid 

enhancer-binding factor 1, LEF1, is a transcription factor that acts downstream of the Wnt/β-

catenin signaling pathway. This TF can independently regulate gene expression and is 

necessary for stem cell maintenance and organ development26. Disrupted LEF1 is associated 

with cancer progression and proliferation of cells in ALL, chronic lymphocytic leukemia (CLL), 

Burkitt lymphoma (BL), and colorectal cancer (CRC)26. In particular, one study clearly shows 

high expression of LEF1 associated with shorter relapse-free survival (RFS) in B-ALL27. Overall, 

this gene is considered a biomarker for patient prognosis in many hematological malignancies. 

Though, we now provide evidence suggesting that it has a specific role in leukemogeneis in 

translocated IGH-CRLF2 patients. Additionally, PPP1R13B, another candidate target, encodes 

a member of the apoptosis stimulating p53 family of proteins (ASPP), this gene is known to be 
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repressed in ALL and its reduced expression is due to hypermethylation of the PPP1R13B gene 

promoter43,44.  

DNA methylation is associated with transcriptional repression and is maintained by the 

DNMT1 protein. The DNMT1 motif was one of the top regulators identified via motif enrichment 

analysis at differentially expressed gene promoters. The role of DNMT1 as a transcription factor 

is not clear, however, it still may have regulatory potential through its function in maintaining 

DNA methylation and in particular for patients with the IGH-CRLF2 translocation. For instance, 

Loudin et al. studied transcription and methylation profiles in overexpressing CRLF2 ALL 

patients with Down syndrome. Their methylation profiles indicate high methylation levels 

correlate with reduced gene expression including genes involved in cytokine-receptor 

interactions45. We hypothesize that methylation could be playing a role in this context.  

Overall, we have investigated the transcriptional impact of CRLF2 overexpression in a 

high-risk subset of B-ALL patients. Using an integrative approach, we derived regulatory 

interactions that have identified strong candidates for targeted therapies in B-ALL patients with 

an IGH-CRLF2 translocation or other leukemias. IL1RAP, LEF1, and PPP1R13B are amongst 

the most interesting candidates as there is strong evidence for their role in hematological 

malignancies. The strategy we have used here can further be adapted to elucidate important 

regulators responsible for additional subsets of B-ALL and other challenging pediatric 

malignancies.  

 

 
Methods 
 
All methods are available in supplemental note section of supplemental information 
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Figure Legends 
 
Fig. 1. Genome-wide transcriptional changes in primary IGH-CRLF2 patient samples. a, 

Schematic of IGH-CRLF2 translocation between chromosome 14 and chromosome X/Y. b, 

Volcano plot of the differentially expressed genes (FDR=5%, |log2 fold change| >1) between 

IGH-CRLF2 patients and Non-T patients. Red points and blue points correspond to up- and 

down regulated genes (n=507 and 669, respectively) in the IGH-CRLF2 patient samples. c, 

Heatmap of 1,176 differential expressed genes from the 17 patient samples, with known 

information corresponding to B-ALL associated variants and other metadata indicated at the top 
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of the heatmap. d, Screenshot of RNA-seq tracks for Non-T, IGH-CRLF2 Group 1, and IGH-

CRLF2 Group 2 at CRLF2 locus. e, Volcano plot of the differentially expressed genes between 

IGH-CRLF2 Group 1 Group 2 patients. Red and blue points correspond to up- and down-

regulated (n=77 and 379, respectively). 

 

Fig. 2. IGH-CRLF2 patient samples have limited changes in chromatin accessibility. a, 

Heatmap of 162 more accessible ATAC-seq peaks in IGH-CRLF2 patients (purple bar) and 126 

less accessible ATAC-seq peaks in IGH-CRLF2 patients. b, Differentially accessible peaks 

(n=36) linked to differentially expressed genes (n=32) and the log2 fold change of gene 

expression (x-axis) plotted against the log2 fold change of ATAC-seq reads (y-axis). Linked 

genes are labeled and colored according to genomic annotation. c, IGV screenshot of ATAC-

seq tracks at up-regulated DPP4 gene across all patients. The highlighted region indicates 

significantly more accessible ATAC-seq peaks. d, Average ATAC-seq signal of Non-T (blue) 

and IGH-CRLF2 (red) patients at 631 ATAC-seq peaks at up-regulated gene promoters in IGH-

CRLF2 patients (upper panel), and 706 ATAC-seq peaks at down-regulated gene promoters in 

IGH-CRLF2 patients (lower panel). e, IGV screenshot of ATAC-seq tracks at up-regulated 

RRAS gene across all patients, orange highlighted region indicates ATAC-seq region with no 

significant difference. 

 

Fig. 3. Transcriptional changes in patient IGH-CRLF2 derived cell lines are not 

recapitulated in patient samples. a, IGV screenshot of RNA-seq tracks at CRLF2 gene on 

chromosome Y in CALL, MUTZ, and SMS cell lines. CALL and MUTZ samples harbor the IGH-

CRLF2 translocation whereas the control cell line SMS does not. b, Number of differential 

expressed genes between IGH-CRLF2 cell line samples (CALL and MUTZ) compared to SMS 

control, red and blue bars indicate up- and down-regulated genes in CALL and MUTZ. c, 

Overlap of differentially expressed gene sets between CALL and MUTZ compared to SMS 
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control (1792 common differentially expressed genes) d, Scatter plot of the 1,792 common 

genes plotting log2 fold change of CALL and MUTZ (y and y-axis, respectively) and log2 fold 

change of over SMS control. e, Overlap of differentially expressed genes (221) between cell 

lines (Set 1) and patient samples (Set 2). f, Scatterplots of log2 fold change of RNA-seq counts 

of translocated cell lines (CALL and MUTZ) over SMS control (x-axis) plotted against log2 fold 

change of IGH-CRLF2 patient over Non-T patient RNA-seq counts (y-axis). Red and blue points 

indicate common convergent up- and down-regulated genes (n=120 and 61, respectively) in cell 

line and patient samples. g, Principal component analysis of all patient and cell line samples 

computed according to the differentially expressed genes in cell lines (Set 1) (upper panel) and 

patients (Set 2). Cell lines and patient samples are clearly separated on the first principal 

component, while translocated and non-translocated samples cluster according to condition on 

the second principal component (highlighted by red ellipses).   

 

Fig. 4. Chromatin accessibility changes are more numerous in cell lines than patient 

samples. a, Number of differential ATAC-seq peaks between IGH-CRLF2 cell line samples 

(CALL and MUTZ) compared to SMS control, red and blue bars indicate increased and 

decreased peaks in CALL and MUTZ. b, Overlap of ATAC-seq peaks between CALL and MUTZ 

indicate 1,396 -seq peaks commonly change in both CALL and MUTZ compared to SMS 

control. c, Scatter plot of the 1,396 ATAC-seq peaks showing log2 fold change of CALL and 

MUTZ (y- and x-axis, respectively) over SMS control. d, Average ATAC-seq signal of Non-T 

patients (blue), IGH-CRLF2 patients (red), SMS cell line samples (orange), CALL cell line 

samples (green), MUTZ cell line samples (purple) at 162 and 126 significantly increased and 

decreased peaks (upper and lower panels, respectively). Heatmaps show average signal 1kb 

on either side of the midpoint of each ATAC-seq peak, .  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/654418doi: bioRxiv preprint 

https://doi.org/10.1101/654418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Fig. 5. Inferred B-ALL network identifies significant TFs in the IGH-CRLF2 patient cohort. 

a, Significantly enriched TF motifs (102) at accessible regions 20 kb upstream of the promoters 

of differentially up and down expressed genes. Plot indicates –log10(p-value) on x-axis obtained 

from the hyper-geometric test performed to evaluate enrichment (p-value <0.05) of a particular 

TF motif. Blue and red bars indicate motif enrichment at down- and up-regulated genes, 

respectively. b, Workflow for construction of B-ALL regulatory network. Inferelator algorithm was 

used to infer a regulatory network with ATAC-motif derived priors and 529 RNA-seq B-ALL 

patient samples from the TARGET database. Transcription Factor Activity (TFA) was calculated 

using the prior matrix and TARGET gene expression matrix for enriched TF motifs at 

differentially expressed genes in the IGH-CRLF2 cohort. The resulting network consists of 102 

TFs and 37,086 significant regulatory interactions with combined confidences > 0.5. c, Filtered 

B-ALL network involving regulatory interactions between significant TFs and their gene targets. 

TFs are the source nodes labeled in black and the gene targets are the target nodes in blue. 

The size of the source nodes reflects the number of targets each TF has.  TF activation and 

repression of a gene are represented by red and blue sedge, respectively.  

 

Fig. 6. CRLF2 specific sub-network depicting significant TFs and their differentially 

regulated target genes. a, Pie chart representing the percentage of differentially expressed 

genes controlled by TFs affected by CRLF2 overexpression, either at the transcriptional level or 

TF activity level (387). b, Pie chart representing the percentage of differentially expressed 

genes (329) in the IGH-CRLF2 sub-network controlled by TFs with significantly altered 

expression or activity. c, CRLF2 specific sub-network depicting significant TFs and their 

differentially regulated target genes. TFs are labeled in black and their respective gene targets 

are connected to them by red and blue edges indicating the type of regulation 

(activation/repression).  
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Fig. 7. Differentially expressed gene targets of predicted significant TFs are enriched in 

expected and novel CRLF2-associated pathways. a, Significant pathways (–log10(B-H p-

value > 0.5 & |z-score| > 1) identified from analysis of differentially expressed gene targets in 

the CRLF2 specific sub-network are shown at the top of the figure, ranked by the –

log10(Benjamini-Hochberg p-value). Z-score in the bar plot indicates sign of the pathway with red 

and blue representing up- and down-regulation of the pathway. Differentially expressed genes 

enriched in these pathways are indicated by purple bins while green bins indicate TF-gene 

interactions. b, Positive and negative log2 fold changes of all the differentially expressed genes 

in IGH-CRLF2 vs Non-T patients and cell lines (CALL vs SMS, MUTZ vs SMS) are indicated as 

red (positive) and blue (negative) bins with significantly deregulated genes labeled with white 

stars.  
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