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Abstract 13 

This work considers a class of biologically plausible cost functions for neural networks, where 14 
the same cost function is minimised by both neural activity and plasticity. We show that such 15 
cost functions can be cast as a variational bound on model evidence under an implicit 16 
generative model. Using generative models based on Markov decision processes (MDP), we 17 
show, analytically, that neural activity and plasticity perform Bayesian inference and learning, 18 
respectively, by maximising model evidence. Using mathematical and numerical analyses, we 19 
then confirm that biologically plausible cost functions—used in neural 20 
networks—correspond to variational free energy under some prior beliefs about the 21 
prevalence of latent states that generate inputs. These prior beliefs are determined by 22 
particular constants (i.e., thresholds) that define the cost function. This means that the Bayes 23 
optimal encoding of latent or hidden states is achieved when, and only when, the network’s 24 
implicit priors match the process that generates the inputs. Our results suggest that when a 25 
neural network minimises its cost function, it is implicitly minimising variational free energy 26 
under optimal or sub-optimal prior beliefs. This insight is potentially important because it 27 
suggests that any free parameter of a neural network’s cost function can itself be 28 
optimised—by minimisation with respect to variational free energy. 29 

 30 

Keywords: free-energy principle, variational Bayesian inference, learning algorithm, synaptic 31 
plasticity, Markov decision process, blind source separation 32 

 33 

1. Introduction 34 

Cost functions are ubiquitous in scientific fields that entail optimisation—including physics, 35 
chemistry, biology, engineering, and machine learning. Furthermore, any optimisation 36 
problem that can be specified using a cost function can be formulated as a gradient descent. 37 
In the neurosciences, this enables one to treat neuronal dynamics and plasticity as an 38 
optimisation process (Marr, 1969; Albus, 1971; Schultz et al., 1997; Sutton & Barto, 1998; 39 
Linsker, 1988; Brown et al., 2001). These examples highlight the importance of specifying a 40 
problem in terms of cost functions, from which neural and synaptic dynamics can be derived. 41 
In other words, cost functions provide a formal (i.e., normative) expression of the purpose of 42 
a neural network and prescribe the dynamics of that neural network. Crucially, once the cost 43 
function has been established and an initial condition has been selected, it is no longer 44 
necessary to solve the dynamics. Instead, one can characterise the neural network’s 45 
behaviour in terms of fixed points, basin of attraction, and structural stability—based on and 46 
only on the cost function. In short, it is important to identify the cost function to understand 47 
the dynamics, plasticity, and function of a neural network. 48 

A ubiquitous cost function in neurobiology, theoretical biology, and machine learning is 49 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 1, 2019. ; https://doi.org/10.1101/654467doi: bioRxiv preprint 

https://doi.org/10.1101/654467


 3 

model evidence, or equivalently, marginal likelihood or surprise; namely, the probability of 50 
some inputs or data under a model of how those inputs were generated by unknown or 51 
hidden causes. Generally, the evaluation of surprise is intractable. However, this evaluation 52 
can be converted into an optimisation problem by inducing a variational bound on surprise. 53 
In machine learning, this is known as an evidence lower bound (ELBO), while the same 54 
quantity is known as variational free energy in statistical physics and theoretical 55 
neurobiology. 56 

Variational free energy minimisation is a candidate principle that governs neuronal activity 57 
and synaptic plasticity (Friston et al., 2006; Friston, 2010). Here, surprise reflects the 58 
improbability of sensory inputs given a model of how those inputs were caused. In turn, 59 
minimising variational free energy, as a proxy for surprise, corresponds to inferring the 60 
(unobservable) causes of (observable) consequences. To the extent that biological systems 61 
minimise variational free energy, it is possible to say that they infer and learn the hidden 62 
states and parameters that generate their sensory inputs (Helmholtz, 1925; Knill & Pouget, 63 
2004; DiCarlo et al., 2012) and consequently predict those inputs (Rao & Ballard, 1999; 64 
Friston, 2005). This is generally referred to as perceptual inference based upon an internal 65 
generative model about the external world (Dayan et al., 1995; George & Hawkins, 2009; 66 
Bastos et al., 2012). 67 

Variational free energy minimisation provides a unified mathematical formulation of these 68 
inference and learning processes in terms of self-organising neural networks that function as 69 
Bayes optimal encoders. Moreover, organisms can use the same cost function to control their 70 
surrounding environment by sampling predicted (i.e., preferred) inputs. This is known as 71 
active inference (Friston et al., 2011). The ensuing free-energy principle suggests that active 72 
inference and learning are mediated by changes in neural activity, synaptic strengths, and the 73 
behaviour of an organism to minimise variational free energy, as a proxy for surprise. 74 
Crucially, variational free energy and model evidence rest upon a generative model of 75 
continuous or discrete hidden states. A number of recent studies have used Markov decision 76 
process (MDP) generative models to elaborate schemes that minimise variational free energy 77 
(Friston, FitzGerald et al., 2016; Friston, FitzGerald et al., 2017; Friston, Parr et al., 2017). This 78 
minimisation reproduces various interesting dynamics and behaviours of real neuronal 79 
networks and biological organisms. However, it remains to be established whether 80 
variational free energy minimisation is an apt explanation for any given neural network, as 81 
opposed to the optimisation of alternative cost functions. 82 

In principle, any neural network that produces an output or a decision can be cast as 83 
performing some form of inference, in terms of Bayesian decision theory. On this reading, 84 
the complete class theorem suggests that any neural network can be regarded as performing 85 
Bayesian inference under some prior beliefs; therefore, it can be regarded as minimising 86 
variational free energy. The complete class theorem (Wald, 1947; Brown, 1981) states that 87 
for any pair of decisions and cost functions, there are some prior beliefs (implicit in the 88 
generative model) that render the decisions Bayes optimal. This suggests that it should be 89 
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theoretically possible to identify an implicit generative model within any neural network 90 
architecture, which renders its cost function a variational free energy or ELBO. In what 91 
follows, we show that such identification is possible for a fairly canonical form of a neural 92 
network and a generic form of a generative model. 93 

In brief, we adopt a reverse engineering approach to identify a plausible cost function for 94 
neural networks—and show that the resulting cost function is formally equivalent to 95 
variational free energy. Here, we define a cost function as a function of sensory input, neural 96 
activity, and synaptic strengths and suppose that neural activity and synaptic plasticity 97 
follows a gradient descent on the cost function. For simplicity, we consider single-layer 98 
feed-forward neural networks comprising firing rate neuron models and focus on blind 99 
source separation (BSS); namely, the problem of separating sensory inputs into multiple 100 
hidden sources or causes (Belouchrani et al., 1997; Cichocki et al., 2009; Comon & Jutten, 101 
2010), which provides the minimum setup for modelling causal inference. Previously, we 102 
observed BSS performed by in vitro neural networks (Isomura et al., 2015) and reproduced 103 
this self-supervised process using an MDP and variational free energy minimisation (Isomura 104 
& Friston, 2018). These works suggest that variational free energy minimisation offers a 105 
plausible account of the empirical behaviour of in vitro networks. 106 

In this work, we ask whether variational free energy minimisation can account for the 107 
normative behaviour of a canonical neural network that minimises its cost function, by 108 
considering all possible cost functions, within a generic class. Using mathematical analysis, 109 
we identify a class of cost functions—from which update rules for both neural activity and 110 
synaptic plasticity can be derived—when a single-layer feed-forward neural network 111 
comprises firing rate neurons whose firing intensity is determined by the sigmoid activation 112 
function. The gradient descent on the ensuing cost function naturally leads to Hebbian 113 
plasticity with an activity-dependent homeostatic term. We show that these cost functions 114 
are formally homologous to variational free energy under an MDP. Finally, we discuss the 115 
implications of this result for explaining the empirical behaviour of neuronal networks, in 116 
terms of free energy minimisation under particular prior beliefs. 117 

 118 

2. Methods 119 

In this section, we first derive the form of a variational free energy cost function under a 120 
specific generative model; namely a Markov decision process1. We will go through the 121 
derivations carefully, with a focus on the form of the ensuing Bayesian belief updating. The 122 

                                                
1 Strictly speaking, the generative model used in this paper is a hidden Markov model (HMM) because we do 

not consider probabilistic transitions between hidden states that depend upon control variables. However, for 

consistency with the literature on variational treatments of discrete state space models, we retain the MDP 

formalism; noting that we are using a special case (with unstructured state transitions). 
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form of this update will re-emerge later, when reverse engineering the cost functions implicit 123 
in neural networks. This section starts with a description of Markov decision processes—as a 124 
general kind of generative model—and then considers the minimisation of variational free 125 
energy under these models. 126 

2.1 Generative models. Under an MDP model (Fig. 1A), a minimal BSS setup (in a 127 
discrete-space) reduces to the likelihood mapping from 𝑁" hidden sources or states 𝑠$ ≡128 

&𝑠$
((), … , 𝑠$

(,-).
/

 to 𝑁0 observations 𝑜$ ≡ &𝑜$
((), … , 𝑜$

(,2).
/

. Each source and observation 129 

takes a value of one (ON state) or zero (OFF state) at each time step; i.e., 𝑠$
(3), 𝑜$

(4) ∈ {1,0}. 130 

Throughout this paper, j denotes the j-th hidden state, while i denotes the i-th observation. 131 

The probability of 𝑠$
(3)  follows a categorical distribution 𝑃 &𝑠$

(3). = Cat?𝐷(3)A , where 132 

𝐷(3) ≡ &𝐷(
(3), 𝐷B

(3). ∈ ℝD with 𝐷(
(3) + 𝐷B

(3) = 1. 133 

The probability of an outcome is determined by the likelihood mapping from all hidden 134 

states to each kind of observation in terms of a categorical distribution, 𝑃&𝑜$
(4)|𝑠$, 𝐴(4). =135 

Cat?𝐴(4)A. Here, each element of the tensor 𝐴(4) ∈ ℝD×DI-  parameterises the probability 136 

that 𝑃&𝑜$
(4) = 𝑘|𝑠$ = 𝑙. , where 𝑘 ∈ {1,0}  are possible observations and 𝑙 ∈ {1,0},-  137 

encodes a particular combination of hidden states. The prior distribution of each column of 138 

𝐴(4), denoted by 𝐴∙N⃗
(4), has a Dirichlet distribution 𝑃 &𝐴∙N⃗

(4). = Dir &𝑎∙N⃗
(4). with concentration 139 

parameter 𝑎∙N⃗
(4) ∈ ℝD. We use Dirichlet distributions, as they are tractable and widely used 140 

for random variables that take a continuous value between 0 and 1. Furthermore, learning 141 
the likelihood mapping leads to biologically plausible update rules, which have the form of 142 
associative or Hebbian plasticity: please see below and (Friston et al., 2016) for details. 143 

We use 𝑜S ≡ (𝑜(,… , 𝑜$) and 𝑠̃ ≡ (𝑠(, … , 𝑠$) to denote sequences of observations and 144 
hidden states, respectively. With this notation in place, the generative model (i.e., the joint 145 
distribution over outcomes, hidden states, and the parameters of their likelihood mapping) 146 
can be expressed as 147 

𝑃(𝑜S, 𝑠̃, 𝐴) = 𝑃(𝐴)U𝑃(𝑜V|𝑠V,𝐴)𝑃(𝑠V)
$

VW(

 148 
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=U𝑃?𝐴(4)A
,2

4W(

⋅UYU𝑃&𝑜V
(4)|𝑠V, 𝐴(4).

,2

4W(

U𝑃 &𝑠V
(3).

,-

3W(

Z
$

VW(

. (1) 149 

Throughout this paper, 𝑡 denotes the current time, while 𝜏 denotes an arbitrary time from 150 
the past to the present, 1 ≤ 𝜏 ≤ 𝑡. 151 

 152 

 153 

Figure 1. Comparison between an MDP scheme and a neural network. (A) MDP scheme 154 
expressed as a Forney factor graph (Forney, 2001; Dauwels, 2007) based upon the 155 
formulation in (Friston, Parr et al., 2017). In this BSS setup, the prior D determines hidden 156 
states st, while st determines observation ot through the likelihood mapping A. Inference 157 
corresponds to the inversion of this generative process. Here, 𝐷∗ indicates the true prior 158 
while D indicates the prior under which the network operates. If 𝐷 = 𝐷∗, the inference is 159 
optimal; otherwise, it is biased. (B) Neural network comprising a single layer feed-forward 160 
network with a sigmoid activation function. The network receives sensory inputs 𝑜$ =161 

&𝑜$
((), … , 𝑜$

(,2).
/

 that are generated from hidden states 𝑠$ = &𝑠$
((), … , 𝑠$

(,-).
/

 and outputs 162 

neural activities 𝑥$ = ?𝑥$(, … , 𝑥$,aA
/

. Here, 𝑥$3  should encode the posterior expectation 163 

about a binary state 𝑠$
(3). 164 

 165 
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2.2 Minimisation of variational free energy. In this MDP scheme, the aim is to minimise 166 
surprise by minimising variational free energy as a proxy; i.e., performing approximate or 167 
variational Bayesian inference. From the generative model, we can motivate a mean-field 168 
approximation to the posterior (i.e., recognition) density as follows: 169 

𝑄(𝑠̃, 𝐴) = 𝑄(𝐴)𝑄(𝑠̃) =U𝑄?𝐴(4)A
,2

4W(

⋅UU𝑄&𝑠V
(3).

,-

3W(

$

VW(

, (2) 170 

where 𝐴(4) is the likelihood mapping (i.e., tensor), and the marginal posterior distributions 171 

of 𝑠V
(3)  and 𝐴(4)  have a categorical 𝑄 &𝑠V

(3). = Cat &𝐬V
(3).  and Dirichlet distribution 172 

𝑄?𝐴(4)A = Dir?𝐚(4)A, respectively. For simplicity, we assume that 𝐴(4) factorises into the 173 

product of the likelihood mappings from the j-th hidden state to the i-th observation: 𝐴f∙
(4) ≈174 

𝐴f∙
(4,() ⊗⋯⊗𝐴f∙

(4,,-) (where ⊗ denotes the outer product and 𝐴(4,3) ∈ ℝD×D). This (mean 175 

field) approximation simplifies the computation of the state posteriors. 176 

In what follows, a bold case variable indicates the posterior expectation of the 177 

corresponding variable in italics. For example, 𝑠V
(3)  takes the value 0 or 1, while the 178 

posterior expectation 𝐬V
(3) ∈ ℝD is the expected value of 𝑠V

(3) that lies between 0 and 1. 179 

Moreover, 𝐚(4,3) ∈ ℝD×D denotes positive concentration parameters. Below, we use the 180 
posterior expectation of ln 𝐴(4,3) to encode posterior beliefs about the likelihood, which are 181 
given by 182 

ln𝐀(4,3) ≡ En?o(p,q)Arln𝐴
(4,3)s = 𝜓 &𝐚∙N

(4,3). − 𝜓 &𝐚(N
(4,3) + 𝐚BN

(4,3). 183 

= ln𝐚∙N
(4,3) − ln &𝐚(N

(4,3) + 𝐚BN
(4,3). + 𝒪 w&𝐚∙N

(4,3).
x(
y , (3) 184 

where 𝑙 ∈ {1,0}. Here, 𝜓(∙) ≡ Γ|(∙)/Γ(∙) denotes the digamma function, which arises 185 
naturally from the definition of the Dirichlet distribution. Please see (Friston et al., 2016) for 186 

details. En?o(p,q)A[∙] denotes the expectation over the posterior of 𝐴(4,3). 187 

The ensuing variational free energy of this generative model is then given by 188 

𝐹?𝑜S, 𝑄(𝑠̃), 𝑄(𝐴)A189 

≡��En("�)n(o)[− ln𝑃(𝑜V|𝑠V,𝐴)] + 𝒟��[𝑄(𝑠V)||𝑃(𝑠V)]�
$

VW(

+ 𝒟��[𝑄(𝐴)||𝑃(𝐴)] 190 
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=��𝐬V
(3) ∙ Y−�ln𝐀(4,3) ∙ 𝑜V

(4)
,2

4W(

+ ln 𝐬V
(3) − ln𝐷(3)Z

$

VW(

,-

3W(�����������������������������������
��������������	����������

 191 

+���?𝐚(4,3) − 𝑎(4,3)A ∙ ln𝐀(4,3) − lnℬ?𝐚(4,3)A�
,-

3W(

,2

4W(�������������������������������
���������	����������

, (4) 192 

where ln𝐀(4,3) ∙ 𝑜V
(4)  denotes the inner product of ln𝐀(4,3)  and a one-hot encoded vector 193 

of 𝑜V
(4), 𝒟��[∙ || ∙] is the complexity as scored by the Kullback–Leibler divergence (Kullback 194 

& Leibler, 1951), and ℬ?𝐚(4,3)A ≡ ℬ &𝐚∙(
(4,3). ℬ &𝐚∙B

(4,3). with ℬ &𝐚∙N
(4,3). ≡ Γ &𝐚(N

(4,3). Γ &𝐚BN
(4,3). /195 

Γ &𝐚(N
(4,3) + 𝐚BN

(4,3). is the beta function. The first term in the final equality comprises the 196 

accuracy (−𝐬V
(3) ∙ ∑ ln𝐀(4,3) ∙ 𝑜V

(4),2
4W( ) and (state) complexity (𝐬V

(3) ∙ &ln 𝐬V
(3) − ln𝐷(3).). The 197 

accuracy term is simply the expected log likelihood of an observation, while complexity 198 
scores the divergence between prior and posterior beliefs. In other words, complexity 199 
reflects the degree of belief updating or degrees of freedom required to provide an accurate 200 
account of observations. Both belief updates to states and parameters incur a complexity 201 
cost: the state complexity increases with time t, while parameter complexity increases in the 202 
order of ln 𝑡—and is thus negligible when t is large (see Supplementary Methods S1 for 203 
details). This means that we can ignore parameter complexity, when the scheme has 204 
experienced a sufficient number of outcomes. We will drop the parameter complexity in 205 
subsequent sections. In the remainder of this section, we show how the minimisation of 206 
variational free energy transforms (i.e., updates) priors into posteriors, when the parameter 207 
complexity is evaluated explicitly. 208 

Inference optimises posterior expectations about the hidden states by minimising 209 
variational free energy. The optimal posterior expectations are obtained by solving the 210 
variation of F to give 211 

𝐬$
(3) = 𝜎  �ln𝐀(4,3) ∙ 𝑜$

(4)
,2

4W(

+ ln𝐷(3)¡ = 𝜎?ln𝐀(∙,3) ∙ 𝑜$ + ln𝐷(3)A, (5) 212 

where 𝜎(∙) is the softmax function. As 𝑠$
(3)  is a binary value in this work, the posterior 213 

expectation of 𝑠$
(3) taking a value of one (ON state) can be expressed as 214 
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𝐬$(
(3) =

exp &ln𝐀∙(
(∙,3) ∙ 𝑜$ + ln𝐷(

(3).

exp &ln𝐀∙(
(∙,3) ∙ 𝑜$ + ln𝐷(

(3). + exp &ln𝐀∙B
(∙,3) ∙ 𝑜$ + ln𝐷B

(3).
 215 

= sig &ln𝐀∙(
(∙,3) ∙ 𝑜$ − ln𝐀∙B

(∙,3) ∙ 𝑜$ + ln𝐷(
(3) − ln𝐷B

(3). (6) 216 

using the sigmoid function sig(𝑧) ≡ 1/(1 + exp(−𝑧)). Thus, the posterior expectation of 217 

𝑠$
(3)  taking a value 0 (OFF state) is 𝐬$B

(3) = 1 − 𝐬$(
(3) . Here, 𝐷(

(3)  and 𝐷B
(3)  are constants 218 

denoting the prior beliefs about hidden states. Bayes optimal encoding is obtained when, 219 

and only when, the prior beliefs match the genuine prior distribution; i.e., 𝐷(
(3) = 𝐷B

(3) = 0.5 220 

in this BSS setup. This concludes our treatment of inference about hidden states under this 221 
minimal scheme. Note that the updates in Equation (5) have a biological plausibility in the 222 
sense that the posterior expectations can be associated with nonnegative sigmoid-shape 223 
firing rates (also known as neurometric functions (Tolhurst et al., 1983; Newsome et al., 224 
1989)), while the arguments of the sigmoid (softmax) function can be associated with 225 
neuronal depolarisation; rendering the softmax function a voltage-firing rate activation 226 
function. Please see (Friston, FitzGerald et al., 2017) for a more comprehensive 227 
discussion—and simulations using this kind of variational message passing to reproduce 228 
empirical phenomena; such as place fields, mismatch negativity responses, phase-precession, 229 
pre-play activity, etc in systems neuroscience. 230 

In terms of learning, by solving the variation of F with respect to 𝐚(4,3), the optimal 231 
posterior expectations about the parameters are given by 232 

𝐚(4,3) = 𝑎(4,3) +�𝑜V
(4)⨂𝐬V

(3)
$

VW(

= 𝑎(4,3) + 𝑡𝑜$
(4)⨂𝐬$

(3), (7) 233 

where 𝑎(4,3)  is the prior, 𝑜V
(4)⨂𝐬V

(3) expresses the outer product of a one-hot encoded 234 

vector of 𝑜V
(4)  and 𝐬V

(3) , and 𝑜$
(4)⨂𝐬$

(3) ≡ (
$
∑ 𝑜V

(4)⨂𝐬V
(3)$

VW( . Thus, the optimal posterior 235 

expectation of matrix A is 236 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝐀((
(4,3) =

𝐚((
(4,3)

𝐚((
(4,3) + 𝐚B(

(4,3) =
𝑡𝑜$

(4)𝐬$(
(3) + 𝑎((

(4,3)

𝑡𝐬$(
(3) + 𝑎((

(4,3) + 𝑎B(
(4,3)

=
𝑜$
(4)𝐬$(

(3)

𝐬$(
(3)

+ 𝒪 w
1
𝑡y

𝐀(B
(4,3) =

𝐚(B
(4,3)

𝐚(B
(4,3) + 𝐚BB

(4,3) =
𝑡𝑜$

(4)𝐬$B
(3) + 𝑎(B

(4,3)

𝑡𝐬$B
(3) + 𝑎(B

(4,3) + 𝑎BB
(4,3)

=
𝑜$
(4)𝐬$B

(3)

𝐬$B
(3)

+ 𝒪 w
1
𝑡y

, (8) 237 
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where 𝑜$
(4)𝐬$(

(3) = (
$
∑ 𝑜V

(4)𝐬V(
(3)$

VW( , 𝐬$(
(3) = (

$
∑ 𝐬V(

(3)$
VW( , 𝑜$

(4)𝐬$B
(3) = (

$
∑ 𝑜V

(4)𝐬VB
(3)$

VW( , and 𝐬$B
(3) =238 

(
$
∑ 𝐬VB

(3)$
VW( . Further, 𝐀B(

(4,3) = 1 − 𝐀((
(4,3)  and 𝐀BB

(4,3) = 1 − 𝐀(B
(4,3) . The prior of parameters 239 

𝑎(4,3) is in the order of 1 and is thus negligible when t is large. The matrix 𝐀(4,3)  express the 240 

optimal posterior expectations of 𝑜$
(4) taking the ON state when 𝑠$

(3)  is ON (𝐀((
(4,3)) or OFF 241 

(𝐀(B
(4,3)), or 𝑜$

(4) taking the OFF state when 𝑠$
(3)  is ON (𝐀B(

(4,3)) or OFF (𝐀BB
(4,3)). Although this 242 

expression may seem complicated, it is fairly straightforward. The posterior expectations of 243 
the likelihood simply accumulate posterior expectations about the co-occurrence of states 244 
and their outcomes. These accumulated (Dirichlet) parameters are then normalised to give a 245 
likelihood or probability. Crucially, one can observe the associative or Hebbian aspect of this 246 
belief update, expressed here in terms of the outer products between outcomes and 247 
posteriors about states in Equation (7). We now turn to the equivalent update for neural 248 
activities and synaptic weights of a neural network. 249 

 250 

2.3 Neural activity and Hebbian plasticity models. Next, we consider the neural activity and 251 
synaptic plasticity in the neural network (Fig. 1B). We assume that the j-th neuron’s activity 252 
𝑥$3	is given by 253 

𝑥̇$3 ∝ −𝑓|?𝑥$3A�����
���´�µ�

+𝑊3(𝑜$ −𝑊3B𝑜$���������
��·�����	�·���

+ ℎ3( − ℎ3B�������
�¹���¹��º

. (9) 254 

We suppose that 𝑊3( ∈ ℝ,2  and 𝑊3B ∈ ℝ,2  comprise row vectors of synapses, and ℎ3( ∈255 
ℝ and ℎ3B ∈ ℝ  are adaptive thresholds that depend on the values of 𝑊3(  and 𝑊3B , 256 
respectively. One may regard 𝑊3(  and 𝑊3B  as excitatory and inhibitory synapses, 257 
respectively. We further assume that the nonlinear leakage 𝑓|(∙) (i.e., the leak current) is 258 
the inverse of the sigmoid function (i.e., the logit function), such that the fixed point of 𝑥$3	is 259 
given by 260 

𝑥$3 = sig?𝑊3(𝑜$ −𝑊3B𝑜$ + ℎ3( − ℎ3BA 261 

=
exp?𝑊3(𝑜$ + ℎ3(A

exp?𝑊3(𝑜$ + ℎ3(A + exp?𝑊3B𝑜$ + ℎ3BA
. (10) 262 

We further assume that synaptic strengths are updated following Hebbian plasticity with an 263 
activity-dependent homeostatic term as follows: 264 

¼
Δ𝑊3((𝑡) ≡ 𝑊3((𝑡 + 1) −𝑊3((𝑡) ∝ 𝐻𝑒𝑏𝑏(?𝑥$3, 𝑜$,𝑊3(A + 𝐻𝑜𝑚𝑒(?𝑥$3,𝑊3(A
Δ𝑊3B(𝑡) ≡ 𝑊3B(𝑡 + 1) −𝑊3B(𝑡) ∝ 𝐻𝑒𝑏𝑏B?𝑥$3, 𝑜$,𝑊3BA + 𝐻𝑜𝑚𝑒B?𝑥$3,𝑊3BA

, (11) 265 
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where 𝐻𝑒𝑏𝑏(  and 𝐻𝑒𝑏𝑏B  denote Hebbian plasticity as determined by the product of 266 
sensory inputs and neural outputs, and 𝐻𝑜𝑚𝑒( and 𝐻𝑜𝑚𝑒B denote homeostatic plasticity 267 
determined by output neural activity. 268 

In the MDP scheme, posterior expectations about hidden states and parameters are 269 
usually associated with neural activity and synaptic strengths. Here, we can observe a formal 270 
similarity between the solutions for the state posterior (Equation (6)) and the activity in the 271 
neural network (Equation (10)). By this analogy, 𝑥$3  can be regarded as encoding the 272 

posterior expectation of the ON state 𝐬$(
(3) . Moreover, 𝑊3(  and 𝑊3B  correspond to 273 

ln𝐀((
(∙,3) − ln &1Â⃗ − 𝐀((

(∙,3). = sigx( &𝐀((
(∙,3).  and ln𝐀(B

(∙,3) − ln &1Â⃗ − 𝐀(B
(∙,3). = sigx( &𝐀(B

(∙,3). , 274 

respectively, in the sense that they express the amplitude of 𝑜$  influencing 𝑥$3  or 𝐬$(
(3). 275 

Here, 1Â⃗ = (1,… ,1) ∈ ℝ,2  is a vector of ones. In particular, the optimal posterior of a 276 

hidden state taking a value of one (Equation (6)) is given by the ratio of the beliefs about ON 277 
and OFF states, expressed as a sigmoid function. Thus, to be a Bayes optimal encoder, the 278 
fixed point of neural activity needs to be a sigmoid function. This requirement is 279 
straightforwardly ensured when 𝑓|?𝑥$3A is the inverse of the sigmoid function (see Equation 280 
(13) below). Under this condition, the fixed point or solution for 𝑥$f  (Equation (10)) 281 
compares inputs from ON and OFF pathways, and thus 𝑥$3  straightforwardly encodes the 282 

posterior of the j-th hidden state being ON (i.e., 𝑥$3 → 𝐬$(
(3)). In short, the above neural 283 

network is effectively inferring the hidden state. 284 

If the activity of the neural network is performing inference, does the Hebbian plasticity 285 
correspond to Bayes optimal learning? In other words, does the synaptic update rule in 286 
Equation (11) ensure that the neural activity and synaptic strengths asymptotically encode 287 

Bayes optimal posterior beliefs about hidden states (𝑥$3 → 𝐬$(
(3)) and parameters (𝑊3( →288 

sigx( &𝐀((
(∙,3).), respectively? To this end, below we will identify a class of cost functions from 289 

which the neural activity and synaptic plasticity can be derived, and consider the conditions 290 
under which the cost function becomes consistent with variational free energy. 291 

 292 

2.4 Neural network cost functions. Here, we consider a class of functions that constitute a 293 
cost function for both neural activity and synaptic plasticity. We start by assuming that the 294 
update of the j-th neuron’s activity (Equation (9)) is determined by the gradient of cost 295 
function 𝐿3; i.e., 𝑥̇$3 ∝ −𝜕𝐿3/𝜕𝑥$3. By integrating the right-hand side of Equation (9), we 296 
obtain a class of cost functions as 297 
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𝐿3 =�?𝑓?𝑥V3A − 𝑥V3𝑊3(𝑜V − ?1 − 𝑥V3A𝑊3B𝑜V − 𝑥V3ℎ3( − ?1 − 𝑥V3Aℎ3BA
$

VW(

+ 𝒪(1) 298 

=� 𝑓?𝑥V3A − w
𝑥V3

1 − 𝑥V3y
/
Æw
𝑊3(
𝑊3B

y 𝑜V + Ç
ℎ3(
ℎ3B
ÈÉ¡

$

VW(

+ 𝒪(1), (12) 299 

where the 𝒪(1) term, which depends on 𝑊3( and 𝑊3B, is of a lower order than the other 300 
terms (as they are 𝒪(𝑡)) and is thus negligible when t is large. Please see Supplementary 301 
Methods S3 for the case where we explicitly evaluate the 𝒪(1) term, to demonstrate the 302 
formal correspondence between the initial values of synaptic strengths and the parameter 303 

prior 𝑝(𝐴) . The cost function of the entire network is defined by 𝐿 ≡ ∑ 𝐿3
,a
3W( . 304 

When	𝑓|?𝑥V3A is the inverse of the sigmoid function, we have 305 

𝑓?𝑥V3A = 𝑥V3 ln 𝑥V3 + ?1 − 𝑥V3A ln?1 − 𝑥V3A (13) 306 

up to a constant term. We further assume that the synaptic weight update rule is derived 307 
from the same cost function 𝐿3. Thus, the synaptic plasticity is given by 308 

⎩
⎪
⎨

⎪
⎧ 𝑊̇3( ∝ −

1
𝑡
𝜕𝐿3
𝜕𝑊3(

= 𝑥$3𝑜$ + 𝑥$3ℎ3(|

𝑊̇3B ∝ −
1
𝑡
𝜕𝐿3
𝜕𝑊3B

= ?1 − 𝑥$3A𝑜$ + 1 − 𝑥$3ℎ3B|
, (14) 309 

where 𝑥$3𝑜$ ≡
(
$
∑ 𝑥V3𝑜V$
VW( , 𝑥$3 ≡

(
$
∑ 𝑥V3$
VW( , ?1 − 𝑥$3A𝑜$ ≡

(
$
∑ ?1 − 𝑥V3A𝑜V$
VW( , 1 − 𝑥$3 ≡310 

(
$
∑ ?1 − 𝑥V3A$
VW( , ℎ3(| ≡ 𝜕ℎ3(/𝜕𝑊3(, and ℎ3B| ≡ 𝜕ℎ3B/𝜕𝑊3B. Note that the update of 𝑊3(  is 311 

not directly influenced by 𝑊3B, and vice versa, because they encode parameters in physically 312 
distinct pathways (i.e., the updates are local learning rules (Lee et al., 2000)). The update rule 313 
for 𝑊3(  can be viewed as Hebbian plasticity mediated by an additional activity-dependent 314 
term expressing homeostatic plasticity. Moreover, the update of 𝑊3B  can be viewed as 315 
anti-Hebbian plasticity with a homeostatic term, in the sense that 𝑊3B  is reduced when 316 
input (𝑜$) and output (𝑥$3) fire together. The fixed points of 𝑊3( and 𝑊3B  are given by 317 

⎩
⎪
⎨

⎪
⎧ 𝑊3( = ℎ(|

x( Ç−
𝑥$3𝑜$
𝑥$3

È

𝑊3B = ℎB|
x(  −

?1 − 𝑥$3A𝑜$
1 − 𝑥$3

¡
. (15) 318 

Crucially, these synaptic strength updates are a subclass of the general synaptic plasticity rule 319 
in Equation (11); see also Supplementary Methods S2 for the mathematical explanation. 320 
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Therefore, if the synaptic update rule is derived from the cost function underlying neural 321 
activity, the synaptic update rule has a biologically plausible form comprising Hebbian 322 
plasticity and activity-dependent homeostatic plasticity. 323 

 324 

2.5 Comparison with variational free energy. Here, we establish a formal relationship 325 
between the cost function L and variational free energy. We define 𝑊Ë3( ≡ sig?𝑊3(A and 326 
𝑊Ë3B ≡ sig?𝑊3BA as the sigmoid functions of synaptic strengths. We consider the case in 327 
which neural activity is expressed as a sigmoid function and thus Equation (13) holds. As 328 

𝑊3( = ln𝑊Ë3( − ln?1Â⃗ −𝑊Ë3(A, Equation (12) becomes 329 

𝐿 =��w
𝑥V3

1 − 𝑥V3y
/
ÌÇ

ln 𝑥V3
ln?1 − 𝑥V3A

È − Æ
ln𝑊Ë3( ln?1Â⃗ − 𝑊Ë3(A
ln𝑊Ë3B ln?1Â⃗ − 𝑊Ë3BA

É w
𝑜V

1Â⃗ − 𝑜V
y − Ç

ℎ3(
ℎ3B
È

$

VW(

,a

3W(

 330 

+Æ
ln?1Â⃗ − 𝑊Ë3(A
ln?1Â⃗ − 𝑊Ë3BA

É 1Â⃗ Í + 𝒪(1), (16) 331 

where 1Â⃗ = (1,… ,1) ∈ ℝ,2 . One can immediately see a formal correspondence between 332 

this cost function and variational free energy (Equation (4)). That is, when we assume that 333 

𝑥$3 = 𝐬$(
(3), 𝑊Ë3( = 𝐀((

(∙,3), and 𝑊Ë3B = 𝐀(B
(∙,3), Equation (16) has exactly the same form as the 334 

sum of the accuracy and state complexity, which is the leading order term of variational free 335 
energy (see the first term in the last equality of Equation (4)). 336 

Specifically, when the thresholds satisfy ℎ3( = ln?1Â⃗ −𝑊Ë3(A ⋅ 1Â⃗ + ln𝐷(
(3)  and ℎ3B =337 

ln?1Â⃗ −𝑊Ë3BA ⋅ 1Â⃗ + ln𝐷B
(3), Equation (16) becomes equivalent to Equation (4) up to the ln 𝑡 338 

order term (that disappears when t is large). Therefore, in this case, the fixed points of neural 339 
activity and synaptic strengths become the posteriors; thus, 𝑥$3  asymptotically becomes the 340 
Bayes optimal encoder for a large t limit (provided with 𝐷 that matches the genuine prior 341 
𝐷∗). 342 

In other words, we can define perturbation terms 𝜙3( ≡ ℎ3( − ln?1Â⃗ − 𝑊Ë3(A ⋅ 1Â⃗  and 343 

𝜙3B ≡ ℎ3B − ln?1Â⃗ − 𝑊Ë3BA ⋅ 1Â⃗  as functions of 𝑊3(  and 𝑊3B, respectively, and can express the 344 

cost function as 345 
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𝐿 =��w
𝑥V3

1 − 𝑥V3y
/
ÌÇ

ln 𝑥V3
ln?1 − 𝑥V3A

È − Æ
ln𝑊Ë3( ln?1Â⃗ −𝑊Ë3(A
ln𝑊Ë3B ln?1Â⃗ −𝑊Ë3BA

Éw
𝑜V

1Â⃗ − 𝑜V
y − w

𝜙3(
𝜙3B

yÍ
$

VW(

,a

3W(

+ 𝒪(1). (17) 346 

Here, without loss of generality, we can suppose that the constant terms in 𝜙3( and 𝜙3B 347 
are chosen to ensure that exp?𝜙3(A + exp?𝜙3BA = 1 . Under this condition, 348 
?exp?𝜙3(A , exp?𝜙3BAA can be viewed as the prior belief about hidden states 349 

Ì
𝜙3( = ln𝐷(

(3)

𝜙3B = ln𝐷B
(3) (18) 350 

and thus Equation (17) is formally equivalent to the accuracy and state complexity terms of 351 
variational free energy. 352 

This means that when the prior belief about states ?𝐷(3)A is a function of the parameter 353 
posteriors (𝐀(∙,3)), the generic cost function under consideration can be expressed in the 354 
form of variational free energy, up to the 𝒪(ln 𝑡) term. A generic cost function L is 355 
sub-optimal from the perspective of Bayesian inference unless 𝜙3( and 𝜙3B are tuned 356 
appropriately to express the unbiased (i.e., optimal) prior belief. In this BSS setup, 𝜙3( =357 
𝜙3B = const is optimal; thus, a generic L would asymptotically give an upper bound of 358 
variational free energy with the optimal prior belief about states when t is large. 359 

 360 

2.6 Analysis on synaptic update rules. To explicitly solve the fixed points of 𝑊3(  and 𝑊3B  361 
that provide the global minimum of L, we suppose 𝜙3( and 𝜙3B as linear functions of 𝑊3(  362 
and 𝑊3B, respectively, given by 363 

Ñ
𝜙3( = 𝛼3( + 𝑊3(𝛽3(
𝜙3B = 𝛼3B + 𝑊3B𝛽3B

, (19) 364 

where 𝛼3(, 𝛼3B ∈ ℝ and 𝛽3(, 𝛽3B ∈ ℝ,2  are constants. By solving the variation of L with 365 
respect to 𝑊3(  and 𝑊3B, we find the fixed point of synaptic strengths as 366 

⎩
⎪
⎨

⎪
⎧ 𝑊3( = sigx( Ç

𝑥$3𝑜$
𝑥$3

+ 𝛽3(È

𝑊3B = sigx(  
?1 − 𝑥$3A𝑜$
1 − 𝑥$3

+ 𝛽3B¡
. (20) 367 

Since the update from t to t+1 is expressed as sig?𝑊3( + Δ𝑊3(A − sig?𝑊3(A = 𝑊Ë3( ⊙368 

?1Â⃗ − 𝑊Ë3(A ⊙ Δ𝑊3( + 𝒪 &ÕΔ𝑊3(Õ
D
.  and sig?𝑊3( + Δ𝑊3(A − sig?𝑊3(A ≈ 𝑥($�()3𝑜$�(/𝑥$3 −369 

𝑥($�()3𝑥$3𝑜$/𝑥$3
D = 𝑥($�()3𝑜$�(/𝑥$3 − ?𝑊Ë3( − 𝛽3(A𝑥($�()3/𝑥$3 , we recover the following 370 
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synaptic plasticity: 371 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

Δ𝑊3( =
ÖËq×
⊙Ø×⊙?(xÖËq×A

⊙Ø×

ÙÚq�����������
�º����Û�	����·�·µ	����

⊙ Y 𝑥($�()3𝑜$�(�������
Ü�ÝÝ��·	����������

− ?𝑊Ë3( − 𝛽3(A𝑥($�()3�������������
¹����������	����������

Z

Δ𝑊3B =
ÖËqÞ
⊙Ø×⊙?(xÖËqÞA

⊙Ø×

(xÙÚq�����������
�º����Û�	����·�·µ	����

⊙

⎩
⎨

⎧
?1 − 𝑥($�()3A𝑜$�(�����������

�·��xÜ�ÝÝ��·
����������

− ?𝑊Ë3B − 𝛽3BA?1 − 𝑥($�()3A�����������������
¹����������	���������� ⎭

⎬

⎫
, (21) 372 

where ⊙  denotes the element-wise (Hadamard) product and 𝑊Ë3(
⊙x(  denotes the 373 

element-wise inverse of 𝑊Ë3(. This synaptic plasticity rule is a subclass of the generic synaptic 374 
plasticity rule in Equation (11). 375 

In summary, we demonstrated that under a few minimal assumptions and ignoring small 376 
contributions to weight updates, the neural network under consideration can be regarded as 377 
minimising an approximation to model evidence, because the cost function can be 378 
formulated in terms of variational free energy. In what follows, we will rehearse our analytic 379 
results and then use numerical analyses to illustrate Bayes optimal inference (and learning) 380 
in a neural network when, and only when, it has the right priors. 381 

 382 

3. Results 383 

3.1 Analytical form of neural network cost functions. The analysis in the preceding section 384 
rests on the following assumptions: 385 

(1) Updates of neural activity and synaptic weights are determined by a gradient descent on 386 
a cost function L. 387 

(2) Neural activity is updated by the weighted sum of sensory inputs, and its fixed point is 388 
expressed as the sigmoid function. 389 

Under these assumptions, we can express the cost function for a neural network as follows 390 
(see Equation (17)): 391 

𝐿 =��w
𝑥V3

1 − 𝑥V3y
/
ÌÇ

ln 𝑥V3
ln?1 − 𝑥V3A

È − Æ
ln𝑊Ë3( ln?1Â⃗ −𝑊Ë3(A
ln𝑊Ë3B ln?1Â⃗ −𝑊Ë3BA

Éw
𝑜V

1Â⃗ − 𝑜V
y − w

𝜙3(
𝜙3B

yÍ
$

VW(

,a

3W(

+ 𝒪(1), 392 

where 𝑊Ë3( = sig?𝑊3(A and 𝑊Ë3B = sig?𝑊3BA hold, and 𝜙3( and 𝜙3B are functions of 𝑊3(  393 
and 𝑊3B, respectively. The log likelihood function (accuracy term) and divergence of hidden 394 
states (complexity term) of variational free energy emerge naturally under the assumption of 395 
a sigmoid activation function. The cost function above has additional terms denoted by 𝜙3( 396 
and 𝜙3B. In other words, we can say that the cost function L is variational free energy under 397 
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a sub-optimal prior belief about hidden states, depending on 𝑊3(  and 𝑊3B: ln 𝑃 &𝑠$
(3). =398 

ln𝐷(3) = 𝜙3, where 𝜙3 ≡ ?𝜙3(, 𝜙3BA. This prior alters the landscape of the cost function in a 399 
sub-optimal manner and thus provides a biased solution for neural activities and synaptic 400 
strengths, which differ from the Bayes optimal encoders. 401 

For analytical tractability, we further assume the following: 402 

(3) The perturbation terms (𝜙3( and 𝜙3B) that constitute the difference between the cost 403 
function and variational free energy with optimal prior beliefs can be expressed as linear 404 
equations of 𝑊3(  and 𝑊3B. 405 

From assumption 3, Equation (17) becomes 406 

𝐿 =�â�w
𝑥V3

1 − 𝑥V3y
/
ÌÇ

ln 𝑥V3
ln?1 − 𝑥V3A

È − Æ
ln𝑊Ë3( ln?1Â⃗ −𝑊Ë3(A
ln𝑊Ë3B ln?1Â⃗ −𝑊Ë3BA

Éw
𝑜V

1Â⃗ − 𝑜V
y

$

VW(

,a

3W(

 407 

−Ç
𝛼3( +𝑊3(𝛽3(
𝛼3B +𝑊3B𝛽3B

Èãä + 𝒪(1), (22) 408 

where �𝛼3(, 𝛼3B, 𝛽3(, 𝛽3B� are constants. The cost function has degrees of freedom with 409 
respect to the choice of constants �𝛼3(, 𝛼3B, 𝛽3(, 𝛽3B�, which correspond to the prior belief 410 
about states 𝐷(3). The neural activity and synaptic strengths that give the minimum of a 411 
generic physiological cost function L are biased by these constants, which may be analogous 412 
to physiological constraints (see Discussion for details). 413 

The cost function of the neural networks considered is characterised only by 𝜙3. Thus, 414 
after fixing 𝜙3  by fixing constrains ?𝛼3(, 𝛼3BA and ?𝛽3(, 𝛽3BA, the remaining degrees of 415 
freedom are the initial synaptic weights. These correspond to the prior distribution of 416 
parameters 𝑃(𝐴)  in the variational Bayesian formulation (please see Supplementary 417 
Methods 3). 418 

The fixed point of synaptic strengths that give the minimum of L is given analytically as 419 
Equation (20), expressing that ?𝛽3(, 𝛽3BA  deviates the centre of the nonlinear 420 
mapping—from Hebbian products to synaptic strengths—from the optimal position (shown 421 
in Equation (8)). As shown in Equation (14), the derivative of L with respect to 𝑊3(  and 𝑊3B  422 
recovers the synaptic update rules that comprise Hebbian and activity-dependent 423 
homeostatic terms. Although Equation (14) expresses the dynamics of synaptic strengths 424 
that converge to the fixed point, it is consistent with a plasticity rule that gives the synaptic 425 
change from t to t+1 (Equation (21)). 426 

Hence, based on assumptions 1 and 2, we find that the cost function approximates 427 
variational free energy; see also Supplementary Table S1 for their correspondence. Under 428 
this condition, neural activity encodes the posterior expectation about hidden states, 𝑥V3 =429 
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𝐬V(
(3) = 𝑄 &𝑠V

(3) = 1. , and synaptic strengths encode the posterior expectation of the 430 

parameters, 𝑊Ë3( = sig?𝑊3(A = 𝐀((
(∙,3)  and 𝑊Ë3B = sig?𝑊3BA = 𝐀(B

(∙,3) . In addition, based on 431 

assumption 3, the accuracy of approximation depends on the deviation of constants 432 
�𝛼3(, 𝛼3B, 𝛽3(, 𝛽3B� from their optimal values. From a Bayesian perspective, these constants 433 

can be viewed as prior beliefs, ln 𝑃 &𝑠$
(3). = ln𝐷(3) = ?𝛼3( + 𝑊3(𝛽3(, 𝛼3B +𝑊3B𝛽3BA, when 434 

we assume that ?𝑥$3, 1 − 𝑥$3A represents the state posterior 𝐬$
(3). When and only when 435 

?𝛼3(, 𝛼3BA = (− ln 2 ,− ln 2) and ?𝛽3(, 𝛽3BA = ?0Â⃗ , 0Â⃗ A, the cost function becomes variational 436 

free energy with optimal prior beliefs (for BSS), whose global minimum ensures Bayes 437 
optimal encoding. 438 

In short, we identify a class of biologically plausible cost functions from which the update 439 
rules for both neural activity and synaptic plasticity can be derived. When the activation 440 
function for neural activity is a sigmoid function, a cost function in this class is expressed 441 
straightforwardly as variational free energy. With respect to the choice of constants 442 
expressing physiological constraints in the neural network, the cost function has degrees of 443 
freedom that may be viewed as (potentially sub-optimal) prior beliefs from the Bayesian 444 
perspective. Now, we illustrate the implicit inference and learning in neural networks 445 
through simulations of BSS. 446 

 447 

3.2 Numerical simulations. Here, we simulated the dynamics of neural activity and synaptic 448 
strengths when they followed a gradient descent on the cost function in Equation (22). We 449 
considered a BSS comprising two hidden sources (or states) and 32 observations (or sensory 450 
inputs), formulated as an MDP. The two hidden sources comprised four patterns: 𝑠$ =451 

𝑠$
(()⨂𝑠$

(D) = (0,0), (1,0), (0,1), (1,1).  An observation 𝑜$
(4)  was generated through the 452 

likelihood mapping 𝐴(4), defined as 453 

å
𝑃&𝑜$

(4) = 1|𝑠$, 𝐴(4). = 𝐴(∙
(4) = w0,

3
4 ,
1
4 , 1y 												for	1 ≤ 𝑖 ≤ 16

𝑃&𝑜$
(4) = 1|𝑠$, 𝐴(4). = 𝐴(∙

(4) = w0,
1
4 ,
3
4 , 1y 												for	17 ≤ 𝑖 ≤ 32

. (23) 454 

Here, for example, 𝐴(B
(4) = 3/4 for 1 ≤ 𝑖 ≤ 16 is the probability of 𝑜$

(4) taking one when 455 

𝑠$ = (1,0). The simulations continued over 𝑇 = 10é time steps. Notably, this simulation 456 
setup is exactly the same experimental setup as that we used for in vitro neural networks 457 
(Isomura et al., 2015; Isomura, Friston, 2018). We leverage this setup to clarify the 458 
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relationship among our empirical work, a feed-forward neural network model, and 459 
variational Bayesian formulations. 460 

First, as in (Isomura & Friston, 2018), we demonstrated that a network with a cost function 461 

with optimised constants (?𝛼3(, 𝛼3BA = (− ln 2 , − ln 2) and ?𝛽3(, 𝛽3BA = ?0Â⃗ , 0Â⃗ A) can perform 462 

BSS successfully (Fig. 2). The responses of neuron 1 came to recognise source 1 after training, 463 
indicating that neuron 1 learnt to encode source 1 (Fig. 2A). Meanwhile, neuron 2 learnt to 464 
infer source 2 (Fig. 2B). This demonstrates that minimisation of the cost function, with 465 
optimal constants, is equivalent to variational free energy minimisation, and hence is 466 
sufficient to emulate BSS. Next, we quantified the dependency of BSS performance on the 467 
form of the cost function, by varying the above-mentioned constants (Fig. 3). 468 

We varied ?𝛼3(, 𝛼3BA  in a range of 0.05 ≤ exp?𝛼3(A ≤ 0.95 , while maintaining 469 
exp?𝛼3(A + exp?𝛼3BA = 1, and found that changing ?𝛼3(, 𝛼3BA from (− ln2 , − ln2) led to 470 
a failure of BSS. Because neuron 1 encodes source 1 with optimal 𝛼, the correlation 471 
between source 1 and the response of neuron 1 is close to one, while the correlation 472 
between source 2 and the response of neuron 1 is nearly zero. In the case of sub-optimal 𝛼, 473 
these correlations fall to around 0.5, indicating that the response of neuron 1 encodes a 474 
mixture of source 1 and source 2 (Fig. 3A). Moreover, a failure of BSS can be induced when 475 
the elements of 𝛽 take values far from zero (Fig. 3B). When the elements of 𝛽  are 476 
generated from a zero-mean Gaussian distribution, the accuracy of BSS—measured using the 477 
correlation between sources and responses—decreases as the standard deviation increases. 478 

 479 
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 480 

Figure 2. Emergence of response selectivity for a source. (A) Evolution of neuron 1’s 481 
responses that learn to encode source 1, in the sense that the response is high when source 482 
1 takes a value of one (red dots), and it is low when source 1 takes a value of zero (blue dots). 483 
Lines correspond to smoothed trajectories obtained using a discrete cosine transform. (B) 484 
Emergence of neuron 2’s response that learns to encode source 2. These results indicate that 485 
the neural network succeeded in separating two independent sources. The code is provided 486 
as Supplementary Source Code. 487 

 488 
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 489 

Figure 3. Dependence of source encoding accuracy on constants. Left panels show the 490 
magnitudes of the correlations between sources and responses of a neuron expected to 491 

encode source 1: êcorr&𝑠$
((), 𝑥$(.ê  and êcorr&𝑠$

(D), 𝑥$(.ê . The right panels show the 492 

magnitudes of the correlations between sources and responses of a neuron expected to 493 

encode source 2: êcorr&𝑠$
((), 𝑥$D.ê and êcorr&𝑠$

(D), 𝑥$D.ê. (A) Dependence on the constant 494 

𝛼 that controls the excitability of a neuron, when 𝛽 is fixed to zero. The dashed line (0.5) 495 
indicates the optimal value of exp?𝛼3(A. (B) Dependence on constant 𝛽, when 𝛼 is fixed as 496 
?𝛼3(, 𝛼3BA = (− ln 2 ,− ln 2). Elements of 𝛽 were randomly generated from a Gaussian 497 
distribution with zero mean. The standard deviation of 𝛽 was varied (horizontal axis), where 498 
zero deviation was optimal. Lines and shaded areas indicate the mean and standard 499 
deviation of the source-response correlation, evaluated with 50 different sequences. The 500 
code is provided as Supplementary Source Code. 501 

 502 

Our numerical analysis, under assumptions 1–3 mentioned above, shows that a network 503 
needs to employ a cost function that entails optimal prior beliefs to perform BSS, or 504 
equivalently, causal inference. Such a cost function is obtained when its constants, which do 505 
not appear in the variational free energy with the optimal generative model for BSS, become 506 
negligible. The important message here is that, in this setup, a cost function equivalent to 507 
variational free energy is necessary for Bayes optimal inference (Friston et al., 2006; Friston, 508 
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2010). 509 

 510 

3.3 Phenotyping networks. We have shown that variational free energy (under the MDP 511 
scheme) is within the class of biologically plausible cost functions found in neural networks. 512 
The neural network’s parameters 𝜙3 = ln𝐷(3)	determine how the synaptic strengths change 513 
depending on the history of sensory inputs and neural outputs; thus, the choice of 𝜙3  514 
provides degrees of freedom in the shape of the generic cost functions under consideration 515 
that determine the purpose or function of the neural network. Among various 𝜙3, only 516 
𝜙3 = (− ln2 ,− ln 2) can make the cost function variational free energy with optimal prior 517 
beliefs for BSS. Hence, one could regard generic neural networks (of the sort considered in 518 
this paper) as performing approximate Bayesian inference under priors that may or may not 519 
be optimal. This result is as predicted by the complete class theorem as it implies that any 520 
response of a neural network is Bayes optimal under some prior beliefs (and cost function). 521 
Therefore, under the theorem, in principle, any neural network of this kind is optimal, when 522 
its prior beliefs are consistent with the process that generates outcomes. This perspective 523 
indicates the possibility of characterising a neural network model—and indeed a real 524 
neuronal network—in terms of its implicit prior beliefs. 525 

These considerations raise the possibility of using empirically observed neuronal 526 
responses to infer the prior beliefs implicit in a neuronal network. For example, the synaptic 527 
matrix (𝑊3(,	𝑊3B) can be estimated statistically from response data. By plotting its trajectory 528 
over the training period as a function of the history of a Hebbian product, one can estimate 529 
the cost function constants. If these constants express a near-optimal 𝜙3 , it can be 530 
concluded that the network has, effectively, the right sort of priors for BSS. As we have 531 
shown analytically and numerically, a cost function with ?𝛼3(, 𝛼3BA far from (− ln2 ,− ln 2) 532 
or a large deviation of ?𝛽3(, 𝛽3BA  does not provide the Bayes optimal encoder for 533 
performing BSS. Since actual neuronal networks can perform BSS (Isomura et al., 2015; 534 
Isomura & Friston, 2018), it can be envisaged that the implicit cost function will exhibit a 535 
near-optimal 𝜙3. 536 

One can pursue this analysis further and model the responses or decisions of a neural 537 
network using the above-mentioned Bayes optimal MDP scheme under different priors. Thus, 538 
the priors in the MDP scheme can be adjusted to maximise the likelihood of empirical 539 
responses. This sort of approach has been used in system neuroscience to characterise the 540 
choice behaviour in terms of subject specific priors. Please refer to (Schwartenbeck & Friston, 541 
2016) for further details. 542 

Finally, from a practical perspective for optimising neural networks, understanding the 543 
formal relationship between cost functions and variational free energy enables us to specify 544 
the optimum value of any free parameter to realize some functions. In the present setting, 545 
we can effectively optimise the constants by updating the priors themselves, such that they 546 
minimise the variational free energy for BSS. Under the Dirichlet form for the priors, the 547 
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implicit threshold constants of the objective function can then be optimised using the 548 
following updates: 549 

𝜙3 = ln𝐷(3) = 𝜓?𝐝(3)A − 𝜓 &𝐝(
(3) + 𝐝B

(3)., 550 

𝐝(3) = 𝑑(3) +�𝐬V
(3)

$

VW(

. (24) 551 

Please refer to (Schwartenbeck & Friston, 2016) for further details. In effect, this update will 552 

simply add the Dirichlet concentration parameters, 𝐝(3) = &𝐝(
(3), 𝐝B

(3)., to the priors in 553 

proportion to the temporal summation of the posterior expectations about the hidden states. 554 
Therefore, by committing to cost functions that underlie variational inference and learning, 555 
any free parameter can be updated in a Bayes optimal fashion when a suitable generative 556 
model is available. 557 

 558 

4. Discussion 559 

In this work, we investigated a class of biologically plausible cost functions for neural 560 
networks. A single-layer feed-forward neural network with a sigmoid activation function that 561 
receives sensory inputs generated by hidden states (i.e., BSS setup) was considered. We 562 
identified a class of cost functions by assuming that neural activity and synaptic plasticity 563 
minimise a common function L. The derivative of L with respect to synaptic strengths 564 
furnishes a synaptic update rule following Hebbian plasticity, equipped with 565 
activity-dependent homeostatic term. We have shown that the dynamics of a single-layer 566 
feed-forward neural network—that minimises its cost function—is asymptotically equivalent 567 
to that of variational Bayesian inference under a particular but generic (latent variable) 568 
generative model. Hence, the cost function of the neural network can be viewed as 569 
variational free energy, and biological constraints that characterise the neural network—in 570 
the form of thresholds and neuronal excitability—become prior beliefs about hidden states. 571 
This relationship holds regardless of the true generative process of the external world. We 572 
have focused on discrete latent variable models that can be regarded as special (reduced) 573 
cases of partially observable Markov decision processes (POMDP). However, because our 574 
treatment is predicated on the complete class theorem (Brown, 1981; Wald, 1947), the same 575 
conclusions should, in principle, be reached when using continuous state space models. 576 
Within the class of discrete state space models, it is fairly straightforward to generate 577 
continuous outcomes from discrete latent states; as exemplified by discrete variational 578 
autoencoders (Rolfe, 2016) or mixed models, as described in (Friston, Parr et al., 2017). 579 

One can understand the nature of the constants �𝛼3(, 𝛼3B, 𝛽3(, 𝛽3B� from the biological 580 
and Bayesian perspectives as follows: ?𝛼3(, 𝛼3BA determines the firing threshold and thus 581 
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controls the mean firing rates. In other words, these parameters control the amplitude of 582 
excitatory and inhibitory inputs, which may be analogous to the roles of GABAergic inputs 583 
and neuromodulators in biological neuronal networks (Pawlak et al., 2010; Frémaux & 584 
Gerstner, 2016; Kuśmierz et al., 2017). At the same time, ?𝛼3(, 𝛼3BA encodes prior beliefs 585 
about states, which exert a large influence on the state posterior. The state posterior is 586 
biased if ?𝛼3(, 𝛼3BA is selected in a sub-optimal manner—in relation to the process that 587 
generates inputs. Meanwhile, ?𝛽3(, 𝛽3BA determines the accuracy of synaptic strengths that 588 

represent the likelihood mapping of an observation 𝑜$
(4) taking 1 (ON state) depending on 589 

hidden states (please compare Equation (8) and Equation (20)). Under a usual MDP setup 590 
where the state prior does not depend on the parameter posterior, the encoder becomes 591 

Bayes optimal when and only when ?𝛽3(, 𝛽3BA = ?0Â⃗ , 0Â⃗ A. These constants can represent 592 

biological constraints on synaptic strengths, such as the range of spine growth, spinal 593 
fluctuations, or the effect of synaptic plasticity induced by spontaneous activity independent 594 
of external inputs. Although the fidelity of each synapse is limited due to such internal 595 
fluctuations, the accumulation of information over a large number of synapses should allow 596 
accurate encoding of hidden states in the current formulation. 597 

In previous reports, we have shown that in vitro neural networks—comprising a cortical 598 
cell culture—perform BSS when receiving electrical stimulations generated from two hidden 599 
sources (Isomura et al., 2015). Furthermore, we showed that minimising variational free 600 
energy under an MDP is sufficient to reproduce the learning observed in an in vitro network 601 
(Isomura & Friston, 2018). Our framework for identifying biologically plausible cost functions 602 
could be relevant for identifying the principles that underlie learning or adaptation processes 603 
in biological neuronal networks, using empirical response data. Here, we illustrated this 604 
potential in terms of the choice of function 𝜙3  in the cost functions L. In particular, if 𝜙3  is 605 
close to a constant (− ln 2 , − ln 2), the cost function is expressed straightforwardly as a 606 
variational free energy with small state prior biases. In the future work, we plan to apply this 607 
scheme to empirical data and examine the biological plausibility of variational free energy 608 
minimisation. 609 

The correspondence highlighted in this work enables one to identify a generative model 610 
(comprising likelihood and priors) that a neural network is using. The formal correspondence 611 
between neural network and variational Bayesian formations rests on the asymptotic 612 
equivalence between the neural network’s cost functions and variational free energy (under 613 
some priors). Although variational free energy can take an arbitrary form, the 614 
correspondence provides biologically plausible constraints for neural networks that implicitly 615 
encode prior distributions. Hence, this formulation is potentially useful for identifying the 616 
implicit generative models that underlie the dynamics of real neuronal circuits. In other 617 
words, one can quantify the dynamics and plasticity of a neuronal circuit in terms of 618 
variational Bayesian inference and learning under an implicit generative model. 619 
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The dependence between the likelihood function and the state prior vanishes when the 620 
network uses the optimal threshold to perform inference with a generative process that does 621 
not involve dependence between the likelihood and the state prior. In other words, the 622 
dependence arises from the sub-optimality of the choice of the state prior. This means that 623 
the dependence is due to the degrees of freedom in the choice of the threshold that a neural 624 
network and its cost function possess. Nevertheless, minimisation of the cost function can 625 
render the network Bayes optimal in the variational Bayesian sense, including the choice of 626 
the state prior, as described in the previous section. This is because only variational free 627 
energy with the optimal priors provides the minimum among a class of neural network cost 628 
functions under consideration. 629 

Although we have described the generative process in terms of an MDP, we have ignored 630 
state transitions. This means the generative model in this paper reduces to a simple latent 631 
variable model, with categorical states and outcomes. As noted above, we refer to MDP 632 
models because they predominate in descriptions of variational (Bayesian) belief updating; 633 
e.g., (Friston, FitzGerald et al., 2017). Clearly, many generative processes entail state 634 
transitions, leading to hidden Markov models (HMM). When state transitions depend upon 635 
control variables, we have a POMDP. To deal with such cases, extensions of the current 636 
framework are required, which we hope to consider in future work. 637 

In summary, we first identified a class of biologically plausible cost functions for neural 638 
networks that underlie changes in both neural activity and synaptic plasticity. We then 639 
identified an asymptotic equivalence between these cost functions and the cost functions 640 
used in variational Bayesian formations. Given this equivalence, changes in the activity and 641 
synaptic strengths of a neuronal network can be viewed as Bayesian belief updating; namely, 642 
a process of transforming priors over hidden states and parameters into posteriors, 643 
respectively. Hence, a cost function in this class becomes Bayes optimal when activity 644 
thresholds correspond to appropriate priors in an implicit generative model. In short, the 645 
neural and synaptic dynamics of neural networks can be cast as inference and learning, 646 
under a variational Bayesian formation. This is potentially important for two reasons. First, it 647 
means that there are some threshold parameters for any neural network (in the class 648 
considered) that can be optimised for applications to data, when there are precise prior 649 
beliefs about the process generating those data. Second, in virtue of the complete class 650 
theorem, one can reverse engineer the priors that any neural network is adopting. This may 651 
be interesting when real neuronal networks can be modelled using neural networks of the 652 
class that we have considered. In other words, if one can fit neuronal responses—using a 653 
neural network model parameterised in terms of threshold constants—it becomes possible 654 
to evaluate the implicit priors using the above equivalence. This may find a useful application 655 
when applied to in vitro (or in vivo) neuronal networks (Isomura, Friston, 2018; Levin, 2013) 656 
or, indeed, dynamic causal modelling of distributed neuronal responses from non-invasive 657 
data (Daunizeau et al., 2011). In this context, the neural network can, in principle, be used as 658 
a dynamic causal model to estimate threshold constants and implicit priors. This ‘reverse 659 
engineering’ speaks to estimating the priors used by real neuronal systems, under ideal 660 
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Bayesian assumptions; sometimes referred to as meta Bayesian inference (Daunizeau et al., 661 
2010). 662 
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Supplementary Tables 757 

 758 

Table S1. Correspondence of variables and functions. 759 
Neural network formation  Variational Bayes formation 

Neural activity 𝑥$3  ⟺ 𝐬$(
(3) State posterior 

Sensory input 𝑜$  ⟺ 𝑜$  Observation 

Synaptic strength 𝑊3(  ⟺ sigx( &𝐀((
(∙,3). 

 𝑊Ë3( ⟺ 𝐀((
(∙,3) Parameter posterior 

Perturbation term 𝜙3( ⟺ ln𝐷(
(3) State prior 

Threshold ℎ3( ⟺ ln &1Â⃗ − 𝐀((
(∙,3). ⋅ 1Â⃗ + ln𝐷(

(3) 

Initial synaptic strengths 𝜆3( ⊙𝑊Ë3(4ï4$  ⟺ 𝑎((
(∙,3) Parameter prior 

 760 

Supplementary Methods 761 

S1. Order of the parameter complexity 762 

The order of the parameter complexity term 763 

𝒟o ≡�� � ð&𝐚∙N
(4,3) − 𝑎∙N

(4,3). ∙ ln𝐀∙N
(4,3) − lnℬ &𝐚∙N

(4,3).ñ
N∈{(,B}

,-

3W(

,2

4W(

(25) 764 

is computed. To avoid the divergence of ln𝐀∙N
(4,3), all the elements of 𝐀∙N

(4,3)  are assumed to 765 

be larger than a positive constant 𝜀. This means that all the elements of 𝐚∙N
(4,3) are in the 766 
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order of t. The first term of Equation (25) becomes &𝐚∙N
(4,3) − 𝑎∙N

(4,3). ∙ ln𝐀∙N
(4,3) = 𝐚∙N

(4,3) ∙767 

ln𝐀∙N
(4,3) + 𝒪(1) since 𝑎∙N

(4,3) ∙ ln𝐀∙N
(4,3)  is in the order of 1. Moreover, from Equation (3), 768 

𝐚∙N
(4,3) ∙ ln𝐀∙N

(4,3) = 𝐚∙N
(4,3) ∙ Çln𝐚∙N

(4,3) − ln&𝐚(N
(4,3) + 𝐚BN

(4,3). + 𝒪 w&𝐚∙N
(4,3).

x(
yÈ = 𝐚∙N

(4,3) ∙769 

ln &𝐀∙N
(4,3). + 𝒪(1). Meanwhile, the second term of Equation (25) comprises the logarithms of 770 

gamma functions as lnℬ &𝐚∙N
(4,3). = ln Γ &𝐚(N

(4,3). + lnΓ &𝐚BN
(4,3). − ln Γ &𝐚(N

(4,3) + 𝐚BN
(4,3).. From 771 

Stirling’s formula, 772 

Γ &𝐚(N
(4,3). = √2𝜋 &𝐚(N

(4,3).
x(D Æ

𝐚(N
(4,3)

𝑒
É
𝐚×õ
(p,q)

Ç1 + 𝒪 w&𝐚∙N
(4,3).

x(
yÈ (26) 773 

holds. The logarithm of Γ &𝐚(N
(4,3). is evaluated as 774 

lnΓ &𝐚(N
(4,3). =

1
2 ln 2𝜋 −

1
2 ln 𝐚(N

(4,3) + 𝐚(N
(4,3) &ln 𝐚(N

(4,3) − 1. + ln Ç1 + 𝒪 w&𝐚∙N
(4,3).

x(
yÈ 775 

= 𝐚(N
(4,3) ln 𝐚(N

(4,3) − 𝐚(N
(4,3) + 𝒪(ln 𝑡). (27) 776 

Similarly, ln Γ &𝐚BN
(4,3). = 𝐚BN

(4,3) ln𝐚BN
(4,3) − 𝐚BN

(4,3) + 𝒪(ln 𝑡)  and ln Γ &𝐚(N
(4,3) + 𝐚BN

(4,3). =777 

&𝐚(N
(4,3) + 𝐚BN

(4,3). ln &𝐚(N
(4,3) + 𝐚BN

(4,3). − &𝐚(N
(4,3) + 𝐚BN

(4,3). + 𝒪(ln 𝑡) hold. Thus, we obtain 778 

lnℬ &𝐚∙N
(4,3). = 𝐚(N

(4,3) ln𝐚(N
(4,3) + 𝐚BN

(4,3) ln𝐚BN
(4,3) − &𝐚(N

(4,3) + 𝐚BN
(4,3). ln &𝐚(N

(4,3) + 𝐚BN
(4,3). + 𝒪(ln 𝑡) 779 

= 𝐚∙N
(4,3) ∙ ln &𝐀∙N

(4,3). + 𝒪(ln 𝑡). (28) 780 

Hence, Equation (25) becomes 781 

𝒟o =�� � ð𝐚∙N
(4,3) ∙ ln &𝐀∙N

(4,3). + 𝒪(1) − w𝐚∙N
(4,3) ∙ ln &𝐀∙N

(4,3). + 𝒪(ln 𝑡)yñ
N∈{(,B}

,-

3W(

,2

4W(

= 𝒪(ln 𝑡). (29) 782 

Therefore, we obtain 783 

𝐹?𝑜S, 𝑄(𝑠̃), 𝑄(𝐴)A =��𝐬V
(3) ∙ Yln 𝐬V

(3) −�ln𝐀(4,3) ∙ 𝑜V
(4)

,2

4W(

− ln𝐷(3)Z
$

VW(

,-

3W(

+ 𝒪(ln 𝑡). (30) 784 
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Under the current generative model comprising binary hidden states and binary 785 
observations, the optimal posterior expectation of 𝐀 can be obtained up to the order of 786 
ln 𝑡 /𝑡 even when the 𝒪(ln 𝑡) term in Equation (30) is ignored. Solving the variation of F 787 

with respect to 𝐀(N
(4,3)  yields the optimal posterior expectation. From 𝐀BN

(4,3) = 1 − 𝐀(N
(4,3), we 788 

find 789 

𝛿𝐹 =���𝐬V
(3) ∙ ð−𝛿 ln𝐀(∙

(4,3) 𝑜V
(4) − 𝛿 ln &1Â⃗ − 𝐀(∙

(4,3). &1 − 𝑜V
(4).ñ

$

VW(

,-

3W(

,2

4W(

 790 

= 𝑡��Ñ−w𝛿𝐀(∙
(4,3) ⊙ &𝐀(∙

(4,3).
⊙x(

y ⋅ 𝑜$
(4) ⊗ 𝐬$

(3) + w𝛿𝐀(∙
(4,3) ⊙ &1Â⃗ − 𝐀(∙

(4,3).
⊙x(

y ⋅ &1 − 𝑜$
(4).𝐬$

(3)÷
,-

3W(

,2

4W(

 791 

= 𝑡��w𝛿𝐀(∙
(4,3) ⊙ &𝐀(∙

(4,3).
⊙x(

⊙ &1Â⃗ − 𝐀(∙
(4,3).

⊙x(
y ⋅ w𝐀(∙

(4,3) ⊙ 𝐬$
(3) − 𝑜$

(4)𝐬$
(3)y

,-

3W(

,2

4W(

(31) 792 

up to the order of ln 𝑡. Here, &𝐀(∙
(4,3).

⊙x(
 denotes the element-wise inverse of 𝐀(∙

(4,3). From 793 

𝛿𝐹 = 0, we find 794 

𝐀(∙
(4,3) = 𝑜$

(4)𝐬$
(3) ⊙ w𝐬$

(3)y
⊙x(

+ 𝒪 w
ln 𝑡
𝑡 y .

(32) 795 

Therefore, we obtain the same result as Equation (8) up to the order of ln 𝑡 /𝑡. 796 

 797 

S2. Derivation of synaptic plasticity rule 798 

We consider synaptic strengths at time t, 𝑊3( = 𝑊3((𝑡), and define the change as 799 
Δ𝑊3( ≡ 𝑊3((𝑡 + 1) −𝑊3((𝑡). From Equation (15), ℎ(| ?𝑊3(A satisfies both 800 

ℎ(| ?𝑊3( + Δ𝑊3(A − ℎ(| ?𝑊3(A = ℎ(||?𝑊3(A ⊙ Δ𝑊3( + 𝒪 &ÕΔ𝑊3(Õ
D
. (33) 801 

and 802 

ℎ(| ?𝑊3( + Δ𝑊3(A − ℎ(| ?𝑊3(A = −
𝑥($�()3𝑜$�( + 𝑡𝑥$3𝑜$

𝑥($�()3 + 𝑡𝑥$3
+
𝑥$3𝑜$
𝑥$3

 803 

≈ −
𝑥($�()3𝑜$�(

𝑡𝑥$3
+
𝑥$3𝑜$
𝑡𝑥$3

D 𝑥($�()3 = −
1
𝑡𝑥$3

?𝑥($�()3𝑜$�( − ℎ(| ?𝑊3(A𝑥($�()3A. (34) 804 

Thus, we find 805 
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Δ𝑊3( = −
ℎ(||?𝑊3(A

⊙x(

𝑡𝑥$3���������
�º����Û�	����·�·µ	����

⊙ Æ𝑥($�()3𝑜$�(�������
Ü�ÝÝ��·	����

− ℎ(| ?𝑊3(A𝑥($�()3���������
¹����������	����

É . (35) 806 

Similarly, 807 

Δ𝑊3B = −
ℎB||?𝑊3BA

⊙x(

𝑡1 − 𝑥$3���������
�º����Û�	����·�·µ	����

⊙ Æ?1 − 𝑥($�()3A𝑜$�(�����������
�·��xÜ�ÝÝ��·	����

− ℎB| ?𝑊3BA?1− 𝑥($�()3A���������������
¹����������	����

É . (36) 808 

These plasticity rules express (anti-) Hebbian plasticity with a homeostatic term. 809 

 810 

S3. Correspondence between parameter prior distribution and initial synaptic strengths 811 

In general, optimising a model of observable quantities—including a neural network—can 812 
be cast inference, if there exists a learning mechanism that updates the hidden states and 813 
parameters of that model based on observations. (Exact and variational) Bayesian inference 814 
treats the hidden states and parameters as random variables, and thus transforms prior 815 
distributions 𝑃(𝑠$), 𝑃(𝐴) into posteriors 𝑄(𝑠$), 𝑄(𝐴). In other words, Bayesian inference is 816 
a process of transforming the prior to the posterior based on observations 𝑜(, … , 𝑜$  under a 817 
generative model. From this perspective, the incorporation of prior knowledge about the 818 
hidden states and parameters is an important aspect of Bayesian inference. 819 

The minimisation of a cost function by a neural network updates its activity and synaptic 820 
strengths based on observations under the given network properties (e.g., activation 821 
function and thresholds). According to the complete class theorem, this process can always 822 
be viewed as Bayesian inference. In the main text, we demonstrated that a class of cost 823 
functions—for a single-layer feed-forward network with a sigmoid activation function—has a 824 
form equivalent to variational free energy under a particular latent variable model. Here, 825 
neural activity 𝑥$ and synaptic strengths 𝑊 come to encode the posterior distributions 826 
over hidden states 𝑄|(𝑠$) and parameters 𝑄|(𝐴), respectively, where 𝑄|(𝑠$) and 𝑄|(𝐴) 827 
follow categorical and Dirichlet distributions, respectively. Moreover, we identified that the 828 
perturbation factors 𝜙3 —that characterise the threshold function—correspond to the 829 
logarithm of the state prior 𝑃(𝑠$) expressed as a categorical distribution. 830 

However, one might ask whether the posteriors obtained using the network 𝑄|(𝑠$), 𝑄|(𝐴) 831 
are formally different from those obtained using variational Bayesian inference 𝑄(𝑠$), 𝑄(𝐴), 832 
since only the latter explicitly considers the prior distribution of parameters 𝑃(𝐴). Thus, one 833 
may wonder if the network merely influences update rules that are similar to variational 834 
Bayes but does not transform the priors 𝑃(𝑠$), 𝑃(𝐴) into the posteriors 𝑄(𝑠$), 𝑄(𝐴), 835 
despite the asymptotic equivalence of the cost functions. 836 
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Below, we show that the initial values of synaptic strengths 𝑊3(4ï4$ ,𝑊3B4ï4$  correspond to 837 

the parameter prior 𝑃(𝐴) expressed as a Dirichlet distribution, to show that a neural 838 
network indeed transforms the priors into the posteriors. For this purpose, we specify the 839 
order 1 term in Equation (12) to make the dependence on the initial synaptic strengths 840 
explicit. Specifically, we modify Equation (12) as 841 

𝐿3 =� 𝑓?𝑥V3A − w
𝑥V3

1 − 𝑥V3y
/
Æw
𝑊3(
𝑊3B

y 𝑜V + Ç
ℎ3(
ℎ3B
ÈÉ¡

$

VW(

 842 

+?𝑊3(,𝑊3BA?𝜆3( ⊙𝑊Ë3(4ï4$ , 𝜆3B ⊙𝑊Ë3B4ï4$A
/

 843 

+?ln?1Â⃗ −𝑊Ë3(A , ln?1Â⃗ −𝑊Ë3BAA?𝜆3(, 𝜆3BA
/
, (37) 844 

where 𝑊Ë3(4ï4$ ≡ sig?𝑊3(4ï4$A and 𝑊Ë3B4ï4$ ≡ sig?𝑊3B4ï4$A are the sigmoid functions of the initial 845 

synaptic strengths, and 𝜆3(, 𝜆3B ∈ ℝ,2  are row vectors of the inverse learning rate factors 846 
that express the insensitivity of the synaptic strengths to the activity-dependent synaptic 847 
plasticity. The third term of Equation (37) expresses the integral of 𝑊Ë3( and 𝑊Ë3B  (with 848 
respect to 𝑊3(  and 𝑊3B, respectively). This ensures that when t = 0 (i.e., when the first term 849 
on the right-hand side of Equation (37) is zero), the derivative of 𝐿3 is given by 𝜕𝐿3/𝜕𝑊3( =850 

𝜆3( ⊙𝑊Ë3(4ï4$ − 𝜆3( ⊙𝑊Ë3(, and thus ?𝑊3(,𝑊3BA = ?𝑊3(4ï4$ ,𝑊3B4ï4$A provides the fixed point of 851 

𝐿3. 852 

Similar to the transformation from Equation (12) to Equation (17), we compute Equation 853 
(37) as 854 

𝐿 =��w
𝑥V3

1 − 𝑥V3y
/
ÌÇ

ln 𝑥V3
ln?1 − 𝑥V3A

È − Æ
ln𝑊Ë3( ln?1Â⃗ −𝑊Ë3(A
ln𝑊Ë3B ln?1Â⃗ −𝑊Ë3BA

Éw
𝑜V

1Â⃗ − 𝑜V
y − w

𝜙3(
𝜙3B

yÍ
$

VW(

,a

3W(

 855 

+�Ñ?ln𝑊Ë3( , ln?1Â⃗ −𝑊Ë3(AA &𝜆3( ⊙𝑊Ë3(4ï4$ , 𝜆3( ⊙ ?1Â⃗ − 𝑊Ë3(4ï4$A.
/

,a

3W(

 856 

+?ln𝑊Ë3B , ln?1Â⃗ −𝑊Ë3BAA &𝜆3B ⊙𝑊Ë3B4ï4$ , 𝜆3B ⊙ ?1Â⃗ − 𝑊Ë3B4ï4$A.
/
÷ . (38) 857 

Note that we used 𝑊3( = ln𝑊Ë3( − ln?1Â⃗ −𝑊Ë3(A. Crucially, analogous to the correspondence 858 

between 𝑊Ë3(  and the Dirichlet parameters of the parameter posterior 𝐚((
(∙,3), 𝜆3( ⊙𝑊Ë3(4ï4$  859 
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can be formally associated with the Dirichlet parameters of the parameter prior 𝑎((
(∙,3). Hence, 860 

one can see the formal correspondence between the second and third terms on the 861 
right-hand side of Equation (38) and the expectation of the log parameter prior in Equation 862 
(4): 863 

En(o)[ln𝑃(𝐴)] = ��ln𝐀(4,3) ⋅ 𝑎(4,3)
,-

3W(

,2

4W(

 864 

=��ðln𝐀∙(
(4,3) ⋅ 𝑎∙(

(4,3) + ln𝐀∙B
(4,3) ⋅ 𝑎∙B

(4,3)ñ
,-

3W(

,2

4W(

. (39) 865 

Furthermore, the synaptic update rules are derived from Equation (38) as 866 

⎩
⎪
⎨

⎪
⎧ 𝑊̇3( ∝ −

1
𝑡
𝜕𝐿
𝜕𝑊3(

= 𝑥$3𝑜$ − 𝑥$3𝑊Ë3( + 𝑥$3𝜙3(| +
1
𝑡
?𝜆3( ⊙𝑊Ë3(4ï4$ − 𝜆3( ⊙𝑊Ë3(A

𝑊̇3B ∝ −
1
𝑡
𝜕𝐿
𝜕𝑊3B

= ?1 − 𝑥$3A𝑜$ − 1 − 𝑥$3𝑊Ë3B + 1 − 𝑥$3𝜙3B| +
1
𝑡
?𝜆3B ⊙𝑊Ë3B4ï4$ − 𝜆3B ⊙𝑊Ë3BA

(40) 867 

The fixed point of Equation (40) is provided as 868 

⎩
⎪
⎨

⎪
⎧ 𝑊3( = sigx( Ç?𝑡𝑥$31Â⃗ + 𝜆3(A

⊙x(
⊙ ?𝑡𝑥$3𝑜$ + 𝑡𝑥$3𝜙3(| + 𝜆3( ⊙𝑊Ë3(4ï4$AÈ

𝑊3B = sigx( Ç?𝑡1 − 𝑥$31Â⃗ + 𝜆3BA
⊙x(

⊙ &𝑡?1 − 𝑥$3A𝑜$ + 𝑡1 − 𝑥$3𝜙3B| + 𝜆3B ⊙𝑊Ë3B4ï4$.È
(41) 869 

Note that the synaptic strengths at t = 0 are computed as 𝑊3( = sigx( w?𝜆3(A
⊙x(

⊙870 

?𝜆3( ⊙𝑊Ë3(4ï4$Ay = 𝑊3(4ï4$ . Again, one can see the formal correspondence between the final 871 

values of the synaptic strengths given by Equation (41) in the neural network formation and 872 
the parameter posterior given by Equation (8) in the variational Bayesian formation. As the 873 

Dirichlet parameter of the posterior 𝐚((
(∙,3) is decomposed into the outer product 𝑜$ ⊗ 𝐬$(

(3) 874 

and the prior 𝑎((
(∙,3), they are associated with 𝑥$3𝑜$ and 𝜆3( ⊙𝑊Ë3(4ï4$ , respectively. Thus, 875 

Equation (8) corresponds to Equation (41). Hence, for a given constant set 876 

�𝑊3(4ï4$,𝑊3B4ï4$ , 𝜆3(, 𝜆3B� , we identify the corresponding parameter prior 𝑃?𝐴(∙,3)A =877 

Dir?𝑎(∙,3)A, given by 878 
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𝑎(∙,3) ≡ Æ
𝑎((
(∙,3) 𝑎(B

(∙,3)

𝑎B(
(∙,3) 𝑎BB

(∙,3)É = Ç
𝜆3( ⊙𝑊Ë3(4ï4$ 𝜆3B ⊙𝑊Ë3B4ï4$

𝜆3( ⊙ ?1Â⃗ −𝑊Ë3(4ï4$A 𝜆3B ⊙ ?1Â⃗ −𝑊Ë3B4ï4$A
È . (42) 879 

In summary, one can establish the formal correspondence between neural network and 880 
variational Bayesian formations, in terms of the cost functions (Equation (4) vs. Equation 881 
(38)), priors (Equation (18) and Equation (42)), and posteriors (Equation (8) vs. Equation (41)). 882 
This means that a neural network successively transforms priors 𝑃(𝑠$), 𝑃(𝐴) into posteriors 883 
𝑄(𝑠$), 𝑄(𝐴), as parameterised with neural activity, and initial and final synaptic strengths 884 
(and thresholds). Crucially, when increasing number of observations, this process is 885 
asymptotically equivalent to that of variational Bayesian inference, under a specific likelihood 886 
function. 887 

 888 

 889 
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