
PPPred: Classifying Protein-phenotype Co-mentions Extracted
from Biomedical Literature∗

Morteza Pourreza Shahri
School of Computing, Montana State University

mpourrezashahri@montana.edu

Gillian Reynolds
Plant Sciences and Pathology, Montana State University

gillian.reynolds@student.montana.edu

Mandi M. Roe
Microbiology and Immunilogy, Montana State University

mandi.roe@student.montana.edu

Indika Kahanda
School of Computing, Montana State University

indika.kahanda@montana.edu

ABSTRACT
�e MEDLINE database provides an extensive source of scienti�c
articles and heterogeneous biomedical information in the form of
unstructured text. One of the most important knowledge present
within articles are the relations between human proteins and their
phenotypes, which can stay hidden due to the exponential growth
of publications. �is has presented a range of opportunities for the
development of computational methods to extract these biomedical
relations from the articles. However, currently, no such method
exists for the automated extraction of relations involving human
proteins and human phenotype ontology (HPO) terms. In our pre-
vious work, we developed a comprehensive database composed
of all co-mentions of proteins and phenotypes. In this study, we
present a supervised machine learning approach called PPPred
(Protein-Phenotype Predictor) for classifying the validity of a given
sentence-level co-mention. Using an in-house developed gold stan-
dard dataset, we demonstrate that PPPred signi�cantly outperforms
several baseline methods. �is two-step approach of co-mention
extraction and classi�cation constitutes a complete biomedical rela-
tion extraction pipeline for extracting protein-phenotype relations.

CCS CONCEPTS
•Computing methodologies → Information extraction; Su-
pervised learning by classi�cation; •Applied computing →
Bioinformatics;

KEYWORDS
Biomedical Relation Extraction, Protein-phenotype Relations, Su-
pervised Learning

1 INTRODUCTION
Proteins are one of the most critical biomolecules for the devel-
opment and maintenance of life [3]. A cell’s full complement of
expressed proteins, the proteome, is both dynamic and multidimen-
sional with many proteins operating in a complex network ensuring
the integrity of cellular structure and function [21]. Changes in
critical regions of a protein’s structure o�en caused by errors in the
underlying genetic sequence of the protein or in its regulation can
alter the protein’s function-speci�c 3D structure, resulting in an
alteration of phenotype [12]. In the medical context, a phenotype
can be characterized as a deviation from normal morphology or
behavior [34]. Well known alterations in phenotype brought about
∗Produces the permission block, and copyright information

by changes in one or more proteins or their regulation involved in
important biological pathways include Alzheimer’s disease, Parkin-
son’s disease, Huntington’s disease, cancer, cystic �brosis and type
II diabetes [3, 13, 26]. Uncovering novel changes in protein structure,
function and regulation, and understanding how these alterations
lead to human disorders is a very active area of research in the
biological community [3, 5, 12, 13, 21, 26, 33, 37].

Human Phenotype Ontology (HPO) is a standardized vocabulary
that includes a wide range of phenotypic abnormalities observed
in human diseases [18]. HPO is composed of �ve sub-ontologies
among which Phenotypic abnormalities is the main sub-ontology
that describes clinical abnormalities. Each sub-ontology includes
HPO terms and an associated HPO Identi�ers (IDs), e.g. Parkinson-
ism, HP:0001300. Each sub-ontology is organized in a hierarchical
structure where more general terms are close to the top while more
speci�c terms are closer to the bo�om. Each pair of terms in the
hierarchy are linked with a is-a relationship. In this paper, we use
phenotypes andHPO terms, interchangeably. HPO website1 provides
gold-standard annotations for a large collection of human proteins
through biocuration, which is the process of extracting knowledge
from unstructured text and storing the data in knowledge bases.
However, currently, only a small portion of known human proteins
have HPO annotations [18]. But, it is believed that there are many
other human proteins that are associated with diseases and hence
should be annotated with HPO terms (Peter Robinson, personal
communication, 2015).

Continuing to expand the knowledgebases such as HPO database
through biocuration is of utmost importance for potential future
downstream applications in medicine and healthcare. However,
biocuration, which is usually performed manually with the help
of computational tools [9], is generally considered tedious and
resource-consuming. Hence, e�cient and accurate computational
tools are required to expedite the process in order to bridge the gap
between the typically slower rate of human annotation versus the
vast and exponentially-increasing amount of literature concerned
with the subject [9]. As a result, developing computational models
to extract relations between proteins and phenotypes has gained
recent interest among scientists working in the �eld of biomedi-
cal natural language processing [11, 17, 19, 39]. However, to the
best of our knowledge, no such computational methods exist for
automatically extracting human protein-HPO term relations from
biomedical literature.

1h�ps://hpo.jax.org/app
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Figure 1: An example of a bad co-mention in which the sentence does not convey a relation between the protein, i.e. “KIF4”,
and the phenotype, i.e. “cancer”. (PMID: 20711700)

As a solution to the above, we propose a two-step approach
for extracting human protein-HPO term relations. �e �rst step
is to extract protein-HPO co-mentions, which are co-occurrences
of protein names and phenotype names in a certain span of text
i.e. a sentence, a paragraph, etc [17]. In our previous work, we
developed ProPheno2, which is an online and publicly accessible
dataset composed of proteins, phenotypes (HPO terms), and their
co-occurrences (co-mentions) in text which are extracted from
Medline abstracts and PubMed Central (PMC) Open Access full-
text articles using a sophisticated in-house developed text mining
pipeline [30]. �is dataset covers all terms in the Phenotypic abnor-
mality sub-ontology. However, a knowledge-free Natural Language
Processing (NLP) pipeline extracts every co-mention of proteins
and phenotypes, but not all protein-phenotype co-mentions simply
imply that there is a relationship between the two entities (see
Figure 1 for an example).

�erefore, in the second step, extracted co-mentions are �ltered
using a co-mention classi�er that can distinguish between good
and bad co-mentions. We de�ne a co-mention as a good co-mention
if there is enough evidence conveyed in the corresponding span
of text indicating a relationship between the protein and the phe-
notype. In other words, a good co-mention is a valid relationship
between the two entities according to the meaning of the context
text. Figure 2 depicts an example of a good co-mention of a protein
and a phenotype in a sentence. �e combination of a co-mention
extractor and co-mention classi�er/ �lter constitutes a complete
relation extraction pipeline.

�e development of PPPred (Protein-Phenotype Predictor), a
novel co-mention classi�er for classifying protein-phenotype co-
mentions, is the primary focus of the work presented in this paper.
We �rst randomly select a subset of co-mentions from the ProPheno
database and have them curated through two biologists. �is gold-
standard dataset is composed of 809 human protein-HPO term
co-mentions annotated with binary labels of good/ bad. �en we
use this gold-standard dataset for developing predictive models
using machine learning techniques. Our machine learning models
employ a large collection of both syntactic and semantic features.
Finally, we demonstrate that PPPred signi�cantly outperforms other
baseline methods on the task of protein-HPO terms co-mention
classi�cation.

�e main contributions of the paper are as follows. �is is the
�rst analysis of the problem of human protein-HPO term relation
extraction from biomedical literature. We model this relation extrac-
tion task as a two-step process composed of co-mention extraction

2h�p://propheno.cs.montana.edu

and classi�cation. We formulate the co-mention classi�cation prob-
lem as a supervised learning problem using the gold-standard data
generated by biologists. �is is also the �rst such gold-standard
data for human protein-HPO term relation extraction and is made
publicly available3. A �lter or a classi�er that could identify good
co-mentions can be used by annotators to signi�cantly speed up
the biocuration process. In addition, this can be used to provide
much higher quality co-mentions as input to other downstream ap-
plications such as human protein-HPO term prediction [29], which
would likely lead to be�er predictions.

�e rest of the paper is organized as follows. Section 2 provides
a brief background on the related work in this area. �e proposed
method is discussed in Section 3. Section 4 discusses the results of
running this method and compares the results with other methods
and provides a discussion on the results. Finally, Section 5 concludes
the study and discusses future work and open problems.

2 RELATEDWORK
�e main approaches for biomedical relation extraction include
co-occurrence-based methods, rule-based methods, and machine
learning-based methods. Co-occurrence methods simply look for
any co-mention of the two entities of interest in a particular span
of text, e.g. sentence, paragraph, etc., and usually provide low
precision and high recall values [4]. Rule-based methods de�ne
linguistic pa�erns and extract the relations using the pa�erns [1,
23, 31]. �e rules can be derived from manually annotated corpora
using machine learning algorithms or de�ned manually by a domain
expert. Machine learning-based approaches are also employed for
the relation extraction from biomedical text [17, 20, 22, 38].

�e machine learning category includes methods based on fea-
ture engineering, graph kernels, and deep learning. Support Vector
Machines (SVMs) have shown high performance in biomedical
relation extraction, but they need feature engineering which is
a skill-dependent task [42]. Kernel-based methods also require
designing suitable kernel functions. Deep neural network-based
methods eliminate the need for feature extraction and de�ning
rules, and provide state-of-the-art on various tasks in biomedical
relation extraction [28, 42]. However, they typically require very
large data sets compared to other traditional machine learning
models.

Sekimizu et al. employ the most frequently seen verbs from
Medline abstracts, and they try to �nd the subject and object terms
for some of these verbs [36]. �ey linguistically analyze raw texts
and then apply the mentioned method for classifying genes and
gene products, and for identifying the relations between those

3h�ps://github.com/MSU-KAHANDA-LAB/protein-phenotype-relation-extraction
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Figure 2: An example of a sentence-level protein-phenotype co-mention which is extracted from the article PMID: 798461.

entities. Temkin and Gilder propose a method based on using lexical
analyzer and context-free grammar for extracting relations between
genes, proteins, and small molecules from unstructured text [40].
Yakushiji et al. introduce a full parser for analyzing biomedical text
using a general-purpose parser and grammar [41]. Coulet et al. also
propose a system for extracting pharmacogenomics relations from
biomedical text using a semantic network on relations [7].

Ng and Wong propose a prototype system based on pa�ern
matching for automatic pathway discovery from abstracts [27].
�ey employ two sets of rules for specifying the pa�erns for protein
name identi�cation and for extracting protein-protein interactions
(PPI). Huang et al. introduce a method based on dynamic program-
ming for discovering pa�erns by aligning related sentences and key
verbs, and they use this method to �nd protein-protein interactions
from full-text articles [14].

Craven presents a machine learning method for mapping infor-
mation from Medline abstracts to knowledge bases [8]. Katrenko
and Adriaans propose a method that uses syntactic information
and can be used with various machine learning methods [16]. Mar-
co�e et al. introduce a Bayesian approach using the probability
of discussing the PPI interactions using the frequency of 80 dis-
criminating words from Medline abstracts [24]. Rosario and Hearst
employ neural networks using lexical, syntactic, and semantic fea-
tures for distinguishing seven relations between entities “disease”
and “treatment” [35].

Rind�esch et al. present a natural language processing method
for identifying casual relations between diseases and genetic phe-
nomena [32]. Fundel et al. propose RelEx which is based on parse
trees and simple rules and can be used for extracting relations be-
tween genes and proteins from Medline abstracts [10]. Bui et al.
introduce an algorithm for extracting protein-protein interactions
from biomedical literature based on the semantic properties of text
and support vector machines for classifying PPI pairs [2].

Korbel et al. employ an unsupervised, systematic approach for
�nding relations between genes and phenotypic characteristics
using Medline abstracts [19]. First, they retrieve abstracts that
contain phenotypic similarities of species and then �nd genes that
are present in the corresponding genomes. Goh et al. propose
a method to �nd genotype-phenotype relations which combines
molecular and phenotypic information [11]. Khordad and Mercer
introduce a machine learning method for identifying genotype-
phenotype relations which uses a semi-automatic approach for
annotating more sentences to enlarge the training set [17].

Despite a large number of studies conducted on extracting entity
relations from the biomedical literature (including a handful of
methods for extracting relations between genes/proteins and phe-
notypes, no methods exist speci�cally for human protein-HPO term
relation extraction. �erefore, to the best of our knowledge, this

is the �rst study on the problem of protein-HPO term relation ex-
traction from biomedical literature and the PPPred is the �rst such
method. We note that GenePheno [15] is the only related method
that uses an ontology-based approach to extract gene-phenotype
associations from the literature. It �rst recognizes all mentions of
gene and HPO terms within sentences in the whole corpora and
then uses a co-occurrence based metric for ranking those pairs.
Highest ranked pairs are predicted as gene-phenotype associations.
While GenePheno does not predict top-ranked relations (i.e. sen-
tences), we still use it as one of the baseline methods due to the
close proximity of the problem solved by their method and the
task of protein-phenotype co-mention classi�cation addressed by
PPPred.

3 METHODOLOGY
3.1 Approach
In this work, we formulate the task of co-mention classi�cation as
a supervised learning problem as described below.

Given a context C = w1w2..e1..w3..e2..wn−1wn composed of
words wi and the two entities e1 and e2, we de�ne a mapping fR (·)
as:

fR (T (C)) =
{

1 if e1and e2 are related according to R

0 otherwise,

where T (C) is a high-level feature representation of the context, e1
and e2 are the entities representing the protein and the phenotype
and R is the relation that represents the protein-phenotype relation-
ship between the two. An example is considered a positive example
if the meaning of the context suggests that the protein mentioned
has this function (i.e. a good co-mention). Otherwise, it is labeled
as a negative example.

In this work, the contextC is a single sentence (i.e., the sentence
containing the mentions of the two entities). Figure 2 depicts a
sentence which is labeled as a positive example (i.e., fR = 1) because
it provides evidence for the relationship between the two entities
“Insulin” (protein) and “Atherosclerosis” (phenotype). We model this
problem as a supervised learning problem and use binary classi�ers
for learning fR .

Figure 3 depicts the overview of the PPPred pipeline, which is
capable of classifying sentence-level co-mentions of proteins and
phenotypes from biomedical literature. In this �gure, we start by
inpu�ing a set of sentences that contain co-mentions of proteins and
phenotypes. �e preprocessing step is comprised of tokenization,
removing punctuations and stop words, and stemming. In the next
step, we extract features from the input sentences and train the
model which is able to extract the relations. �e steps are discussed
in detail in the following sections.

3
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Figure 3: �e Pipeline of the Proposed Method

3.2 Dataset
�e �rst step in building a co-mention classi�er is to create a
manually-annotated gold-standard dataset of co-mentions of pro-
teins and phenotypes. For this purpose, we use ProPheno 1.0 [30],
which is a dataset of proteins-phenotypes extracted from the entire
biomedical literature. �is dataset maps the proteins and pheno-
types to the corresponding UniProt4 IDs and HPO IDs. We ran-
domly select a dataset of 809 sentence-level co-mentions of proteins
and phenotypes from ProPheno. �is dataset is then annotated by
two biologists to generate the gold-standard dataset. �e annotators
were provided instructions to label a co-mention as good/ positive
if the sentence conveys that the protein and the phenotype has a
relationship. Otherwise, the co-mention was labeled bad/negative.

Figure 4: Distribution of depth of HPO terms in the anno-
tated co-mention data

Table 1 shows the distribution of co-mention types in the gold-
standard dataset. According to the Table 1, 39% of sentences are
extracted from the abstracts and 61% are from the full-text articles.
Among the sentences from the abstracts, 53% are labeled as “good”
and 47% are labeled as “bad”. �e distribution for the sentences from
the full-text articles is 70% and 30% “good” vs. “bad”, respectively.
�e overall class distribution is 64% and 36% for “good” and “bad”,
respectively. �e inter-annotator agreement is calculated using the
Cohen’s Kappa statistic [25] and the corresponding value is 0.64
that shows substantial agreement.

4h�ps://www.uniprot.org

Table 1: �e class distribution in the gold standard dataset

Good Bad Total
Sentences from abstracts 169 147 316
Sentences from full-texts 348 145 493
All sentences 517 292 809

Table 2: Most frequent HPO terms mentioned in the dataset

Index HPO ID HPO Term Depth Frequency
1 HP:0002664 Neoplasm 2 348
2 HP:0003002 Breast carcinoma 5 69
3 HP:0001909 Leukemia 4 24
4 HP:0002861 Melanoma 4 21
5 HP:0000855 Insulin resistance 5 15

Table 3: Most frequent proteins mentioned in the dataset

Index UniProt ID Protein Name Freq.
1 P04626 Receptor tyrosine-protein ki-

nase erbB-2
120

2 Q9Y617 Phosphoserine aminotrans-
ferase

45

3 O14788 Tumor necrosis factor ligand su-
perfamily member 11

23

4 P01308 Insulin 20
5 P03971 Muellerian-inhibiting factor 14

Tables 2 and 3 show the most frequent phenotypes and proteins
in the dataset, respectively. According to the tables, 15% of the
sentences mention the protein ”Receptor tyrosine-protein kinase
erbB-2” (P04626) and 43% of the sentences discuss the HPO term
“Neoplasm” (HP:0002664) (other names: “Cancer” or “Tumour”).
Table 4 also demonstrates the most frequent protein-phenotype
pairs mentioned in the dataset. We observe that 10% of the co-
mentions in the dataset mention above protein-phenotype pair,
which shows this pair is a well-studied protein-phenotype pair.
Figure 4 depicts the distribution of the depths of HPO terms in the
gold-standard.

3.3 Preprocessing
In the next step, we perform preprocessing on the sentences, which
is basically employing tokenization, and removing highly frequent
words from sentences (stop words), and also performing lemmati-
zation. In this step, we replace protein and phenotype entities by
PROT and PHENO, respectively. �is replacement helps us to keep

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/654475doi: bioRxiv preprint 

https://doi.org/10.1101/654475
http://creativecommons.org/licenses/by/4.0/


Table 4: Most frequent protein-HPO term pairs mentioned in the dataset

Index UniProt ID HPO ID Protein Name HPO Term Frequency
1 P04626 HP:0002664 Receptor tyrosine-protein kinase erbB-2 Neoplasm 79
2 Q9Y617 HP:0002664 Phosphoserine aminotransferase Neoplasm 42
3 P04626 HP:0003002 Receptor tyrosine-protein kinase erbB-2 Breast carcinoma 31
4 P09486 HP:0002664 SPARC Neoplasm 9
5 P21860 HP:0002664 Receptor tyrosine-protein kinase erbB-3 Neoplasm 8

track of the actual labels when the sentence contains more than
one entity with the same name and helps to avoid confusion when
the entity names contain more than one word.

3.4 Feature Extraction
We de�ne the following items as the features for classi�cation.
�ese features are categorized into three major types, i.e. bag-of-
words, engineered features, and distantly supervised (DS) features.

3.4.1 Bag-of-words (BoW) Feature. Here each feature is a token
from the context sentence while the feature value is their corre-
sponding frequency.

3.4.2 Engineered Features. We obtained these features based on
(1) domain expertise and (2) informative features used with similar
relation extraction problem [22]. �e full list of engineered features
and their value type (within parentheses) is as follows:

(1) Shortest dependency path between PROT and PHENO in
the dependency graph of the sentence (integer).

(2) �e head words of PROT and PHENO in the sentences
(string).

(3) Part-of-speech tags of the entities and next tokens of enti-
ties in the sentences (string).

(4) �e number of tokens in sentences (integer).
(5) Existence of interaction words acquired from a study by

Chowdhary et al [6] (boolean).
(6) Existence of seven trigger words provided by biologists,

e.g. “provide”, “improve”, “confer”, etc (boolean).
(7) Position of PROT in the sentence (integer).
(8) Position of PHENO in the sentence (integer).
(9) Tokens before and a�er PROT and PHENO (string).

(10) Whether PROT is mentioned before PHENO in the sen-
tence (boolean).

(11) Existence of doubt in the sentence, e.g. “may”, “might”, etc
(boolean).

(12) Existence of negation words such as “no”, “not”, etc (boolean).

3.4.3 DS Features. We obtained the DS features by utilizing (1)
the full set of co-mentions (i.e. unlabeled) available in ProPheno,
and (2) the annotations available in the HPO database, which we
call the silver-standard (SS). �ese features are listed in detail as
follows:

(1) Number of co-mentions containing the protein name (inte-
ger).

(2) Number of co-mentions containing the phenotype name
(integer).

(3) Number of co-mentions containing both protein and phe-
notype name (integer).

(4) Normalized number of co-mentions containing the protein
name (�oat).

(5) Normalized number of co-mentions containing the pheno-
type name (�oat).

(6) Normalized number of co-mentions containing both pro-
tein and phenotype name (�oat).

(7) Number of pair-speci�c co-mentions containing the pro-
tein name (integer).

(8) Number of pair-speci�c co-mentions containing the phe-
notype name (integer).

(9) Number of pair-speci�c co-mentions containing both pro-
tein and phenotype name (integer).

(10) Normalized number of pair-speci�c co-mentions contain-
ing the protein name (�oat).

(11) Normalized number of pair-speci�c co-mentions contain-
ing the phenotype name (�oat).

(12) Normalized number of pair-speci�c co-mentions contain-
ing both protein and phenotype name (�oat).

(13) Number of annotations in SS for the protein (integer).
(14) Number of annotations in SS for the phenotype (integer).
(15) Annotation score for the protein and the phenotype in SS

(0 or 1).
(16) Number of propagated annotations in SS for the protein

(integer).
(17) Number of propagated annotations in SS for the phenotype

(integer).
(18) Propagated annotation score for the protein and the phe-

notype in SS (0 or 1).
We normalize the number of co-mentions containing protein

name, phenotype name, or a pair of protein-phenotype by dividing
their frequencies by the number of unique articles that contain that
speci�c protein, phenotype, or pair, respectively. We also propagate
the HPO annotations upward toward the root nodes by using the
true path rule that means if an HPO term has an annotation with
a speci�c protein, all of its ancestors are also annotated with that
protein.

3.5 Experimental Setup
�e scikit-learn5 package is used for implementing the classi�er
functionality. We normalize the feature vectors using the L2 norm.
In a preliminary analysis, we compared various supervised learning
algorithms such as SVM, Naı̈ve Bayes, Decision Trees, K-Nearest
Neighbors (KNN), and Gradient Boosting Trees (GBT) using their

5h�ps://scikit-learn.org/
5
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default parameter se�ings. We select SVM with Linear kernel for
the rest of our experiments. We perform 10-times 5-fold cross-
validation �e performances are reported primarily using F-max
(the optimal F-1 value). Precision and Recall at F-max are presented
as well.

We compare PPPred with three baselines: (1) a strict rule-based
method (rule-based 1), (2) a lenient rule-based method (rule-based
2), and (3) GenePheno [15]. �e rule-based 1 method was devel-
oped in-house by a biologist using broad domain knowledge of the
language used when describing alterations in protein sequence, ac-
tivity, regulation and the resulting phenotypic changes. Commonly
used words for sequence-based alterations included “mutation”,
“deletion” and “insertion”. For protein expression changes, the
phrases “upregulation”, “upregulates”, “downregulation”, “down-
regulates”, “over-expression”, “under-expression”, “switches o�”,
“switches on”, “ampli�es” and “enhances” were chosen. For direct
protein-phenotype relationship descriptions, the phrases “associ-
ated with”, “triggered by” and “caused by” were used. �is method
assigns a score of 1 to co-mentions satisfying at least one of the
following rules (and 0 otherwise):

• PROT (upregulation/ downregulation/ over-expression/
under-expression/ mutation) causes/ does not cause/ is
(not) associated with PHENO
• some other entity (upregulates/ downregulates/ silences/

inhibits/ switches o�/ switches on/ triggers/ activates/ am-
pli�es/ over-expresses/ under-expresses / enhances) PROT
causing/ which causes/ which is associated with PHENO

• PEHNO is (not) associated with/ triggered/ caused by (up-
regulation/ downregulation/ mutation/ deletion/ insertion/)
in PROT

• Mutation/ deletion/ insertion in PROT causes/ is associated
with PHENO

�e rule-based 2 method is lenient than the rule-based 1 method
because it only checks whether any of the keywords in the rule-
based 1 method is in the sentences. In other words, this method
assigns a score to a co-mention based on the keyword(s) present
in the sentence. �e order or the position of the keywords (with
respect to PROT and PHENO entities) are not considered.

GenePheno [15] is an ontology-based text mining method for
predicting gene-phenotype associations using literature. While
acknowledging this is not an apples-to-apples comparison, we per-
form the following in order to adapt it as a baseline. For each
co-mention in our gold-standard, if the corresponding pair of the
protein and the phenotype exists in the pre-generated GenePheno
output �le6, we consider it as a positive prediction (otherwise neg-
ative). We incorporate the NPMI (Normalized Pointwise Mutual
Information) scores provided by GenePheno for each co-mention
as the con�dence scores for the predictions. Note that due to the
possibility of the GenePheno method having access to some or all
of the co-mentions from our test set, the performance we report is
likely an over-estimation.

6h�ps://zenodo.org/record/2532614

Table 5: Comparison of various machine learning algo-
rithms using default parameter settings. Performance eval-
uated using 5-fold cross-validation and the results reported
using F-max and precision/ recall at F-max.

Model Precision Recall F-max
Linear SVM 0.69 0.95 0.8
Decision Trees 0.64 0.99 0.78
Naı̈ve Bayes 0.67 0.97 0.79
K-Nearest Neighbors 0.64 1.0 0.78
Gradient Boosting Trees 0.69 0.95 0.8

Table 6: Comparison of PPPred (uses SVMs with Linear ker-
nel) against several baseline methods. Performance evalu-
ated using 5-fold nested cross-validation and the results re-
ported using F-max and precision/ recall at F-max. *F1 score
reported in-place of F-max due to the lack of con�dence
scores for Rule-based 1 method.

Method Precision Recall F-max
Rule-based 1 0.71 0.26 0.38*
Rule-based 2 0.63 1.0 0.78
GenePheno 0.63 1.0 0.78
Linear SVM 0.69 0.95 0.8

4 RESULTS AND DISCUSSION
Table 5 demonstrates the F-max, precision at F-max, and recall at
F-max values of various supervised learning algorithms. We ob-
serve that the Linear SVM and Gradient Boosting Trees algorithms
achieve best the F-max value (0.8). In addition, the Decision Trees,
Naı̈ve Bayes, and K-Nearest Neighbors algorithms provide F-max
values of 0.78, 0.79, and 0.78, respectively. However, by comparing
the precision values, we realized that Linear SVM and Gradient
Boosting Trees provide higher precision values. Since Linear SVM
is one of the top models among all the models we compared, we
use that for the rest of our experiments.

Table 6 shows the comparison of the results of running PPPred
against two rule-based methods and GenePheno. We observe that
rule-based 2 and GenePheno obtain similar values for precision,
recall, and F-max, whereas Linear SVM produces a higher F-max
value. Linear SVM also achieves higher precision value than the
rule-based 2 and GenePheno methods. Due to the lack of con�dence
scores for the rule-based 1 method, we report the F1-score instead
of F-max. We performed the paired T-test on the values to compare
the signi�cance of the di�erence between F-max values. We ob-
served that Linear SVM signi�cantly outperforms other methods
by achieving a p-value of 4.3E-13.

Figure 5 provides a comparison between the e�ectiveness of var-
ious features on the sentences from the abstracts, full-text articles,
and all sentences. �e results suggest that we obtain be�er perfor-
mance using the co-mentions from the sentences extracted from
the full-text articles in comparison with the sentences extracted
from the abstracts. �e precision values of co-mentions extracted
from full-text articles are higher than the values obtained by the
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Figure 5: Comparison of the e�ectiveness of various features used with PPPred (uses SVMs with Linear kernel) on the sen-
tences from abstracts, full-text articles, and all sentences. Performance evaluated using 5-fold nested cross-validation and the
results reported using F-max and precision/ recall at F-max.

Figure 6: Learning Curve

abstracts. In other words, the co-mentions extracted from full-text
articles could be a valuable source of information for relation extrac-
tion. �e next observation is that BoW features o�en provide good
performance in terms of precision, recall, and F-max that indicates
the BoW features are an essential feature for relation extraction.
Engineered features provide higher precision in comparison with
DS features, whereas the DS features achieve higher recall values.
�is observation suggests that these two sets of features can be
used as complementary features for relation extraction.

We investigate whether the training set suitably represents the
problem by employing the learning curve with training sizes 20%-
90% of the data and predicting on the holdout 10% of the data.
Figure 6 depicts the learning curve with the mentioned training
sizes. �e increasing value of F-max shows that the dataset is
under-representative of the problem and we need more training
data.

Relatively Low precision values using the Linear SVM algorithm
suggest that we have many false positives. �erefore, to investigate

the reason, we picked the top 5 false positives (sentences which are
predicted as good with the highest con�dence scores by the model
whereas their actual labels are bad) shown in Table 7. We also
picked the top 5 false negatives (co-mentions predicted as negatives
with the lowest con�dence scores, whereas their actual labels are
good) which are shown in Table 8. By comparing sentences in
Tables 8 and 7, we observe that the length of false negative and
false positive sentences is similar and cannot be used as a criterion
to di�erentiate between the co-mentions. Additionally, we observed
that most of the phenotypes in the selected sentences are “cancer”
or related to “cancer”. �erefore, the type of entities does not fully
distinguish between good and bad co-mentions and requires further
investigation.

5 CONCLUSION AND FUTUREWORKS
In this project, we created a co-mention classi�er/�lter which is
capable of distinguishing between good and bad co-mentions of
proteins and phenotypes in sentences. We created a pipeline in
which we perform preprocessing on manually-annotated sentence-
level co-mentions of proteins and phenotypes, and by training a
model on a set of features extracted from the sentences, we are
able to classify the sentences comprising co-mentions of proteins
and phenotypes. �is classi�er can be employed to perform rela-
tion extraction on protein and phenotype entities mentioned in
biomedical literature. We observed that Linear SVM provides the
best F-max score using �ve-fold cross-validation.

Nevertheless, there is still a lot of avenues to work in this area.
We utilized syntactic features extracted from sentences, however,
a potential future work is to use more speci�c syntactic features
from sentences, e.g. the shape of the dependency graph. We also
plan to do the classi�cation on positive relations, negative relations,
and no relations between entities to be able to extract more speci�c
relations from biomedical literature by converting the problem into
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Table 7: False Positives

Sentence Protein Phenotype
Moreover it should be taken into account that the PROT level does not always correlate well with the
PHENO burden and that there are numerous examples of metastatic PCa in the absence of signi�cantly
elevated PSA levels, particularly when the tumours are poorly di�erentiated [36].

PSA tumour

Our �ndings, which demonstrated prognostic value of p-eIF2 in PHENO, are partially consistent with this
previous research, because PROT is also involved in the PERK-p-eIF2 signaling pathway and predicts be�er
DFS in patients with breast cancer.

CHOP breast cancer

Although PROT expression has not been documented so far to be increased in any malignancy, PKR levels
and/or activity have been reported to be elevated in PHENO [35], melanoma and colon cancer cell lines [36]
and hematological malignancies [37], raising the possibility that these cancers might be good candidates
for treatment with these agents.

GCN2 breast cancer

Alpha-tocopheryl succinate (alpha-TOS) has been shown to inhibit human prostate PHENO growth in vitro,
via several mechanisms, including inhibiting prostate-speci�c antigen (PROT) and vascular endothelial
growth factor (VEGF) expressions.

PSA cancer

Sole expression of AML1-ETO failed to generate PHENO in various murine transgenic models, suggesting
that additional genetic events might be necessary for PROT-ETO-positive cells to adopt leukemogenic
behavior [69].

AML1 leukemia

Table 8: False Negatives

Sentence Protein Phenotype
Pedigree analyses of �ve families in which a form of spinocerebellar PHENO (SCA1) is present
have been used to obtain additional information on the location of PROT on chromosome 6.

SCA1 ataxia

�e ratio of free to total PROT may increase the speci�city of single serum PSA evaluations
without decreasing its sensitivity for the diagnosis of prostate PHENO.

PSA cancer

�e PHENO cells are usually positive for cytokeratin 7 (CK7), epithelial membrane antigen
(EMA), Cam 5.2, PROT, and mucicarmine stain while S100, Melan A, and human melanoma
black-45 (HMB-45) highlight the non-neoplastic dendritic cells.

HER2 tumour

Statistically signi�cant changes in PROT signaling pathway activity between the xenogra�
and 2D cultures were also observed in MCF7 HER2-negative, ER-positive breast PHENO cell
line and in the MDA-MB-231 and Hs578T triple negative breast cancer cell lines (GEO Series
accession number GSE47583 for MCF7 and GSE36953 for MDA-MB-231 and Hs578T cell lines).

HER2 cancer

�e proportion of cases overexpressing PROT by tumor subtype was 72% for esophageal adeno-
carcinoma, 69% for gastric cardia adenocarcinoma, 52% for non-cardia gastric adenocarcinoma,
and 67% for esophageal PHENO.

P53 squamous cell carcinoma

a multi-class classi�cation. We also plan to apply deep learning
and word embeddings to this dataset. We plan to incorporate the
section titles, e.g. Introduction, Conclusion, etc., to employ only
the more informative sentences. We also plan to utilize features
based on the so� similarity between sentences and in the future,
we are going to expand the study and include larger spans of text,
i.e. paragraphs and documents.
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