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Abstract 
 
The sophistication of gene prediction algorithms and the abundance of RNA-based evidence for 
the maize genome may suggest that manual curation of gene models is no longer necessary. 
However, quality metrics generated by the MAKER-P gene annotation pipeline identified 17,225 
of 130,330 (13%) protein-coding transcripts in the B73 Reference Genome V4 gene set with 
models of low concordance to available biological evidence. Working with eight graduate 
students, we used the Apollo annotation editor to curate 86 transcript models flagged by 
quality metrics and a complimentary method using the Gramene gene tree visualizer. All of the 
triaged models had significant errors – including missing or extra exons, non-canonical splice 
sites, and incorrect UTRs. A correct transcript model existed for about 60% of genes (or 
transcripts) flagged by quality metrics; we attribute this to the convention of elevating the 
transcript with the longest coding sequence (CDS) to the canonical, or first, position. The 
remaining 40% of flagged genes resulted in novel annotations and represent a manual curation 
space of about 10% of the maize genome (~4,000 protein-coding genes). MAKER-P metrics have 
a specificity of 100%, and a sensitivity of 85%; the gene tree visualizer has a specificity of 100%. 
Together with the Apollo graphical editor, our double triage provides an infrastructure to 
support the community curation of eukaryotic genomes by scientists, students, and potentially 
even citizen scientists. 
 
Introduction 
 
Maize is the most important cereal crop, with worldwide production nearly equal to wheat and 
rice tonnage combined [1]. Arguably, only the human genome has received greater scientific 
scrutiny. The maize genome sequence was published in 2009 [2] and was the last and largest 
genome generated by the same, laborious clone-by-clone method as the human genome. 
 
Improvements in technology have obviated the requirement of bacterial cloning and decreased 
DNA sequencing costs 50,000-fold since the initial publication of the maize genome [3,4]. It now 
costs about $10,000 to generate 50-fold coverage of an average eukaryotic genome, and an 
additional $20,000 to assemble the millions of individual sequence reads into scaffolds that 
represent individual chromosomes. However, possession of an assembled genome sequence is 
only the beginning to understanding an organism’s biology. Genome annotation, and/or 
curation, adds layers of meaning to the bare sequence of As, Ts, Cs, and Gs. Structural 
annotation identifies the chromosomal location of a protein-coding gene and creates one or 
more transcript models of the arrangement of the coding and noncoding information within it. 
Functional annotation describes elements that control gene transcription, the biological role of 
the encoded protein, and domains with specific biological activities. This article focuses on 
protein-coding genes, but genomes also contain transfer RNA genes, transposons, and short- 
and long-noncoding RNAs. 
 
Protein-coding gene prediction relies of two types of evidence. Mathematical evidence is 
developed ab initio (from the beginning), directly from the assembled genome sequence. 
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Computer algorithms – such as Genefinder, FGenesH, Augustus, and GeneMark –search for 
patterns in DNA sequence that define a gene, including a start codon, amino acid codons, 
intron/exon boundaries, and a stop codon. Pattern-based programs typically are trained on a 
set of representative known genes to develop a hidden Markov model (HMM), which identifies 
organismal biases for these gene features that are “hidden” in DNA sequence. Biological 
evidence is provided by experiments that provide mRNA and, to a lesser extent, protein 
sequences. Homology-based programs look for similarities between the genome sequence and 
independent RNA and protein evidence from the organism under study and from related 
organisms. Modern gene annotation programs, such as MAKER-P used for the reference maize 
genome, employ an iterative process to combine both mathematical and biological evidence to 
produce increasingly accurate gene models. 
 
Manual annotation, or curation, involves a person evaluating one gene at a time, adding 
information and making corrections. Annotation jamborees have provided intensive but 
sporadic annotation efforts. Notably, the Drosophila melanogaster genome underwent an early 
round of annotation by a jamboree of volunteers; community involvement was supported by 
Apollo, a desktop graphical annotation system [5,6]. Ongoing annotation efforts have focused 
on humans and model organisms, including GENCODE/Human and Vertebrate Analysis and 
Annotation (HAVANA) [7]. Organism-specific databases, such as FlyBase (Drosophila) [8],  
WormBase (Caenorhabditis elegans) [9], and the Arabidopsis Information Resource (TAIR) [10] – 
rely primarily on professional curators who focus on functional annotations that add 
information to the underlying gene model. In contrast, structural curation improves the 
underlying gene model using additional evidence. Curation of gene models relies mainly on 
direct input from community members, who discover discrepancies in genes of interest. 
However, funding for even prominent curation efforts, such as TAIR, is problematic [11], and 
62% of biological databases are “dead” in within 18 years [12]. 
 
More than a decade after the initial annotation of Drosophila melanogaster, all protein-coding 
genes, long non-coding RNAs, and pseudogenes were manually annotated by FlyBase curators 
using a Gbrowse genome viewer [13,14]. However, in other organisms, it is often difficult to 
determine the percentage of gene models that have actually been reviewed by human curators. 
Since the publication of the Caenorhabditis elegans genome two decades ago, curators have set 
a “Last_reviewed” field for the structures of about 14,000 of 20,000 coding sequences. 
Although many of the remaining structures may have been looked at by a curator, there is no 
definitive record of this (Personal communication with G. Williams G, Wormbase, 21 March, 
2019). The maize genome was published over a decade ago and has undergone four revisions. 
Community members used the yrGATE annotation system [15] to curate 231 genes of the B73 
RefGen_V2 maize genome [16]. These were the only direct structural improvements hosted on 
Maize GDB; since that time there has been no organized effort to manually curate maize gene 
structures (Personal communication with C. Andorf, MaizeGDB, 7 March, 2019). If this is the 
situation for maize, imagine the status of “orphan genomes” with small research communities. 
The skeleton in the closet of genome science is that the majority of gene models in the vast 
majority of sequenced genomes, have not been looked at by any human being – let alone a 
trained curator. There are good reasons for this. 
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1. The volume of genome sequence is overwhelming. GenBank contains over 500 different 

eukaryotic genomes that have undergone automated annotation at the National Center 
for Biotechnology Information (NCBI), with about two new and re-annotated genomes 
added per week [17]. One of our groups has sequenced 27 maize inbred lines in under a 
year. 
  

2. The volume of biological evidence is overwhelming. The Sequence Read Archive (SRA), 
the authoritative database for high-throughput data currently has 25.5 quadrillion 
nucleotides of sequence information and is doubling every 6-8 months [18]. The 
MaizeCODE Project in which we are involved is developing more than 100 DNA and 
RNA-seq datasets across five tissues for four maize inbred lines [19]. The scope of 
curation increases dramatically when one considers that each human gene has an 
average of four alternative transcripts [7,20], and number for maize still needs to be 
determined. Each RNA-seq experiment from a different tissue or developmental 
timepoint potentially adds new isoforms. This presents a moving target of increasing 
numbers of alternatively spliced transcripts. 

 
3. Automated gene annotation seems good enough. Retrospective studies in the human 

genome have shown that HMMs can correctly identify about 85% of individual exons 
and every exon in about 58% of protein-coding genes [21]. An analysis in bread wheat 
revealed FGenesH as the best gene finder, predicting more than 75% of all the genes 
correctly [22]. Automated annotation continues to improve with the increasing 
availability of RNA-seq and long-read RNA evidence from single molecule sequencing 
platforms produced by Pacific Biosciences and Oxford Nanopore [23]. However, the 
rapid accumulation of automated genome annotations creates additional problems, as 
errors in draft sequences are propagated to orthologous genes in other species [24]. 
 

4. There has been little guidance on where to focus effort on structural annotations. Given 
the fact that most gene models are correct or nearly correct, there is little potential 
reward in inspecting random genes. To date, there have been no recommendations on 
how to identify genes in need of manual curation. 

 
Community annotation by students and non-expert researchers is held out as a means to curate 
the growing number of sequenced eukaryotic genomes, most of which lack dedicated funding 
or database resources. Manual curation provides an ideal way to give students an intuitive 
understanding of gene structure and function, while providing researchers with high-quality 
genome data [25]. The Genomic Education Partnership (GEP) involved hundreds of 
undergraduate students in manually annotating genes on the Drosophila Muller F elements 
[26].  In another project, undergraduate and graduate students worked with experienced 
curators to annotate 530 genes in Diaphorina citri Kuwayama. This non-model insect is the 
vector of citrus greening disease that threatens agriculture worldwide [27].  
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Our needs assessment showed that maize biologists would like to ensure the accuracy of 
models for genes they work with and are willing to help out with manual curation. Of 112 PIs, 
postdocs, and students we surveyed at the 2017 Maize Genetics Conference, 90% said that 
manual annotations of maize gene families would be useful to their research; 60% would 
participate in annotating genes of which they had expert knowledge; and 41% would annotate 
genes as a class project (see S1 Appendix). 
 
Given the high accuracy of most automated annotation and the fact that maize genome is 
supported by abundant RNA-seq and long-read RNA evidence, we wondered: How can we focus 
on genes and transcripts most in need of manual curation? As a corollary, how can we support 
maize researchers and undergraduate faculty in a community annotation effort? We addressed 
these questions by developing methods to triage maize gene models to identify suspect 
annotations using MAKER-P quality metrics and the Gramene gene tree visualizer. Then we 
enlisted the help of young biologists to edit the triaged genes with a web-enabled version of 
Apollo. 
 
Results 
 
Single Triage of 47 Genes from Five Maize Gene Families  
 
We analyzed gene models from the reference sequence of maize B73 (B73 RefGen_V4) [28]. 
This assembly was annotated with MAKER-P [29], which generates quality metrics that assess 
how well a transcript model is supported by available biological evidence. We used two of these 
metrics to identify low-quality gene models: Annotation Edit Distance (AED) and Quality Index 2 
(QI2). AED values range between 0 and 1, with 0 denoting perfect concordance with the 
available evidence and 1 denoting absence of supporting evidence. One of nine Quality Indices 
generated by MAKER-P, QI2 is the fraction of splice sites confirmed by alignments to RNA 
evidence. Gene models without introns (therefore no splice sites) are given a QI2 value of 0 
[30]. Some gene models, particularly those generated by ab initio methods, can show low 
metrics due to a lack of supporting evidence. To ensure the availability of evidence to use in 
manual curation, we flagged genes with AED scores less than 0.5 (AED < 0.5) and QI2 values 
between 0.33 and 0.75 (QI2 0.33-0.75). Applying these quality metrics identified 17,225 of 
130,330 (13%) protein-coding transcripts in the B73 RefGen_V4 with low concordance to 
available biological evidence.  
 
We tested the utility of this triage in a mini-annotation jamboree held in December 2017 at 
Cold Spring Harbor Laboratory (CSHL). We reasoned that participants would be more engaged 
by working with genes related to their own research or with obvious biological significance. 
Therefore, we focused on five well-known gene families: PIN-formed (PIN), Gretchenhagen-3 
(GH3), ATP-binding cassette (ABC), cycloid and teosinte branched (TCP) and origin recognition 
complex (ORC). During the two-day event, nine graduate students and one postdoctoral fellow 
examined 40 genes having four or fewer transcripts. This resulted in the curation of 57 
transcripts from these genes families, including 11 transcripts flagged by quality metrics and 
two unflagged transcripts. The transcripts were edited in Apollo, the graphical annotation 
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editor developed to curate the Drosophila genome. We used the web-enabled version, which is 
significantly easier to use and readily supports community annotation [31]. 
 
All 11 of the flagged models required curation (Table 1). Six (55%) were missing one or more 
exons, while two (18%) had an extra exon. Nine (82%) had exons with incorrect lengths, 
including two (18%) with non-canonical splice sites. Fig 1 provides an example of an exon 
curation in the PIN family. We were able to extend untranslated regions (UTRs) in three (27%) 
of the transcripts. Six (55%) of the curated models matched another transcript model for the 
same gene. Expressed another way, 46% of curations were “novel” (see S2 Table). 
 
Table 1. Annotation errors found by single and double triage of maize genes. Errors found in 
11 genes flagged by quality metrics in five maize gene families (25 transcripts). Errors found in 
40 genes flagged by quality metrics, 34 genes flagged by gene trees and 12 genes flagged by 
both methods in 419 maize classical genes (2,127 transcripts). 
 
 Single Triage 

(40 Genes from 
5 Families) 

Double Triage 
(419 Classical Genes) 

 % 
Quality Metrics  

(11 genes) 

% 
Quality Metrics  

(40 genes) 

% 
Gene Trees 
 (34 genes) 

% 
Quality 

Metrics and 
Gene Tree 
Visualizer 
(12 genes) 

Missing exon(s) 55 53 29 33 
Extra exon(s) 18 28 24 33 
Different exon length(s) 82 60 52 100 
Non-canonical splice site(s) 27 5 6 50 
Extend UTR(s) 18 5 50 42 
Single transcript gene 45 23 56 8 
Existing model (multiple 
transcripts) 

55 68 24 58 

Novel curation 45 33 76 42 
 
Double Triage of 419 Classical Maize Genes 
 
We extended our analysis to a set of “classical” maize genes, which represent well-studied 
genetic loci that have been cloned [32]. We used an updated list at MaizeGDB [33]. About one 
quarter of classical genes were first identified by a visible mutant phenotype – and include 
many markers used to make genetic maps before the availability of molecular markers. We 
analyzed the canonical (longest protein-coding) transcript of 419 classical genes having 2,127 
transcripts and 277 distinct families. Jamboree group members inspected the classical gene 
models with the gene tree visualizer at Gramene, a comparative database with 58 plant 
genomes (http://www.gramene.org) [34]. This tool displays a phylogenetic tree and alignments 
between the translated protein sequences of one classical gene and its homologs across 
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species. Discrepancies in alignments are shown as insertions or deletions. Each week, 10-20 
classical genes were triaged independently by three group members using the gene tree 
visualizer. Fig 2 provides an example of a classical gene flagged using the gene tree visualizer. 
 
We then curated 34 classical genes flagged by the gene tree method, along with 40 genes 
flagged by MAKER-P quality metrics, and 12 genes flagged by both methods. This constituted a 
double triage. Over a 12-month period, we performed multiple cycles of internal review of the 
curated gene models to troubleshoot methods, identify errors, and suggest improvements to 
annotations. Curators presented their models for peer review during periodic video 
conferences. We found errors in 86 (21%) of the classical gene set (see S3 Table). Table 1 
compares the errors identified by each triage. Fig 3 shows the different but overlapping sets of 
genes identified for manual curation by quality metrics and gene trees visualization.  
 
Curation of an exceptional gene family 
Five of the 12 maize genes in the acidic invertase gene family were included in the classic gene 
set we curated. Two members were flagged by MAKER-P quality metrics and annotated in 
Apollo (INVVR2 and INVCW3). Prompted by a recent report of potential annotation errors in 
members of this family [35], we undertook an in-depth evaluation of all 12 family members (see 
S4 Table). Alignment with available evidence confirmed the presence of a 9-nucleotide mini-
exon encoding a tripeptide that had been included in B73 RefGen_V3 models for six family 
members. This conserved DPN peptide is predicted to be the active site of a β-fructosidase or 
invertase [36-39]. We discovered this mini-exon in four additional family members, which had 
not been previously reported. We also identified a novel 19-nt exon in INVCW4, a cell wall 
invertase (Fig 4). 
 
Discussion 
 
We have demonstrated that there is significant room for improving the annotations of even 
well documented protein-coding genes within a well-studied genome, such as maize. Our 
studies show that MAKER-P quality metrics and the Gramene gene tree visualizer offer effective 
and complementary triages to identify poor-quality gene models. All of the genes flagged by 
quality metrics and gene trees required curation; a specificity of 100% for both methods. 
Sensitivity was more difficult to assess with our data set, but quality metrics had a sensitivity of 
85% to detect annotation errors.  
  
Each triage has its strengths and weaknesses. MAKER-P quality metrics can be used to quickly 
generate list of suspected genes in any genome. The majority of genes flagged by this method 
had multiple transcripts, and the curated models frequently matched an existing transcript 
model in the v4 gene set. So, this triage produced a lower percentage of novel curations. The 
gene tree visualizer takes more time, but provides a wholistic, phylogenetic approach to 
curation. This method aligns related orthologs and performed well with the classical genes, 
which tend to be highly conserved across grasses. The majority of genes identified by gene 
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trees had a single transcript and produced novel annotations. Gene trees picked up genes 
missed by quality metrics triage, and thus provides a complement to the automated method.   
 
Our initial triage of the B73 RefGen_V4 gene set with quality metrics flagged 13% of the 
protein-coding transcripts for potential annotation errors. However, a correct annotation 
existed for about 60% of the flagged transcripts we edited. The V4 gene annotation used the 
Ensembl platform [40], which set the isoform with the longest coding sequence (CDS) as the 
canonical transcript. Our study suggests that a majority of transcripts elevated to canonical 
status on length alone are incorrect and that the transcript with the lowest AED is the best 
choice for a canonical model. This explains why in the gene family analysis, in most cases, the 
transcript with the lowest AED was the correct one. We will use this information to tune 
MAKER-P for the annotation of maize version 5, and we recommend that quality metrics be 
considered in selecting the primary transcript in other genomes. In this way curation can 
provide feedback to make informed updates to automated annotation systems.  
 
We have demonstrated that there is interest in community annotation, and we have provided a 
method to make this possible.  Researchers are willing to commit time to manual curation, 
because they realize the negative impact of poor models to their research. Improvement of 
reference sequences will be especially important as we move toward synthetic biology. We 
believe that our dual triage is the missing link in popularizing community and even citizen 
science annotation. It focuses on the fraction of gene models that demands attention. Gene 
triaging generates and maintains interest by ensuring that each curation effort will be rewarded 
with new contributions to genome science.  
 
Materials and Methods 
 
We surveyed 119 attendees of the 59th Annual Maize Genetics Conference, March 10-12, 2017. 
Participants were selected randomly and asked to confidentially complete an online 
questionnaire on a handheld tablet. The results were tabulated in Survey Monkey and analyzed 
using IBM SPSS Statistics 23. All survey activities were reviewed and approved by the Cold 
Spring Harbor Laboratory Institutional Review Board (IRB no. 17-007). 
 
The B73 reference sequence (B73 RefGen_V4) was annotated with MAKER-P version 3.1 [28]. 
This bioinformatics pipeline integrated ab initio gene prediction with publicly available evidence 
from full-length cDNA [41], de novo assembled transcripts from short-read mRNA sequencing 
(RNA-seq) [42], isoform-sequencing (Iso-Seq) full-length transcripts [43], and proteins from 
Sorghum bicolor, Oryza sativa, Setaria italica, Brachypodium distachyon, and Arabidopsis 
thaliana [34]. 

 
Apollo (http://genomearchitect.github.io/) is a genome annotation platform originally 
developed to support annotation of the Drosophila genome. The latest version of Apollo is web-
based and built on the popular JBrowse genome browser. Apollo displays as features 
experimental data (e.g. RNA-seq data, cDNAs, or other imported data sets) as well as 
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predictions from gene annotation pipelines (e.g. transcripts, variant calls, repeat regions, etc.). 
The features (available in the “Evidence Area” of the interface) can be imported from any of 
several file formats, including GFF3, BAM, GTF, GVF, GenBank, BED, BigWig, or Chado database. 
Users can drag one or more features from the “Evidence Area” to the “Editing Area” to 
synthesize a new or refined annotation of a gene. Most editing is done through intuitive drag or 
drag-and-drop manipulations. Additional menus manage display parameters. Apollo records a 
complete editing history of a user-created annotation, and also allows for real-time 
collaboration on a project. Apollo’s rich set of features offers a scalable and integrated platform 
that has supported several community annotation efforts.  
 
The Gramene gene tree visualizer provides an interactive interface to inspect protein sequence 
alignments for a given gene family and identify genes with potential annotation errors. 
Alignments are shown as the branches of a phylogenetic tree centered on a gene of interest, 
and a simple click allows the tree to be rearranged around the center on a different gene within 
the same tree. Three display modes allow the trees to be explored at various levels: 1) In the 
Alignment Overview, InterPro Scan descriptions are accessed by clicking on color-coded 
domains, 2) in the Multiple Sequence Alignment view, a slider is dragged to scan the amino 
sequence and select a standard color schema (such as Clustal, Zappo, or helix propensity), 3) In 
the Neighborhood Conservation view, 10 flanking genes are displayed on each side of the gene 
of interest, color-coded by gene family. For this project, we extended the interface to let users 
flag genes for further curation (http://curate.gramene.org). We set up a python/flask web 
service and database to store and review the results. Phylogenetic trees available in the viewer 
were generated via the Ensembl Compara pipeline [43] using amino acid sequences from 52 
species in Gramene build 56. 
 
All of our novel annotations are available as a separate track (“curated_apollo_annotations”) in 
the Gramene browser.  Go to http://news.gramene.org/curated_maize_v4_gene_models, and 
click on the “Genomic coordinates” of a gene of interest. This will pull up a Gramene browser 
window centered on that gene. Scroll down to scroll down to view the gene models. Our 
annotations are also available in gff3 format at Track Hub Registry 
(ftp://ftp.gramene.org/pub/gramene/CURRENT_RELEASE/gff3/zea_mays/apollo_annotations_
maize_v4.gff3). A complete list of the 2,127 transcripts used in this analysis can be found in S5 
Table).  
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Figures and figure legends 
 
 

 
Figure 1. Curation of exon 3 of PIN9 (Zm00001d043179). Exons of incorrect length were 
the most common error detected by both triage methods. The Apollo editing window 
shows a “User-created annotation” at top followed by the longer, incorrect B73 RefGen V4 
model (“MAKER_updated”). The shortened exon was supported by aligned evidence: 
protein sequences from sorghum and rice, assembled long Iso-Seq reads combined from 
six tissues, and RNA-seq from roots, among other tissues.  
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Figure 2. Triage of BRICK1 (Zm00001d042475) with the Gramene gene tree visualizer. 
Comparison to closest plant orthologs and maize paralogs revealed that the B73 RefGen 
V4 model was missing the entire 5’ end. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Double triage of classical maize genes.  
Number of classical gene transcripts with annotation 
errors flagged by MAKER-P quality metrics and 
Gramene gene tree visualizer. 
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Figure 4. Curation of two mini-exons in INVCW2 (Zm00001d043179). The Apollo editing 
window shows a “User-created annotation” at top, followed by incorrect B73 RefGen V4 model 
(“MAKER_updated”) and “v3 model mapped to v4.” A conserved 9-nucleotide exon (red circle) 
and a novel 19-nucleotide exon (blue circle) were supported by protein sequences from 
sorghum and rice, assembled EST transcripts from ultra-deep sequencing, long Iso-Seq reads 
combined from six tissues, and RNA-seq from root and other tissues. 
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