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Abstract 
We assessed the association of pre-diagnostic plasma metabolites (N=420) with ovarian cancer 

risk. We included 252 cases and 252 matched controls from the Nurses’ Health Studies. 

Multivariable logistic regression was used to estimate odds ratios (OR) and 95% confidence 

intervals (CI) comparing the 90th-10th percentile in metabolite levels, using permutation tests to 

account for testing multiple correlated hypotheses. Weighted gene co-expression network 

analysis (WGCNA) modules (n=10) and metabolite set enrichment analysis (MSEA; n=23) were 

also evaluated. Pseudouridine had the strongest statistical association with ovarian cancer risk 

overall (OR=2.56, 95%CI=1.48-4.45; p=0.001/adjusted-p=0.15). C36:2 phosphatidylcholine 

(PC) plasmalogen had the strongest statistical association with lower risk (OR=0.11, 

95%CI=0.03-0.35; p<0.001/adjusted-p=0.06) and pseudouridine with higher risk (OR=9.84, 

95%CI=2.89-37.82; p<0.001/adjusted-p=0.07) of non-serous tumors. Seven WGCNA modules 

and 15 classes were associated with risk at FDR≤0.20. Triacylglycerols (TAGs) showed 

heterogeneity by tumor aggressiveness (case-only heterogeneity-p<0.0001). TAG association 

with risk overall and serous tumors differed by acyl carbon content and saturation. Pseudouridine 

may be a novel risk factor for ovarian cancer. TAGs may also be important, particularly for 

rapidly fatal tumors, with associations differing by structural features. Validation in independent 

prospective studies and complementary experimental work to understand biological mechanisms 

is needed. 
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Introduction 
Ovarian cancer is the fifth leading cause of female cancer death in the U.S. (1). However, there 

are few known risk factors, such that current risk prediction models have a modest predictive 

capability. Thus, new strategies and research avenues to identify women at high risk are crucial 

to help prevent this highly fatal disease.  

The metabolome consists of all metabolites, small molecules such as amino acids, carbohydrates 

and lipids, in a biological system (2), and reflects the integrated effect of genomics and 

environmental influences. Notably, advances in technology have led to precise measures of small 

molecule metabolites that are critical for growth and maintenance of cells in biologic fluids (3, 

4). Several studies have identified specific metabolites as biomarkers of cancer risk. For 

example, branched chain amino acids were strongly associated with risk of pancreatic cancer (5) 

and lipid metabolites were strongly inversely associated with risk of aggressive prostate cancer 

(6). Further, prediagnostic serum concentrations of metabolites related to alcohol, vitamin E, and 

animal fats were modestly associated with ER+ breast cancer risk (7), while BMI-related 

metabolites were more strongly related to increased breast cancer risk (8). These findings support 

metabolomics profiling as a valuable strategy for identifying new markers of cancer risk. 

Therefore, we used metabolomics assays to quantify several classes of circulating metabolites in 

plasma samples collected three to twenty-three years prior to ovarian cancer diagnosis within a 

nested case-control study, and, in an agnostic analysis, assessed their potential as biomarkers of 

ovarian cancer risk.  
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Methods 

Study Population 

We conducted nested case-control studies within the Nurses Health Studies (NHS (9) and NHSII 

(10)). The NHS was established in 1976 among 121,700 US female nurses aged 30–55 years, 

and NHSII was established in 1989 among 116,429 female nurses aged 25–42 years. Participants 

have been followed biennially by questionnaire to update information on exposure status and 

disease diagnoses. In 1989–1990, 32,826 NHS participants provided blood samples and 

completed a short questionnaire (9). Briefly, women arranged to have their blood drawn and 

shipped with an ice pack, via overnight courier, to our laboratory, where it was processed and 

separated into plasma, red blood cell, and white blood cell components and frozen in gasketed 

cryovials in the vapor phase of liquid nitrogen freezers. Between 1996 and 1999, 29,611 NHSII 

participants provided blood samples and completed a short questionnaire (10). Premenopausal 

women (n=18,521) who had not taken hormones, been pregnant, or lactated within the past 6 

months provided blood samples drawn 7–9 days before the anticipated start of their next 

menstrual cycle (luteal phase). Other women (n = 11,090) provided a single 30-mL untimed 

blood sample. Samples were shipped and processed identically to the NHS samples.  

Incident cases of epithelial ovarian cancer were identified through the biennial questionnaires or 

via linkage with the National Death Index. For women reporting a new ovarian cancer diagnosis 

or cases identified through death certificates, we obtained related medical records and pathology 

reports; for cases who had died we linked to the relevant cancer registry when medical records 

were unattainable. A gynecologic pathologist reviewed the records to confirm the diagnosis and 

abstract date of diagnosis, invasiveness, stage, and histotype (serous, poorly differentiated [PD], 
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endometrioid, clear cell [CC], mucinous, other/unknown). Date of death was extracted from the 

death certificate. Participants diagnosed with invasive disease and who died within 3 years of 

diagnosis were defined as rapidly fatal cases (11).  

Cases were diagnosed with ovarian cancer three years after blood collection until June 1, 2012 

(NHS), or June 1, 2013 (NHSII). Two hundred fifty-three cases of invasive and borderline 

epithelial ovarian cancer (213 in NHS and 40 in NHSII) were confirmed by medical record 

review. Cases were matched to one control on: cohort (NHS, NHSII); menopausal status and 

hormone therapy use at blood draw (premenopausal, postmenopausal and hormone therapy use, 

postmenopausal and no hormone therapy use, missing/ unknown); menopausal status at 

diagnosis (premenopausal, postmenopausal, or unknown); age (±1 year), date of blood collection 

(±1 month); time of day of blood draw (±2 hours); and fasting status (>8 hours or ≤8 hours); 

women in NHSII who gave a luteal sample were matched on the luteal date (date of the next 

period minus date of blood draw, ±1 day).  

The study protocol was approved by the institutional review boards of the Brigham and 

Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating 

registries as required. 

 

Metabolite profiling 

Plasma metabolites were profiled at the Broad Institute of MIT and Harvard (Cambridge, MA) 

using three complimentary liquid chromatography tandem mass spectrometry (LC-MS/MS) 

methods designed to measure polar metabolites and lipids as well as free fatty acids as described 

previously (12-15). For each method, pooled plasma reference samples were included every 20 

samples and results were standardized using the ratio of the value of the sample to the value of 
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the nearest pooled reference multiplied by the median of all reference values for the metabolite. 

Samples from the two cohorts were run together, with matched case-control pairs (as sets) 

distributed randomly within the batch, and the order of the case and controls within each pair 

randomly assigned. Therefore, the case and its control were always directly adjacent to each 

other in the analytic run, thereby limiting variability in platform performance across matched 

case-control pairs. In addition, 64 quality control (QC) samples, to which the laboratory was 

blinded, were also profiled. These were randomly distributed among the participants’ samples.  

Hydrophilic interaction liquid chromatography (HILIC) analyses of water soluble metabolites in 

the positive ionization mode were conducted using an LC-MS system comprised of a Shimadzu 

Nexera X2 U-HPLC (Shimadzu Corp.; Marlborough, MA) coupled to a Q Exactive mass 

spectrometer (Thermo Fisher Scientific; Waltham, MA). Metabolites were extracted from plasma 

(10 µL) using 90 µL of acetonitrile/methanol/formic acid (74.9:24.9:0.2 v/v/v) containing stable 

isotope-labeled internal standards (valine-d8, Sigma-Aldrich; St. Louis, MO; and phenylalanine-

d8, Cambridge Isotope Laboratories; Andover, MA). The samples were centrifuged (10 min, 

9,000 x g, 4°C), and the supernatants were injected directly onto a 150 x 2 mm, 3 µm Atlantis 

HILIC column (Waters; Milford, MA). The column was eluted isocratically at a flow rate of 250 

µL/min with 5% mobile phase A (10 mM ammonium formate and 0.1% formic acid in water) for 

0.5 minute followed by a linear gradient to 40% mobile phase B (acetonitrile with 0.1% formic 

acid) over 10 minutes. MS analyses were carried out using electrospray ionization in the positive 

ion mode using full scan analysis over 70-800 m/z at 70,000 resolution and 3 Hz data acquisition 

rate. Other MS settings were: sheath gas 40, sweep gas 2, spray voltage 3.5 kV, capillary 

temperature 350°C, S-lens RF 40, heater temperature 300°C, microscans 1, automatic gain 

control target 1e6, and maximum ion time 250 ms. 
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Plasma lipids were profiled using a Shimadzu Nexera X2 U-HPLC (Shimadzu Corp.; 

Marlborough, MA). Lipids were extracted from plasma (10 µL) using 190 µL of isopropanol 

containing 1,2-didodecanoyl-sn-glycero-3-phosphocholine (Avanti Polar Lipids; Alabaster, AL). 

After centrifugation, supernatants were injected directly onto a 100 x 2.1 mm, 1.7 µm 

ACQUITY BEH C8 column (Waters; Milford, MA). The column was eluted isocratically with 

80% mobile phase A (95:5:0.1 vol/vol/vol 10mM ammonium acetate/methanol/formic acid) for 1 

minute followed by a linear gradient to 80% mobile-phase B (99.9:0.1 vol/vol methanol/formic 

acid) over 2 minutes, a linear gradient to 100% mobile phase B over 7 minutes, then 3 minutes at 

100% mobile-phase B. MS analyses were carried out using electrospray ionization in the positive 

ion mode using full scan analysis over 200–1100 m/z at 70,000 resolution and 3 Hz data 

acquisition rate. Other MS settings were: sheath gas 50, in source CID 5 eV, sweep gas 5, spray 

voltage 3 kV, capillary temperature 300°C, S-lens RF 60, heater temperature 300°C, microscans 

1, automatic gain control target 1e6, and maximum ion time 100 ms. Lipid identities were 

denoted by total acyl carbon number and total double bond number. 

Metabolites of intermediate polarity, including free fatty acids and bile acids, were profiled using 

a Nexera X2 U-HPLC (Shimadzu Corp.; Marlborough, MA) coupled to a Q Exactive (Thermo 

Fisher Scientific; Waltham, MA). Plasma samples (30 µL) were extracted using 90 µL of 

methanol containing PGE2-d4 as an internal standard (Cayman Chemical Co.; Ann Arbor, MI) 

and centrifuged (10 min, 9,000 x g, 4°C). The supernatants (10 µL) were injected onto a 150 x 

2.1 mm ACQUITY BEH C18 column (Waters; Milford, MA). The column was eluted 

isocratically at a flow rate of 450 µL/min with 20% mobile phase A (0.01% formic acid in water) 

for 3 minutes followed by a linear gradient to 100% mobile phase B (0.01% acetic acid in 

acetonitril) over 12 minutes. MS analyses were carried out using electrospray ionization in the 
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negative ion mode using full scan analysis over m/z 70-850. Additional MS settings are: ion 

spray voltage, -3.5 kV; capillary temperature, 320°C; probe heater temperature, 300 °C; sheath 

gas, 45; auxiliary gas, 10; and S-lens RF level 60. 

Raw data from orbitrap mass spectrometers were processed using TraceFinder 3.3 software 

(Thermo Fisher Scientific; Waltham, MA) and Progenesis QI (Nonlinear Dynamics; Newcastle 

upon Tyne, UK) and targeted data from the QTRAP 5500 system were processed using 

MultiQuant (version 2.1, SCIEX; Framingham, MA). For each method, metabolite identities 

were confirmed using authentic reference standards or reference samples. 

In total, 608 known metabolites were measured in this study. Metabolites with a coefficient of 

variation (CV) among blinded QC samples higher than 25%, or an intraclass correlation 

coefficient (ICC) <0.4 were excluded from this analysis (N=132, Supplementary Table 1). 

Furthermore, metabolites not passing our previously conducted processing delay pilot study (15) 

were excluded from this analysis (N=56, Supplementary Table 1). All metabolites (N=420, 

Supplementary Table 1) included in the analysis exhibited good reproducibility within person 

over one year (15). 197 metabolites had no missing values among participant samples. Missing 

values in metabolites (N=211) with less than 10% missingness were imputed with 1/2 of the 

minimum value measured for that metabolite. We included a missing value indicator for 

metabolites (N=12) with more than 10% missingness (see statistical analysis section for further 

details). 

After these quality control exclusions total of 420 metabolites including amino acids, amino 

acids derivatives, amines, lipids, fatty acids, and bile acids were analyzed in this study. 

Continuous metabolite values were transformed to probit scores for all analyses to reduce the 
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influence of skewed distributions and heavy tails on the results and to scale the measured 

metabolite values to the same range.   

Statistical analysis 

Identification of individual metabolites associated with risk 

Conditional logistic regression was used to evaluate metabolite associations, modeled 

continuously, with risk of overall ovarian cancer. For metabolites with more than 10% missing 

values, we added a missing indicator term to the regression model. We present the odds ratios 

(OR) and 95% confidence intervals (95% CI) for an increase from the 10th to 90th percentile in 

metabolite levels or the indicator variable as appropriate. 

In a sensitivity analysis, we compared conditional logistic regression to unconditional logistic 

regression adjusting for the matching factors and found similar results (data not shown). Thus, 

subsequent analyses by histotype, rapidly fatal status and time between blood collection and 

diagnosis were conducted using unconditional logistic regression adjusting for the matching 

factors, allowing the use of all controls.  

We conducted stratified analyses restricting separately to serous/PD tumors 

(cases=176/controls=252), endometrioid/CC tumors (cases=34/controls=252), premenopausal 

(cases=82/controls=82) and postmenopausal women (cases=137/controls=137) at blood 

collection, to participants diagnosed 3-11 years (cases=121/controls=252) and 12-23 years after 

blood collection (cases=131/controls=252 ), to rapidly fatal cases (defined as death occurring 

within 3 years of diagnosis; cases=86/controls=252), and to less aggressive tumors (defined as 

death occurring at least 3 years after diagnosis; cases=138/controls=252). All models were 

adjusted for matching factors and established ovarian cancer risk factors: duration of oral 
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contraceptive use (none or <3 months, 3 months to 3 years, 3 years to 5 years, more than 5 

years), tubal ligation (yes/no) and parity (no children, 1 child, 2 children, 3 children, 4+ 

children). We calculated heterogeneity by time to diagnosis and tumor aggressiveness using 

case-only analyses and by menopausal status at blood collection by introducing an interaction 

term between the metabolite and menopausal status.  

A permutation test (N=5000) was used to control the family-wise error rate (i.e. account for 

multiple testing) while accounting for the correlation structure of metabolites. Case-control status 

was permuted within a matched case-control pair for conditional logistic regression analyses. To 

account for all controls included in the subtype analyses using unconditional logistic regression, 

each control was matched to a case within that analysis, while preserving the initial matching 

criteria as much as possible. The smallest p-value across all tested metabolites in each 

permutation run was recorded. The permutation p-value for test of the overall null (no metabolite 

is associated with ovarian cancer) was estimated as k/(5,001), where k is the number of 

permutations where the smallest p-value (across all metabolites) was smaller than the smallest 

observed p-value. We estimated the permutation adjusted p-value for each metabolite by using 

the stepdown min P approach by Westfall and Young (16) implemented in the R package NPC 

which is based on the previously computed permutation p-values and accounts for the correlation 

structure among metabolites.  

Identification of groups of metabolites associated with risk 

Metabolite Set Enrichment Analysis (MSEA) (17), implemented in the R package FGSEA (18), 

was used to identify groups of molecularly or biologically similar metabolites that were enriched 

among the metabolites associated with risk of overall ovarian cancer and histotypes. This method 
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ranks the metabolites by the estimated beta coefficient of the association with risk and uses this 

metric to identify enriched metabolite groups at the two extremes of the distribution of beta 

estimates (positive/inverse associations). Weighted Gene Co-expression Network Analysis 

(WGCNA) (19), implemented in the R package WGCNA uses hierarchical clustering to identify 

groups of correlated metabolites, called metabolite modules, which reflect a scale-free network 

topology of the measured metabolites (20). Modules were derived based on control samples 

only. Each module was summarized by its first principal component (PC) among all analyzed 

samples. A score was derived for each metabolite module based on the linear combination of 

measured metabolite values weighted by their corresponding loadings on the first PC 

summarizing the module. The score was subsequently used in conditional/unconditional logistic 

regressions to assess associations with risk of ovarian cancer overall and by histotypes. We 

report nominal p-values and false discovery rates (FDR) (21) for all metabolite groups and 

metabolite modules. All analyses were performed using the statistical computing language R 

(22).  

Results 

Study population 

Of the 252 cases in the analysis, 176 cases were diagnosed with serous/PD tumors while 34 were 

classified as endometrioid/CC tumors (Table 1). The remaining cases were of mucinous or other 

types. Mean follow-up time was 12.3 years. Of the 252 cases, 86 represented rapidly fatal tumors 

with death within 3 years of diagnosis. Distributions of ovarian cancer risk factors were 

generally in the expected directions for cases and controls.  
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Table 1: Characteristics of overall, serous/poorly differentiated (PD) and endometrioid/clear cell (CC) ovarian cancer (OC) cases, rapidly fatal tumors, 

and all controls at time of blood collection. 

 All Controls 

(N = 252) 

Overall OC 

(N = 252) 

Serous/PD OC 

(N = 176) 

Endometrioid/CC OC 

(N = 34) 

Other histotypes 

(N = 42) 

Rapidly fatal 

tumors (N=86) 

Mean (SD) 

    
  

Age at blood draw* 55.6 (7.8) 55.5 (7.9) 55.3 (7.9) 54.0 (8.1) 57.8 (7.5) 58.5 (6.8) 

Time to diagnosis (years) - 12.3 (5.2) 12.8 (5.3) 12.1 (5.1) 10.9 (4.7) 12.7 (5.2) 

Age at diagnosis (years) - 69.7 (9.7) 68.1 (9.8) 66.0 (9.8) 68.7 (9.2) 71.2 (8.7) 

N (Percent) 
    

  

Tumor morphology       

Invasive - 227 (90) 163 (93) 33 (97) 31 (74) 86 (100) 

Borderline - 22 (9) 13 (7) 1 (3) 8 (19) 0 (0) 

Unknown - 3 (1) 0 (0) 0 (0) 3 (7) 0 (0) 

Menopausal status blood draw* 
    

  

Premenopausal 82 (33) 82 (33) 56 (32) 16 (47) 10 (24) 14 (16) 

Postmenopausal, No HT use 71 (28) 68 (27) 47 (27) 5 (15) 16 (38) 29 (34) 

Postmenopausal, HT use 66 (26) 69 (27) 48 (27) 8 (24) 13 (31) 34 (40) 

Unknown 33 (13) 33 (13) 25 (14) 5 (15) 3 (7) 9 (10) 

Cohort* 
    

  

NHS 212 (84) 212 (84) 147 (84) 27 (79) 38 (90) 79 (92) 

NHS II 40 (16) 40 (16) 29 (16) 7 (21) 4 (10) 7 (8) 

Oral contraceptive use duration 
    

  

None or <3 months 123 (49) 118 (47) 81 (46) 18 (53) 19 (45) 48 (56) 

3 months to 3 years 33 (13) 32 (13) 22 (12) 3 (9) 7 (17) 10 (12) 

3 to 5 years 45 (18) 63 (25) 46 (26) 8 (24) 9 (21) 16 (19) 

5+ years 51 (20) 39 (15) 27 (15) 5 (15) 7 (17) 12 (14) 

Parity 
    

  

No children 12 (5) 24 (10) 16 (9) 5 (15) 3 (7) 7 (8) 

1 child 11 (4) 13 (5) 8 (5) 1 (3) 4 (10) 2 (2) 

2 children 72 (29) 89 (35) 60 (34) 15 (44) 14 (33) 23 (27) 

3 children 77 (31) 65 (26) 45 (26) 9 (26) 11 (26) 25 (29) 

4+ children 80 (32) 61 (24) 47 (27) 4 (12) 10 (24) 29 (34) 

Tubal ligation 
    

  

Yes 43 (17) 39 (15) 30 (17) 5 (15) 34 (10) 17 (20) 

* matching factors; HT hormone therapy 
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Measured metabolites and their association with ovarian cancer risk 

Metabolite profiling resulted in 608 measured metabolites with 420 (69%) metabolites passing 

our QC filtering criteria, which included: 159 lipids, 158 amino acids, amino acids derivatives 

amines and cationic metabolites, and 103 free fatty acids, bile acids and lipid mediators. Eight 

metabolites were associated with risk of overall ovarian cancer at a nominal p-value ≤0.01 

(Table 2A, Figure 1 and Supplementary Table 1). Odds ratios for an increase from the 10th to 

the 90th percentile of metabolites levels for these metabolites ranged between 0.49 and 2.56. The 

top three metabolites associated with risk were pseudouridine (OR=2.56, 95% CI=1.48-4.45; p-

value=0.001), C18:0 sphingomyelin (SM) (OR=2.1, 95% CI=1.26-3.49; p-value=0.004) and 4-

acetamidobutanoate (OR=2.1, 95% CI=1.24-3.56; p-value=0.006). Pseudouridine had an 

adjusted p=0.15 while all other metabolites had adjusted p>0.5. The test of the global null 

hypothesis that no metabolite was associated with risk had p=0.15.  

Five metabolites were associated with risk of serous/PD tumors at a nominal p-value ≤0.01 

(Table 2B, Figure 1 and Supplementary Table 2). Odds ratios for an increase from the 10th to 

the 90th percentile of metabolites levels for these metabolites ranged between 1.99 and 2.38. The 

top three metabolites were pseudouridine (OR=2.38, 95% CI=1.33-4.32; p-value=0.004), C52:5 

triglyceride (TAG) (OR=2.09, 95% CI=1.23-3.59; p-value=0.007) and C52:4 TAG (OR=2.03, 

95% CI=1.21-3.47; p=0.008). However, none of the metabolites remained significant after 

accounting for multiple comparisons via permutation (adjusted p-value >0.55). The test of the 

global null hypothesis that no metabolite was associated with risk had p=0.55. 

Thirty metabolites were associated with risk of endometrioid/CC tumors at a nominal p-value 

≤0.01 (Table 2C, Figure 1 and Supplementary Table 2). Odds ratios for an increase from 10th 
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to the 90th percentile of metabolites levels for these metabolites ranged between 0.11 and 0.24 for 

inverse associations, and between 3.85 and 9.84 for positive associations. The top three 

metabolites positively associated with risk were pseudouridine (OR=9.84, 95% CI=2.89-37.82; 

p=0.0003), C56:7 TAG (OR=5.85, 95% CI=2.04-18.02; p=0.001) and C2 carnitine (OR=7.4, 

95% CI=2.37-25.35; p=0.001). 

 

Figure 1: Beta coefficients of the association between metabolites and overall OC, serous/poorly 

differentiated OC (Serous/PD OC) and endometrioid/clear cell OC (Endo/CC OC). Coefficients with 
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a p-value ≤0.01 in any of the analyses are shown. Shades of red represent positive coefficients while 

shades of blue indicate negative coefficients. Significance of the association is overlaid on the heat map 

and marked as follows: * p-values≤0.1, ** p-values≤0.01, *** p-values≤0.001; all other p-values are >0.1   

The top three metabolites inversely associated with risk were C36:2 phosphatidylcholines (PC) 

plasmalogen (OR=0.11, 95% CI=0.03-0.35), p=0.0003), C34:1 PC plasmalogen-A (OR=0.18, 

95% CI=0.05-0.54, p=0.003), C22:0 lysophosphatidylethanolamine (LPE) (OR=0.21, 95% 

CI=0.07-0.59; p=0.004). C36:2 PC plasmalogen and pseudouridine had an adjusted 

p=0.06/p=0.07, respectively. All other metabolites had adjusted p≥0.14. The test of the global 

null hypothesis that no metabolite was associated with risk had p=0.06. 

On the individual metabolite level, histograms and QQ-plots of the nominal p-values 

(Supplementary Figure 1) together with the results of the permutation test suggest the existence 

of a metabolomic signal for overall ovarian cancer and non-serous tumors. 

Metabolite groups associated with risk of ovarian cancer 

In the MSEA analysis, nine metabolite groups were enriched among metabolites associated with 

risk of ovarian cancer overall at an FDR ≤0.2 (Figure 2 and Supplementary Table 3). The top 

five associated metabolite groups were organic acids and derivatives, PE plasmalogens, TAGs, 

cholesteryl esters, PC plasmalogens. Nine metabolite groups were associated with risk of 

serous/PD tumors with FDR ≤0.20 (Figure 2 and Supplementary Table 3). The top five 

associated metabolite groups were: nucleosides, nucleotides and analogues, TAGs, carnitines, 

sphingomyelins, and alkaloids and derivatives. Finally, eleven metabolite groups were associated 

with risk of endometrioid/CC tumors at FDR ≤0.20 (Figure 2 and Supplementary Table 3). 

The top five associated metabolite groups were TAGs, DAGs, fatty acyls, 

lysophosphatidylserines (LPS), and carnitines.  
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Table 2: Odds ratio (OR) for an increase from the 10th to the 90th percentile of metabolite levels and 

95% confidence intervals (CI) of associations with risk of overall, serous/poorly differentiated and 

endometrioid/clear cell ovarian cancer. Results with p-values ≤0.01 are shown. 

 

A    Overall Ovarian Cancer (N = 252 cases and 252 controls) 

HMDB ID Metabolite OR (95% CI) P-value Adjusted P-value 

HMDB00767 pseudouridine 2.56 (1.48-4.45) 0.001 0.15 

HMDB01348 C18:0 SM 2.1 (1.26-3.49) 0.004 0.57 

HMDB03681 4-acetamidobutanoate 2.1 (1.24-3.56) 0.006 0.672 

HMDB05398* C56:4 TAG 2.03 (1.21-3.39) 0.007 0.722 

HMDB05380* C52:5 TAG 1.96 (1.2-3.2) 0.007 0.733 

HMDB05923 N4-acetylcytidine 1.88 (1.18-3.02) 0.008 0.772 

HMDB10169 C16:0 SM1 2.06 (1.19-3.56) 0.009 0.807 

-- armillane2 0.49 (0.28-0.85) 0.01 0.824 

    
 

B    Serous/Poorly differentiated ovarian cancer (N = 176 cases and 252 controls) 

HMDB ID Metabolite OR (95% CI) P-value Adjusted P-value 

HMDB00767 pseudouridine 2.38 (1.33-4.32) 0.004 0.552 

HMDB05380* C52:5 TAG 2.09 (1.23-3.59) 0.007 0.745 

HMDB05363* C52:4 TAG 2.03 (1.21-3.47) 0.008 0.809 

HMDB05391* C54:6 TAG-A 1.99 (1.18-3.38) 0.01 0.862 

HMDB05385* C54:5 TAG 1.99 (1.19-3.39) 0.01 0.851 

    
 

C    Endometrioid/Clear cell ovarian cancer (N = 34 cases and 252 controls) 

HMDB ID Metabolite OR (95% CI) P-value Adjusted P-value 

HMDB11243* C36:2 PC plasmalogen 0.11 (0.03-0.35) 0.0003 0.056 

HMDB00767 pseudouridine 9.84 (2.89-37.82) 0.0004 0.072 

HMDB05462* C56:7 TAG 5.85 (2.04-18.02) 0.001 0.236 

HMDB00201 C2 carnitine 7.4 (2.37-25.35) 0.001 0.143 

HMDB05392* C56:8 TAG 5.75 (2-17.72) 0.002 0.26 

HMDB01999 eicosapentaenoate 6.25 (2.05-20.65) 0.002 0.286 

HMDB11208* C34:1 PC plasmalogen-A 0.18 (0.05-0.54) 0.003 0.468 

HMDB07103* C34:2 DAG 4.46 (1.64-12.85) 0.004 0.577 

HMDB11520 C22:0 LPE 0.21 (0.07-0.59) 0.004 0.517 

HMDB02183 docosahexaenoate 5.49 (1.74-18.72) 0.005 0.617 

HMDB05478* C60:12 TAG 5.21 (1.7-16.87) 0.005 0.612 

HMDB00289 urate 4.93 (1.64-15.99) 0.006 0.684 

HMDB05066 C14 carnitine 4.66 (1.6-14.57) 0.006 0.7 

-- C22:0 LPS_isomer_22 0.22 (0.08-0.63) 0.006 0.68 

HMDB05406* C56:5 TAG 4.54 (1.55-13.95) 0.007 0.732 

HMDB05447* C54:7 TAG-B 4.49 (1.55-13.8) 0.007 0.739 

HMDB07102* C34:1 DAG 4.03 (1.49-11.51) 0.007 0.762 

HMDB11310* C36:4 PC plasmalogen 0.22 (0.07-0.63) 0.007 0.734 
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HMDB05923 N4-acetylcytidine 4.59 (1.53-14.62) 0.008 0.785 

HMDB01954 3-hydroxyoctanoate 4.12 (1.48-12.16) 0.008 0.794 

HMDB13127 C4-OH carnitine 4.41 (1.52-13.8) 0.008 0.789 

HMDB13326 C12:1 carnitine 4.61 (1.52-15.05) 0.008 0.809 

HMDB60038 10-heptadecenoate 4.54 (1.53-14.39) 0.008 0.785 

HMDB00610* C18:2 CE 0.24 (0.08-0.68) 0.009 0.82 

HMDB11244* C36:3 PC plasmalogen 0.23 (0.07-0.67) 0.009 0.83 

HMDB07098* C32:0 DAG 3.85 (1.44-11.05) 0.009 0.828 

HMDB00705 C6 carnitine 4.24 (1.46-13.21) 0.01 0.848 

HMDB02172 diacetylspermine 3.9 (1.43-11.35) 0.01 0.848 

HMDB62658 10-nonadecenoate 4.12 (1.43-12.61) 0.01 0.87 

HMDB07199* C38:5 DAG 4.34 (1.46-13.86) 0.01 0.864 

     

* representative ID 

-- HMBD ID not available 

 

1 significantly associated with risk in our analysis of lipid-related 

metabolites and risk of ovarian cancer (manuscript in revision) 
2 preliminary ID 

 

 

TAGs were enriched among metabolites associated with overall ovarian cancers, serous/PD and 

endometrioid/CC tumors at FDR≤0.05. Notably, we observed differential associations by acyl 

carbon number and double bond content with risk of ovarian cancer overall (Supplementary 

Figure 2) and serous/PD tumors (Supplementary Figure 3) but not with endometrioid/CC 

tumors (Supplementary Figure 4). Specifically, TAGs with higher number of acyl carbon 

atoms and double bonds were associated with increased risk, while TAGs with lower number of 

acyl carbon atoms and double bonds were associated with decreased risk. We did not observe 

similar patterns for other lipid classes (Supplementary Figures 2-4). 

Metabolite modules associated with risk of ovarian cancer 

WGCNA identified seven metabolite modules associated with risk of ovarian cancer with FDR 

≤0.20 (Table 3 and Figure 3). Module 1 (M1, characterized by steroids and steroid derivatives, 

organic acids and derivatives, and organonitrogen compounds [Supplementary Figure 5, 
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Supplementary Table 4]), M2 (characterized by TAGs, PCs, PE, LPCs, and LPEs), M6 

(characterized by TAGs, LPEs and CEs), and M7 (characterized by TAGs, DAGs, ceramides and 

CEs) were associated with increased risk of ovarian cancer overall, OR=1.99 

(p=0.013/FDR=0.072), 1.62 (p=0.093/FDR=0.186), 1.56 (p=0.081/FDR=0.186) and 1.8 

(p=0.015/FDR=0.072), respectively. M4 (characterized by carnitines, pseudouridine [inversely 

weighted], and organic acids and derivatives) was associated with decreased risk (OR = 0.5, 

p=0.022/FDR=0.072). M7 (characterized by TAGs, DAGs, ceramides and CEs) was associated 

with increased risk of serous/PD tumors (OR=1.97; p=0.012/FDR=0.117). 

 

Figure 2: MSEA results. Enriched metabolite groups associated with risk of overall OC, 

serous/poorly differentiated OC (Serous/PD OC) and endometrioid/clear cell OC (Endo/CC OC).  

Significance of the association is overlaid on the heat map and marked as follows: * FDR ≤0.2, ** FDR 

≤0.05; all other FDR >0.2.   
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Finally, four modules were associated with risk of endometrioid/CC tumors. M2 was positively 

associated (OR=6.14; p=0.002/FDR=0.011) with risk while M4 had the strongest inverse 

association (OR=0.17; p=0.003/FDR=0.011). PC plasmalogens and PE plasmalogens 

characterized M5 while M8 primarily included fatty acyls, and both were inversely associated 

with risk. 

Metabolites associated with ovarian cancer risk by menopausal status at blood 

collection 
C22:0 LPS isomer was suggestively associated with increased risk among postmenopausal 

women (OR=1.83, 95%CI=0.92-3.63; p=0.085) and decreased risk among premenopausal 

women at blood collection (OR=0.44, 95%CI=0.17-1.08; p=0.074) with a heterogeneity p=0.004 

(Supplementary Table 5). C38:4 PC plasmalogen was suggestively associated with increased 

risk among postmenopausal women (OR=1.92, 95%CI=0.96-3.85; p=0.066) and decreased risk 

among premenopausal women at blood collection (OR=0.16, 95%CI=0.05-0.51; p=0.002) with a 

heterogeneity p=0.005. 14/22 (63%) metabolites associated with risk (p≤0.1) among 

premenopausal women but only 15/98 (15%) metabolites associated with risk (p≤0.1) among 

postmenopausal women showed inverse associations. Pseudouridine did not show heterogeneity 

by menopausal status (heterogeneity p=0.32).  

Metabolites associated with ovarian cancer risk by time between blood collection 

and diagnosis 

Hydroxyvitamin D3 was associated with increased risk among participants with blood collection 

12-23 years after diagnosis (OR=1.84, 95%CI=1.02-3.37; p=0.044) but not among participants 

with blood collection 3-11 years after diagnosis (OR=0.64, 95%CI=0.36-1.15; p=0.141) with a 

heterogeneity p=0.002 (Supplementary Table 6). C40:6 phosphatidylserine (PS) was associated 

with decreased risk among participants with blood collection 12-23 years after diagnosis 
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(OR=0.55, 95%CI=0.3-0.99; p=0.049) but not among participants with blood collection 3-11 

years after diagnosis (OR=1.41, 95%CI=0.79-2.51; p=0.245) with a heterogeneity p=0.008. 

Pseudouridine showed suggestively stronger associations (heterogeneity p=0.066) among women 

for whom sample collection was 3-11 years before  diagnosis (OR=4.48, 95%CI=2.25-9.24; 

p≤0.001) compared to participants with samples collection 12-23 years before diagnosis 

(OR=2.00, 95%CI=1.06-3.85; p=0.035). 

Metabolites associated with ovarian cancer risk by tumor aggressiveness  
Fifty-three lipid-related metabolites (26 TAGs, 7PCs, 6 LPEs, 3 PEs, 3 LPC, 4DAGs, 2 LPSs, 

and 2 PSs) showed differences by tumor aggressiveness at heterogeneity p≤0.01 (Supplementary 

Table 7). Seven metabolites (6 TAGs and 1 PSs) were associated with increased risk of rapidly 

fatal disease with ORs ranging between 2.56 and 3.07 at p≤0.008 but not with risk of less 

aggressive tumors (p>0.62) with heterogeneity p≤0.001. Several lipid-related metabolite classes 

(DAGs, LPCs, LPEs, PCs, PEs, PSs, and TAGs with high acyl carbon content and saturation) 

were upregulated in rapidly fatal tumors while carnitines were up-regulated in less aggressive 

tumors (Supplementary Figure 8). TAGs with lower acyl carbon content and saturation were 

inversely associated with less aggressive tumors. Pseudouridine did not show heterogeneity by 

tumor aggressiveness (heterogeneity p=0.13). 

Discussion 
We conducted the first large-scale agnostic analysis of metabolomics and risk of ovarian cancer. 

We identified a potential novel risk factor, plasma pseudouridine, which was associated with an 

increased risk of ovarian cancer overall and non-serous tumors. Stronger associations for 

pseudouridine were observed among cases diagnosed within 3-11 years after blood collection. 

We identified several metabolite groups and metabolite modules associated with risk of ovarian 
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cancer risk, as well as multiple subtype-specific associations, that open up new opportunities for 

assessing novel metabolite pathways involved in ovarian cancer risk.   

Pseudouridine 
Pseudouridine is a post-transcriptionally modified nucleoside, and is an isomer of uridine. 

Cellular RNA contains more than 100 modified nucleosides with pseudouridine being the most 

abundant (23). Pseudouridine is produced by pseudouridine synthase by isomerizing uridines 

from transfer RNA (24), which is involved in in protein translation, and from spliceosomal 

snRNA which plays a role in pre-mRNA splicing (25). Pseudouridine was associated with risk of 

ovarian cancer and non-serous tumors but not serous tumors. The magnitude of the association 

between pseudouridine and serous cancer was similar to that of overall ovarian cancer risk 

though not significant, while the risk estimate for endometrioid/CC tumors was higher. This is 

likely due, in part, to limited sample sizes in the histotype-specific analyses. Our results suggest 

that pseudouridine may represent a common etiologic mechanism underlying different histotypes 

of ovarian cancer, which has been observed for other risk factors, such as aspirin and CRP (11, 

26, 27). In retrospective studies, pseudouridine was elevated in urine (28) and plasma (29) from 

epithelial ovarian cancer patients compared to healthy controls. This, in combination with our 

finding that pseudouridine had a stronger association when assessed 3-11 years before diagnosis, 

suggests that this modified nucleotide may be important in progression of preclinical lesions to 

fully overt invasive disease, which for high-grade serous ovarian cancer appears to be about 7-9 

years (30, 31).  
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Table 3: P-values, FDR, odds ratio (OR) for an increase from the 10th to the 90th percentile of metabolite levels and 95% confidence 

intervals (CI) of WGCNA metabolite modules associated with risk of ovarian cancer overall and by histotype. 

 

Overall OC Serous/PD OC Endometrioid/CC OC 

Module / 

number 

of metabolites 

OR  

(95% CI) 

P-

valu

e 

FD

R 

explained  

variance 

[%] 

OR  

(95% CI) 

P-

value 

FD

R 

explained  

variance 

[%] 

OR  

(95% CI) 

P-

value 
FDR 

explained  

variance 

[%] 

M1 / 24 
1.99  

(1.15-3.42) 

0.01

3 

0.07

2 
14.51 

1.64  

(0.89-

3.05) 

0.114 0.46 14.87 

1.09  

(0.38-

3.11) 

0.875 0.613 14.62 

M2 / 79 
1.62  

(0.92-2.85) 

0.09

3 

0.18

6 
23.63 

1.16  

(0.65-

2.07) 

0.624 
0.70

1 
23.35 

6.14  

(1.97-

20.67) 

0.002 0.011 24.54 

M3 / 76 
0.9  

(0.56-1.46) 

0.67

8 

0.68

2 
65.22 

1.06  

(0.62-1.8) 
0.839 

0.83

9 
65.18 

0.48  

(0.17-

1.28) 

0.151 0.212 66.23 

M4 / 74 
0.5  

(0.28-0.9) 

0.02

2 

0.07

2 
17.86 

0.64  

(0.35-

1.15) 

0.138 0.46 18.13 

0.17  

(0.05-

0.54) 

0.003 0.011 17.63 

M5 / 49 
0.91  

(0.56-1.46) 

0.68

2 

0.68

2 
24.23 

1.2  

(0.71-

2.03) 

0.49 
0.70

1 
23.94 

0.35  

(0.12-

0.94) 

0.041 0.072 21.61 

M6 / 37 
1.56  

(0.95-2.58) 

0.08

1 

0.18

6 
40.38 

1.17  

(0.68-

2.01) 

0.575 
0.70

1 
40.32 

1.4  

(0.5-3.99) 
0.522 0.456 40.16 

M7 / 32 
1.8  

(1.12-2.88) 

0.01

5 

0.07

2 
32.45 

1.97  

(1.17-

3.36) 

0.012 
0.11

7 
32 

1.94  

(0.71-5.5) 
0.203 0.237 32.69 

M8 / 24 
0.82  

(0.49-1.37) 

0.44

1 

0.55

2 
65.98 

0.81  

(0.47-1.4) 
0.451 

0.70

1 
65.34 

0.22  

(0.07-

0.65) 

0.007 0.017 64.15 

M9 / 14 
0.73  

(0.45-1.19) 

0.20

5 

0.34

1 
37.33 

0.88  

(0.51-1.5) 
0.631 

0.70

1 
38.1 

0.79  

(0.29-

2.21) 

0.651 0.506 36.26 

M10 / 11 
0.75  

(0.43-1.29) 

0.29

3 

0.41

9 
46.53 

0.7  

(0.38-

1.29) 

0.257 
0.64

4 
45.92 

1.88  

(0.57-

6.46) 

0.305 0.305 47.51 
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Increasing evidence suggests that pseudouridylation plays a role in cancer-associated splicing 

distributions (25, 32), which are more variable than in normal tissues, and in which tissue-

specific alternative splicing reverts to a default cancer pattern that directly contributes to cellular 

transformation and cancer progression (33, 34). This has been observed in serous carcinomas, 

which have highly dysregulated splicing compared to normal tissue (35). Further, aberrant 

pseudouridylation may lead to altered translation and reduced translational fidelity of p53 (36, 

37), which is mutated in nearly all high-grade serous tumors (38). Another potential mechanism 

is via circular RNA activity, which is altered due to isomerization of uridine to pseudouridine, 

and has been shown to be dysregulated in ovarian cancer (39). Additional research should 

explore the potential role of pseudouridine in precursor lesions to ovarian cancer and the relation 

between circulating pseudouridine to ovarian and fallopian tube tissue levels. 

Triacylglycerides 
Notably, several individual TAGs were nominally related to risk and showed significant 

heterogeneity by tumor aggressiveness (increased circulating TAG levels were associated with 

increased risk of rapidly fatal tumors but not less aggressive tumors). TAGs as a group were 

enriched in the MSEA analysis, and 3 of 7 WCGNA modules related to risk were characterized 

by TAGs.  Long chain fatty acids, a main source of energy in the human body, are stored and 

transported from the small intestine and liver to peripheral cells in the form of TAGs (40). Lipid 

synthesis and metabolism, specifically release of free fatty acids from TAGs, are dysregulated in 

ovarian tumors, increasing cell migration and invasive potential (41-44). Further, several human 

studies reported suggestive associations of ovarian cancer risk with total cholesterol (45) 

(positive) or HDL (inverse) (46). Additionally, evidence has demonstrated that ovarian cancer 
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A   Overall OC  

 

B     Serous/Poorly differentiated OC 

 
C    Endometrioid/Clear Cell OC 

 

D    Topological Overlap Map of Modules M1-M10 among controls 

 

 

Figure 3: METhattan plots. Manhattan plots of metabolites by metabolite groups, with each group being shown in a different color. A Overall ovarian cancer.    

B Serous/poorly differentiated ovarian cancer. C Endometrioid/clear cell ovarian cancer. D Topological Overlap Matrix (TOM). Metabolites in the rows and 

columns are sorted by the clustering tree. Light yellow shades represent low topological overlap (low similarity). Darker red shades represent higher overlap and 

similarity. Metabolite modules correspond to the squares along the diagonal.
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metastasizes preferentially to the adipose-rich omentum, a key player in the creation of the 

metastatic tumor microenvironment in the intraperitoneal cavity (47). Omental fat possess a 

distinct lipidomic signature with several lipid groups, including TAGs, DAGs, and SMs, 

showing differences when compared to subcutaneous fat (48). Finally, plasma TAGs represent 

known risk factors for cardiovascular disease (49) and coronary heart disease (40). A recent 

study identified that TAGs at the extremes of carbon atoms and saturation had differential 

associations with diabetes risk (50). We also observed differential associations by TAG fatty 

acids length and saturation, with higher number of carbon atoms and double bonds related to an 

increased risk and lower number of carbon atoms and double bonds related to decreased risk, 

particularly for serous/PD tumors. A similar pattern was observed in a retrospective study of 

serum samples from high-grade serous ovarian cancer cases and controls (51). Together with our 

results, these findings suggest that circulating TAG levels may be a risk biomarker for ovarian 

cancer, particularly for rapidly fatal tumors. Additional prospective studies are needed to validate 

these associations in different populations and assess the potential differential role of various 

TAG species in ovarian carcinogenesis.  

Other metabolite groups 
A number of metabolite groups and clusters were associated with ovarian cancer risk, including 

organic acids and derivatives, and SMs, the latter of which was hypothesized a priori as a 

potential risk biomarker and is discussed elsewhere (Zeleznik el al., in revision (52)). A 

metabolite module driven by carnitines, organic acids and derivatives, carboxylic acids and 

derivatives, which included pseudouridine (highly negatively weighted) was associated with 

decreased risk of overall ovarian cancer and non-serous tumors. This module includes 

asymmetric dimethylarginine (ADMA), which has been related to risk of cardiovascular disease 
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(53), and inhibits nitric oxide synthesis and may have antiproliferative properties (54); nitric 

oxide signaling may be involved in ovarian carcinogenesis (55). LPEs were also represented in 

two WCGNA modules associated with increased risk of overall ovarian cancer, and one 

WCGNA module associated with increased risk of endometrioid and CC tumors. LPEs have 

been shown to increase migration in response to chemotherapy as well as have invasive potential 

in ovarian cancer cell lines (56). In MSEA analyses, several metabolite classes had a significant 

inverse enrichment score, including PE plasmalogens, PC plasmalogens and cholesteryl esters, 

independent of subtype. PE plasmalogens and PC plasmalogens were highly weighted in the 

WGCNA-derived module M5 which was inversely associated with risk of endometrioid/CC 

tumors while cholesteryl esters where highly negatively weighted in M7 which was associated 

with increased risk of overall ovarian cancer and serous/PD tumors. Notably, C36:2 PC 

plasmalogen was associated with lower risk of endometrioid/CC tumors (OR=0.11, 95%CI 

=0.03-0.35; permutation adjusted p=0.056). Little work has examined these markers in ovarian 

cancer development or etiology.  

Our study has several strengths and limitations. Importantly, this is a prospective metabolomics 

study of ovarian cancer risk with coverage of multiple different metabolite classes. While we had 

over 250 total ovarian cancer cases and controls, we had more limited sample sizes for specific 

histotypes, which have been shown to have different associations for known risk factors (57). To 

maximize our power, borderline and tumors of unknown morphology were analyzed together 

with invasive tumors. We did not include information on family history of ovarian cancer. 

However, only 2 of the 252 cases were diagnosed before age 45 suggesting that early onset 

disease, likely due to high risk mutations, does not play a role in this study. We also applied 

stringent QC criteria to limit identification of spurious associations. Additional strengths include 
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the long follow-up time and detailed covariate information. A limitation is that we only analyzed 

blood samples collected at one point in time; however, we previously showed that the majority of 

the measured metabolites have a high within person stability over time (15). Further, we do not 

have an independent validation dataset. As this type of data becomes more common, further 

population studies are needed to validate the results discussed here, while experimental studies 

are required to understand the biological mechanisms underlying these associations.  

In summary, circulating levels of plasma pseudouridine were associated with higher risk of 

ovarian cancer 3-23 years before diagnosis, with stronger associations among participants with 

samples collected closer to diagnosis. Additionally, several metabolite groups and metabolite 

modules were associated with risk of disease, independent of subtype as well as subtype specific. 

While independent prospective studies are needed for validation, our results highlight some 

potentially important novel metabolites that may play a role in the etiology of ovarian cancer. 

Further work is warranted to explore the potential use of these metabolites as targets for 

prevention and/or predictors of risk of ovarian cancer. 
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Supplementary Figures 
Supplementary Figure 1: Histograms and QQ-plots of the nominal p-values for overall ovarian cancer and by 

histotype. 
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Supplementary Figure 2: Odds ratio (OR) of overall ovarian cancer for an increase from the 10th to the 90th 

percentile of metabolite levels. Results are shown by metabolite group, by the number of Carbon atoms and by the 

number of double bonds.  
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Supplementary Figure 3: Odds ratio (OR) of serous/PD ovarian tumors for an increase from the 10th to the 90th 

percentile of metabolite levels. Results are shown by metabolite group, by the number of Carbon atoms and by the 

number of double bounds. 
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Supplementary Figure 4: Odds ratio (OR) of endometrioid/CC ovarian tumors for an increase from the 10th to the 

90th percentile of metabolite levels. Results are shown by metabolite group, by the number of Carbon atoms and by the 

number of double bounds. 
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Supplementary Figure 5: WGCNA module loadings for overall ovarian cancer. Shown are loadings from modules 

associated with overall ovarian cancer at FDR<0.2. Loadings/module colors correspond to colors in Figure 3. 

 

Supplementary Figure 6: WGCNA module loadings for serous/PD ovarian cancer. Shown are loadings from modules 

associated with serous/PD tumors at FDR<0.2. Loadings/module colors correspond to colors in Figure 3. 
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Supplementary Figure 7: WGCNA module loadings for endometrioid/CC ovarian cancer. Shown are loadings from 

modules associated with endometrioid/CC tumors at FDR<0.2. Loadings/module colors correspond to colors in Figure 3. 
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Supplementary Figure 8: Odds ratio (OR) of rapidly fatal and less aggressive ovarian tumors for an increase from the 10th to the 90th percentile of 

metabolite levels. Results are shown by metabolite group, by the number of Carbon atoms and by the number of double bounds. 
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