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ABSTRACT 26 

Individuals with complex disorders typically have a heritable burden of common variation 27 

that can be expressed as a polygenic risk score (PRS). While PRS has some predictive utility, 28 

it lacks the molecular specificity to be directly informative for clinical interventions. We 29 

therefore sought to develop a framework to quantify an individual’s common variant 30 

enrichment in clinically actionable systems responsive to existing drugs. This was achieved 31 

with a metric designated the pharmagenic enrichment score (PES), which we demonstrate for 32 

individual SNP profiles in a cohort of cases with schizophrenia. A large proportion of these 33 

had elevated PES in one or more of eight clinically actionable gene-sets enriched with 34 

schizophrenia associated common variation. Notable candidates targeting these pathways 35 

included vitamins, insulin modulating agents, and protein kinase inhibitors with putative 36 

neuroprotective properties. Interestingly, elevated PES was also observed in individuals with 37 

otherwise low common variant burden. The biological saliency of PES profiles were 38 

observed directly through their impact on gene expression in a subset of the cohort with 39 

matched transcriptomic data, supporting our assertion that this framework can integrate an 40 

individual’s common variant risk to inform personalised interventions, including drug 41 

repositioning, for complex disorders such as schizophrenia.  42 

 43 

 44 

 45 

 46 

 47 

 48 
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INTRODUCTION 51 

A significant burden of disease is caused by complex traits including psychiatric and 52 

neurobehavioural disorders, inflammatory and autoimmune disorders, metabolic and 53 

cardiovascular disease, and cancer. Until relatively recently it was difficult to identify the 54 

heritable components of these traits, however, the emergence of well powered genome-wide 55 

association studies (GWAS) using large cohorts assembled by collaborative consortia are 56 

revealing important insights into their common variant architecture 1. While collectively this 57 

information has been vital to map genes and pathways that are likely to be etiological factors, 58 

the small effect size of each variant, and their heterogeneity in the population make their 59 

relevance to individuals with the disorder highly variable, relatively specific, and fairly minor 60 

with respect to the total variant burden. They also present as relatively small targets for 61 

therapeutic intervention and may not attract the investment needed for pharmaceutical 62 

development. We therefore need mechanisms for using this vast amount of diverse genetic 63 

information to maximise its utility for therapeutic advances. This requires a personalised 64 

approach that can capture variant burden in affected individuals with respect to biological 65 

components that align with existing medications, and/or pathways of relevance to key 66 

pathophysiological processes, to provide sufficient support for the development of new 67 

interventions.  68 

 69 

While approaches that summate the genomic risk burden in individuals, such as polygenic 70 

risk scoring (PRS), have demonstrated some predictive utility for complex traits (such as 71 

neuropsychiatric disorders 2; 3, diabetes 4; 5, cardiovascular disease 6; 7, and inflammatory 72 

disorders 8; 9) their composition of heterogeneous risk factors lack the biological salience 73 

needed to design a precision treatment strategy. We, however, hypothesized that the 74 

biologically supervised enrichment of trait-associated common variants in clinically 75 
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actionable pathways would provide a means of pharmacologically annotating PRS in 76 

individuals. To test this proposal, we devised a statistical framework for scoring polygenic 77 

risk (at the multivariable level) in pathways relevant as therapeutic targets for complex traits. 78 

This quantitative approach, designated the pharmagenic enrichment score (PES), was 79 

developed to provide an indication of an individual’s exposure to risk variants that are 80 

potentially treatable by existing pharmacological agents, including many that have never 81 

been considered or tested previously for the condition/disorder they are experiencing. By 82 

focusing on biological pathways with known drug targets, we endeavour to enhance the 83 

clinical utility of polygenic risk approaches by providing novel and specific opportunities to 84 

identify treatment targets and/or repurpose existing drugs. This application of genome-wide 85 

common variant genotyping should have particular relevance for the precision treatment of 86 

individuals that are resistant to currently indicated medications. In this study we outlined the 87 

PES approach and sought to exemplify its utility in individuals with the complex psychiatric 88 

condition, schizophrenia.  89 

 90 

 91 

MATERIALS AND METHODS 92 

Pipeline for the derivation of pharmagenic enrichment scores 93 

The methodology developed for constructing pharmagenic enrichment scores (PES) is 94 

outlined in a schematic presented in Supplementary Figure 1. We exploit the results of gene-95 

set association analysis to aggregate variants from GWAS into gene-sets which may be 96 

candidates for pharmacological intervention. These gene-sets were high quality canonical and 97 

hallmark pathways sourced from the molecular signatures database (MSigDB) 10. Pathways 98 

were designated as clinically relevant if they contained at least one gene annotated to interact 99 
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with an approved pharmacological agent in the DrugCentral database as classified by the 100 

Target Central Resource Database (TCRD, genes annotated as TClin) 11. 101 

 102 

Firstly, this process tests the combined effect of variants at the gene level. We utilised an 103 

omnibus P value test to achieve this, whereby a linear combination of variant-wise P values 104 

in a gene is compared to a null distribution to derive a combined P value for that gene. This 105 

was performed using the MAGMA package to account for linkage disequilibrium between 106 

variants in the approximation of the null 	𝜒# distribution 12. We mapped SNPs to protein 107 

coding genes (hg19, NCBI) with the genic boundaries encompassing 5kb upstream and 1.5 108 

kb downstream to capture variation in regulatory regions. Genes within the major 109 

histocompatibility complex (MHC) on chromosome 6 were excluded from this study due to 110 

the complexity of haplotypes in that region. Traditionally, the full breadth of variants 111 

available in the summary statistics are utilised in these models. This, however, may miss 112 

important aspects of the biological interpretation of the genomic signal. PRS derived from 113 

large GWAS cohorts are tested at different P value thresholds (PT) to exploit a model which 114 

explains the most variance between the case and control groups (in a dichotomous construct). 115 

For instance, a PT < 0.05 means that only P values in the GWAS with a stronger association 116 

(P value) than this threshold are included. A range of PT have been suggested to be optimal 117 

for PRS in several disorders depending on their genomic architecture 2; 7; 13. Aggregating the 118 

combined effects of variants in genes at different PT may therefore capture the biological 119 

complexity of the signal at varying degrees of polygenicity.  120 

 121 

Once variants are aggregated in genes at varying significance thresholds (PT), we conduct 122 

gene-set association of the pre-defined druggable gene-sets with the trait of interest. This was 123 

a competitive association test, which tests the null hypothesis of genes in the set being no 124 
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more strongly associated than all other genes. This model was implemented with the 125 

MAGMA package. Enriched pathways with a known drug target uncovered from this 126 

pipeline then form the basis of calculating the pharmagenic enrichment score (PES). To 127 

profile individuals for a PES, genes which compromise the candidate pathway are extracted 128 

and cumulative genomic risk calculated in an analogous fashion to PRS, assuming an 129 

additive model 2. Each individual profiled thus has a genomic risk score within each 130 

clinically actionable pathway.  131 

 132 

Application of pharmagenic enrichment score to identify drug repurposing candidates 133 

for schizophrenia  134 

To identify clinically actionable gene-sets and construct PES, we processed the 2014 135 

psychiatric genomics consortium GWAS for the complex neuropsychiatric disorder 136 

schizophrenia with the pipeline described above 3. Variants were selected based on their 137 

significance (P value) for inclusion in the at four different thresholds – all SNPs, P < 0.5, P < 138 

0.05, and P < 0.005. Geneset association was conducted on 1012 MSigDB pathways with at 139 

least one druggable (TClin) gene. To capture a wide variety of pathways for a complex 140 

phenotype like schizophrenia, we used a nominal significance threshold of P < 0.001 to select 141 

candidate pathways for PES.  142 

 143 

We annotated each of these candidate pathways for their drug interactions, tissue specificity, 144 

and phenotypic associations. Using WebGestalt, drugs which target a statistically significant 145 

number of genes in the PES gene-sets were identified after the application of multiple testing 146 

correction (FDR < 0.05) 14. A minimum overlap of at least three targets overlapping the 147 

geneset for each pharmaceutical agent was also implemented. Drugs were also mapped to 148 

gene-sets using DGidb v3.02, with the top FDA approved drug per pathway was selected 149 
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based on the DGidb score of interaction confidence between a TClin gene and drug 15. Further, 150 

the tissue specificity of expression for all genes from the eight pathways was investigated 151 

using GENE2FUNC application of FUMA 16. Transcript expression in each of the 53 tissue 152 

types in the GTEx v7 dataset for the input pathway genes was tested for upregulation, 153 

downregulation and two-sided differential expression in comparison to the entire protein-154 

coding genome. Enrichment of input genes for associated traits in GWAS catalogues was 155 

also tested in the FUMA framework.  156 

 157 

Individual profiling of pharmagenic enrichment scores in a genotyped schizophrenia 158 

cohort 159 

We sought to generate PES for the schizophrenia candidate pathways in a cohort of 160 

diagnosed schizophrenia cases and non-neuropsychiatric controls sourced from the Australian 161 

Schizophrenia Research Bank (ASRB) 17; 18. Detailed descriptions of consent procedures 162 

along with inclusion and exclusion criteria for the ASRB have been extensively described 163 

elsewhere 17. The Illumina Infinitium Human 610K (610-Quad) BeadChip platform was used 164 

to genotype genomic DNA extracted from peripheral blood mononucleocytes as per standard 165 

manufacturer protocols. Variant and individual level quality control, along with imputation 166 

using the 1000 genomes phase 3 European reference panel, has been outlined in detail for this 167 

cohort previously 18. High quality autosomal sites with low missigness (< 2%) and an 168 

imputation score greater than 0.8 (R2 > 0.8) were retained for analysis in this study. After the 169 

removal of individuals in the post-genotyping quality control, 425 schizophrenia cases and 170 

251 controls were analysed in this study; cases were 67% male, whilst males comprised 44% 171 

of the control cohort (Supplementary Table 5). The use of these data was approved by the 172 

University of Newcastle Human Ethics Research Committee (HREC). 173 
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PES is calculated from SNPs mapped to genes which form the candidate pharmacologically 174 

actionable geneset. This comprises the following model (1) which sums the statistical effect 175 

size of each variant in the geneset multiplied the allele count (dosage) for said variant– for 176 

individual 𝑖, let 𝛽&'  denote the statistical effect size from the GWAS for each variant 𝑗 in the 177 

candidate gene-set, multiplied by the dosage (𝐺) of 𝑗 in 𝑖 .  178 

𝑃𝐸𝑆-	 = 		/0𝛽&' 	×	𝐺-23	
4

2

						(1)	 179 

This was calculated for the individuals using the PRSice2 package 19. For each PES, the PT 180 

used to derive the score was selected based on which PT the corresponding geneset was 181 

derived from the GWAS, when a geneset was associated at multiple PT, the most significant 182 

was chosen. A genome-wide PRS (PRSTotal) was also constructed for this cohort, with the PT 183 

which explained the most variance between cases and controls selected using Nagelkerke’s 184 

R2. Association for each of the scores with cases was conducted using binomial logistic 185 

regression, adjusted for sex and the first three principal components using R 3.4.4. P values 186 

were derived using the Wald test with and without the total PRS score at the optimum 187 

threshold as a covariate in the model. 188 

 189 

Each PES was ranked for individuals within the ASRB cohort, with three metrics used to 190 

define a person with an ‘elevated PES’ score: the top percentile, decile, and quartile of the 191 

study population. The number of pathways which pass these thresholds were totalled for each 192 

individual and the association between these totals and schizophrenia assessed using the same 193 

model as for univariate PRS as described above. To investigate the relationship between 194 

PRSTotal and PES, genome wide PRSTotal and the count of PES in the top decile per individual 195 

were clustered using finite Gaussian mixture modelling (GMM) with the mclust package 196 

version 5.4 20. The optimal number of clusters was selected based on parametrisation of the 197 
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covariance matrix utilising the Bayesian Information Criterion (BIC), with the highest BIC 198 

value used for selection of the number of clusters. Clusters were ellipsoidal, with the volume 199 

of the ellipsoid, shape of the density contours, and orientation of the corresponding ellipsoid 200 

also determined by the covariance matrix. We tested whether schizophrenia cases in each of 201 

the four GMM derived clusters were overrepresented for carriers of a top percentile PES 202 

using multinomial logistic regression with the nnet package (https://cran.r-203 

project.org/web/packages/nnet/index.html). The largest cluster, Cluster 2, was used as the 204 

reference for the other clusters, with the model covaried for sex and prinicipal components as 205 

above. After dividing the regression coefficients by their standard error to derive z, P values 206 

were calculated using the Wald Test.  207 

 208 

Investigation of the effect of PES profiles on gene expression 209 

We sought to investigate the relationship between PES profiles and the expression of genes 210 

which comprise their pathways in individuals with schizophrenia. A subset of schizophrenia 211 

cases in this cohort (N = 75) had mRNA expression data available from a previous study 21. 212 

These participants had a mean age of 42.21 (s.d. = 10.47), whilst the majority of the 213 

subcohort was male (NMale = 45, NFemale = 30). RNA extracted from peripheral blood 214 

mononuclear cells was profiled using Illumina HT-12_V3 BeadChips and normalised as 215 

described in Gardiner et al. 21. Genes which comprise each PES pathway were extracted if 216 

they were available on the array with normalised expression values which survived quality 217 

control. The relationship between PES and the expression of each gene in that pathway as the 218 

outcome was assessed using a linear model covaried for age, sex, and PRSTotal for 219 

schizophrenia. These models were constructed in R version 3.4.4 using the lm function. 220 

Multiple testing correction was applied to each PES model individually to account for the 221 
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number of genes tested in each pathway using Benjamini-Hochberg method via the p.adjust 222 

function in R.  223 

 224 

RESULTS 225 

Clinically actionable pathways enriched with common variant risk in schizophrenia 226 

Schizophrenia is a typical complex trait disorder with a prevalence around 0.7% and 227 

heritability in the region of 80% 22; 23. A substantial proportion of this heritability was 228 

accounted for in the 2014 psychiatric genomics consortium (PGC) mega GWAS, which 229 

identified over 100 common variant loci at rigorous genome-wide significance level 3,  230 

making the disorder a suitable candidate to test the implementation of the PES framework. 231 

Using the complete summary statistics, we identified eight clinically actionable gene-sets (at 232 

the different PT) containing known drug targets (Table 1). The most significantly associated 233 

of these was the HIF-2 pathway (P = 3.12 x 10-5, b = 0.435, SE = 0.109, PT < 0.005), which 234 

is comprised of genes in the hypoxia inducible factor 2 (HIF-2) alpha transcription factor 235 

network. One carbon pool by folate was the second most significant pathway with a putative 236 

drug interaction (P = 1.4 x 10-4, b = 0.433, SE = 0.119, PT < 0.05). Two gene-sets were 237 

related to the function of the neurotransmitters GABA and Acetylcholine, whilst other 238 

signalling pathways represented were NOS1 (Nitric Oxide Synthase I), Hedgehog signalling 239 

and the semaphorin related CRMP (Collapsin Response Mediator) proteins in Sema3A 240 

signalling pathway. In addition, the geneset Regulation of Insulin Secretion passed the 241 

threshold for inclusion.  242 

 243 

The genes which constitute these eight pathways had upregulated expression in the brain 244 

relative to the rest of the protein coding genome, with the anterior cingulate cortex the most 245 

highly enriched region after multiple testing correction, PAdj = 6.45 x 10-13. Conversely, they 246 
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were downregulated (PAdj < 0.05) in several peripheral tissues including the stomach and skin 247 

(Supplementary Fig. 2). These genes were also overrepresented in the GWAS catalogue for 248 

traits relevant to psychiatry including schizophrenia, post-traumatic stress disorder, nicotine 249 

dependence and cognitive performance (PAdj < 0.05, Supplementary Table 1).  250 

 251 

Pathway P threshold (PT) P 

NOS1 pathway All SNPs 6.3 x 10-4 

Regulation of insulin secretion P < 0.5 3.9 x 10-4 

CRMPs in Sema3A signalling P < 0.5 9.4 x 10-4 

GABA synthesis, release, reuptake and degradation P < 0.5 5.8 x 10-4 

One carbon pool by folate P < 0.05 1.4 x 10-4 

Hedgehog signalling P < 0.05 1.9 x 10-4 

HIF-2 pathway P < 0.005 3.1 x 10-5 

Acetylcholine binding and downstream events P < 0.005 3.8 x 10-4 

Table 1. Pathways enriched with common variation associated with schizophrenia with putative 252 

clinical actionability. Pathways with putative clinical actionability by virtue of having targets for 253 

existing drugs with potential for repurposing. Enrichment P values refer gene-set association aggregated 254 

SNPs associated with schizophrenia in the PGC GWAS. 255 

 256 

The eight gene-sets prioritised by our pipeline are indicative of a diverse range of drug 257 

classes. We sought to investigate a selection of candidate pharmacological agents which may 258 

be utilised for each PES input pathway. Firstly, we extracted the genes classified in the 259 

TCRD as TClin from each of the gene-sets and matched them to their known drug-interactions 260 

using the drug gene interaction database (DGidb v3.02, Supplementary Table 2). The top 261 

FDA approved drug per pathway was selected based on the DGidb score of interaction 262 

confidence between a TClin gene and drug. After annotation via the anatomical chemical 263 
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(ATC) classification system two candidate drugs were anti-neoplastic and 264 

immunomodulating agents (ATC = L), two were classified as nervous system (ATC = N), 265 

whilst the remaining encompassed one of the following: blood and blood forming organs 266 

(ATC = B), musculoskeletal system (ATC = M), sensory organs (ATC = S) and alimentary 267 

tract and metabolism (ATC = A). Clinical trials for schizophrenia, either completed or in the 268 

recruiting phase, were registered for three of these compounds – glycine, varenicline and 269 

exenatide.  270 

 271 

Drugs which target a statistically significant number of genes in each pathway were derived 272 

using over-representation analysis in WebGestalt 14. Of the eight gene-sets tested, six had a 273 

significant drug enrichment with a minimum overlap of three genes after multiple testing 274 

correction (Table 3, Supplementary Table 3). Nervous system drugs were the most common 275 

ATC category (level 1) across all the input pathways. Some interesting repurposing 276 

candidates with previous clinical trials in the disorder included the psychostimulant 277 

Atomoxiene 24, the α4β2 nicotinic acetylcholine receptor subtype partial agonist Varenicline 278 

25, acetylcysteine (N-acetylcysteine) - a precursor to the antioxidant glutathione 26-28, ascorbic 279 

acid (Vitamin C) 29; 30, vitamin E30,  and memantine 31; 32. Whilst the results of these trials 280 

were mixed, targeting such interventions to specific individuals based on genomic risk is yet 281 

to be investigated.  282 

 283 

 284 

 285 

 286 

 287 

 288 
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Pathway Top Drug* Overlap# ATC Code 

NOS1 Milnacipran 5 Other antidepressants 

GABA Temazepam 14 Benzodiazepine derivatives 

Insulin Clodronic acid 3 Bisphosphonates 

HIF-2 Ascorbic acid (Vitamin C) 3 Ascorbic acid (Vitamin C) 

Acetylcholine Nicotine 11 Drugs used in nicotine dependence 

Folate Tetrahydrofolic acid 11 Folic acid and derivatives 

Table 2. The top enriched drug target for each pharmagenic enrichment score pathway with at 289 

least three interacting genes after multiple testing correction. Most significantly associated drug 290 

after multiple testing correction was selected, when corrected P values were equal, the drug with the 291 

highest geneset overlap was selected. Overlap refers to the number of genes targeted by the drug in 292 

the candidate pathway. 293 

 294 

Individual profiling of pharmagenic enrichment scores in a schizophrenia cohort 295 

We profiled PES in a cohort of schizophrenia patients and screened healthy controls 17 and 296 

identified members of the cohort with relatively high PES in clinically actionable gene-sets. 297 

Firstly, we examined individuals in the top percentile of the ASRB cohort for each PES, to 298 

explore the phenotypic characteristics of an elevated risk score with high confidence. There 299 

were 55 individuals with a top percentile PES, as one schizophrenia case had elevated PES in 300 

both the One Carbon Pool by Folate and the GABA synthesis, release, reuptake and 301 

degradation pathways. From this subset, the majority were schizophrenia patients (N=38), 302 

however, there was no significant association between top percentile status and diagnosis (z = 303 

0.975, P = 0.33). We investigated clinical characteristics obtained for ASRB participants to 304 

prioritise top percentile PES carriers who may benefit most from a personalised treatment 305 

regime. Three variables were selected as a proxy of a more clinically challenging 306 

presentation of the disorder: clozapine prescription (as a surrogate for treatment resistance), a 307 
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global assessment of functioning (GAF) score < 50, and an adolescent onset of the disorder 308 

before the age of 18 33; 34. Interestingly, of the 38 schizophrenia cases with an elevated PES, 309 

71% of this subset meet at least one of these criteria (N =27): clozapine prescription (N = 9), 310 

GAF < 50 (N = 12), onset age < 18 (N = 9).  311 

 312 

In addition, two less stringent partitions of elevated PES were implemented, specifically, a 313 

decile and quartile cut-off for PES in the entire cohort was used to triage patients at elevated 314 

risk of dysfunction in that pathway. The highest number of PES in the top decile or quartile 315 

respectively for an individual was six (Supplementary Fig. 3). An increasing number of PES 316 

in both the top quartile (OR = 1.1493 [95% CI: 1.016 – 1.303], P = 0.0287) and decile (OR = 317 

1.207 [95% CI: 1.013 – 1.447], P = 0.0384) was associated with schizophrenia. However, 318 

this signal was not significant after adjustment for PRSTotal. As visualised with kernel density 319 

estimation in figure 1b-c, there is evidence of skew towards high PRSTotal for those 320 

individuals with at least four top quartile or decile PES categories. Whilst the aim of this 321 

study was not to find association with cases for this cohort, two PES were nominally 322 

associated with schizophrenia in the ASRB - Regulation of Insulin Secretion (z = 2.262, P = 323 

0.0237) and the Acetylcholine Binding and Downstream Events pathways (z = 2.167, P = 324 

0.0303). However, significance was diminished when covaried for total schizophrenia PRS 325 

(PRSTotal, P > 0.05).  326 

 327 

 328 

 329 

 330 

 331 

 332 
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Fig 1. Relationship between genome wide schizophrenia PRS and pharmagenic 358 

enrichment scores in the ASRB cohort. (a) Pairwise univariate correlation between each of 359 

the PES and total PRS. Scale represents strength of relationship in the positive or negative 360 

direction. Kernel density estimation of distribution of total PRS amongst individuals with 361 

multiple PES in the top quartile (b) or decile (c). Scale refers to the number of PES over the 362 

threshold in an individual, that is, a score of six represents an individual with six PES 363 

categories in the top quartile or decile of the ASRB cohort. (d) Distribution of total PRS 364 

between ASRB participants with at least one PES in the top percentile of the cohort (grey) or 365 

without (orange). Black dashed line represents the mean PRSTotal for the cohort with a top 366 

percentile PES (right) and without (left). 367 

 368 

Relationship between pathway-based annotation and genome wide polygenic risk for 369 

schizophrenia 370 

We sought to define the relationship between PRSTotal and PES in further detail. Pairwise 371 

correlation between each of the scores demonstrated no significant univariate relationship 372 

between any PES or with PRSTotal (Fig. 1a). In addition, top percentile PES individuals were 373 

not enriched with PRSTotal in comparison to the rest of the cohort: z = 0.819, P = 0.413 (Fig. 374 

1d). This presented a clinically significant subset of schizophrenia cases with a less polygenic 375 

phenotype, that is, low PRSTotal relative to the schizophrenia cohort but high heritable risk in 376 

one or more pathways. Analysis of the bottom quartile of PRSTotal in the ASRB schizophrenia 377 

cohort revealed cases (N=10) with top percentile PES but depleted PRSTotal. The pathways 378 

encompassed in these individuals were: Acetylcholine (N=3), Hedgehog signalling (N=2), 379 

CRMPs in Sema3A (N=2), GABA (N=1), HIF-2 (N=1) and Insulin secretion (N=1). This 380 

information may be of great clinical value as these cases have less marked common variant 381 

burden genome-wide, but localised risk in a geneset. Furthermore, three of these patients 382 
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were prescribed clozapine (surrogate for treatment resistance), a further three had low global 383 

functioning (GAF < 50), along with two adolescent onset cases – potentially highlighting a 384 

heightened need for precision intervention in these individuals. 385 

 386 

To investigate the relationship between low polygenic load and elevated PES, genome wide 387 

PRS and the PES category count in the top decile per individual were clustered using finite 388 

Gaussian mixture modelling (GMM). The optimal number of clusters was selected based on 389 

parametrisation of the covariance matrix utilising the Bayesian Information Criterion (BIC), 390 

with the highest BIC value used for selection of the number of clusters (Fig. 2a). Four 391 

clusters were derived from the data (BIC = 13871.21, VEV: variable volume, equal shape, 392 

variable orientation) (Fig. 2b). Clusters were ellipsoidal, with the volume of the ellipsoid, 393 

shape of the density contours, and orientation of the corresponding ellipsoid also determined 394 

by the covariance matrix. The first two clusters were comprised of schizophrenia patients 395 

with at least one PES in the top decile of the ASRB cohort, with Cluster 1 having low 396 

PRSTotal relative to Cluster 2. The third and fourth clusters had no elevated PES but Cluster 3 397 

represents patients with greater polygenic load, that is PRSTotal, than the Cluster 4. The 398 

distribution of PRSTotal in Cluster 1 reinforces the concept that a subset of schizophrenia 399 

patients with lower polygenic risk may have concentrated elevation in one or more specific 400 

biological systems. Analogous to its univariate relationship with PRSTotal individuals with 401 

extreme PES in the top percentile of the ARSB cohort were not enriched in any of the GMM 402 

clusters relative to the largest cluster, Cluster 2 (Cluster 2 vs Cluster 1: P = 0.668; Cluster 2 403 

vs Cluster 3: P = 0.492; Cluster 2 vs Cluster 4: P = 0.977).  404 

 405 

 406 

 407 
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 419 
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 422 

 423 

Fig 2. Clustering of genome wide PRS and the individual count of elevated pharmagenic 424 

enrichment score using finite Gaussian mixture modelling. (a) Selection of the number of 425 

clusters using the Bayesian information criterion (BIC). The scale represents the fourteen 426 

different Gaussian models (see Supplementary Table 5 for definitions) tested for 427 

parametrisation of the within-group covariance matrix. (b) Derived clusters of genome wide 428 

schizophrenia PRS (Total PRS) and the number of PES in the top decile of the ASRB cohort 429 
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per individual. Red boxes = Cluster 1, blue circles = Cluster 2, green triangles = Cluster 3, 430 

purple crosses = Cluster 4.  431 

 432 

PES profiles impact the expression of genes within the candidate pathways 433 

Each PES profile was tested for association with the peripheral blood expression of genes 434 

within their respective pathways for a subset of schizophrenia cases with expression data 435 

available (Fig. 3, Supplementary Table 6). After covariation for sex, age, and PRSTotal, the 436 

NOS1 PES was associated with downregulated expression of the calcineurin subunit gene 437 

PPP3CC (t = -3.08, P = 2.9 x 10-3, q = 0.05).  This was followed by the regulation of insulin 438 

secretion PES, which was associated with decreased expression of the syntaxin gene STX1A 439 

(t = -3.5, P = 8.1 x 10-4, q = 0.055); and the One carbon pool by folate gene PES, which was 440 

associated with downregulation of serine hydroxymethyltransferase 2 (SHMT2; t = -2.94, P = 441 

4.5 x 10-3, q = 0.072). Excluding these three genes (q < 0.1), there were eleven others with a 442 

nominally significant (Raw P < 0.05) relationship with a PES, with all PES profiles except 443 

CRMPs in Sema3A signalling having at least one such nominally significant model.  444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 
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Figure 3. The relationship between PES profiles and the expression of pathway genes in 453 

peripheral blood mononuclear cells. Plot for each PES of the results of a model which 454 

investigated the association of PES with the expression of genes which compromise the PES 455 

pathway. The t values on the x-axes were derived from the regression model for each PES-456 

gene pair (𝑡 = 	𝛽	' /𝑆𝐸9 ), with the -log10 P value of association on the y-axes. The dotted line is 457 

indicative of uncorrected P < 0.05, genes highlighted blue were significant after correcting 458 

for the number of genes in the set with a liberal false discovery rate cut-off (q < 0.1).  459 

 460 

DISCUSSION 461 

The drug development pipeline continues to be prohibitively expensive and time consuming 462 

in the translation of novel compounds for clinical practice 35; 36. Repositioning of previously 463 

approved drugs for other human health conditions can be a more readily achievable action, 464 

particularly for rare disorders where a causal factor can be identified. However, in complex 465 

disorders, such as schizophrenia, this approach is hindered by the complexity of the 466 

pathophysiology and heterogeneity of genomic risk, along with inter-individual variability in 467 

illness onset and clinical course 37; 38. Annotation of the individually-relevant (personalised) 468 

genetic components associated with complex syndromes, for the purpose of delineating 469 

clinically meaningful biological systems, will both better target existing treatments and reveal 470 

new opportunities for drug repurposing (Fig. 4a). In this study, we developed a novel method 471 

for capturing common variant risk in biological networks with known drug interactions – 472 

pharmagenic enrichment scores (PES) – to facilitate precision treatment design relevant to 473 

individuals with a particular set of risk variants. A distinct advantage of our PES approach is 474 

that it can capture latent enrichment of polygenic signal in pathways relevant to 475 

pharmaceutical actions, among individuals whose overall trait PRS is low relative to others 476 

with a shared phenotype. Even in cases where polygenic burden is high, genome-wide PRS 477 
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(as a biologically unannotated instrument) does not necessarily provide insight into pathways 478 

suitable for pharmacological intervention in individuals. Our approach for selection of 479 

putative drug targets exemplified in schizophrenia GWAS has revealed potential targets for 480 

drug repurposing with substantial clinical utility. 481 

 482 

Aggregation of common variation from schizophrenia GWAS into biological pathways with 483 

known drug interactions revealed a diverse array of systems relevant to eight distinct PES 484 

categories. These candidate pathways displayed common variant enrichment at a range of PT, 485 

indicative of the degree of polygenicity, ranging from using all SNPs as input, to a 486 

significance threshold below 0.005 (PT < 0.005). While two of these pathways included 487 

GABAergic and cholinergic neurotransmission, both of which are intuitive candidates that 488 

have been extensively implicated in schizophrenia with associated drugs already in common 489 

practice for neuropsychiatric disorders 39; 40, many others were more surprising. The most 490 

significantly associated gene-set pertained to the HIF-2 transcription factor network, an 491 

important mediator in response to decreases in available cellular oxygen. This has clear 492 

significance for biological mechanisms involved in psychiatric disorders, for example in 493 

dopaminergic signalling 41. Enrichment of ascorbic acid (vitamin C) targets in this pathway is 494 

notable from a therapeutic perspective because of its antioxidant capabilities, along with 495 

preliminary evidence for its efficacy as an adjuvant in the treatment of the disorder 29; 30. The 496 

interaction between HIF-2 signalling and NOS1 signalling, another candidate pathway with 497 

pharmagenic enrichment in schizophrenia, is supported by previous evidence of redox 498 

dysfunction in the disorder 42; 43. The activity of glutamate receptors in the NOS1 system 499 

suggests that psycholeptics and psychoanaleptics are likely to modulate this pathway. We 500 

also observed common variant enrichment in two developmental pathways that can be 501 

pharmacologically modulated: CRMPs in semaphorin 3a signalling and Hedgehog signalling. 502 
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The former is able to interact with the tyrosine kinase inhibitor Dasatinib, which is postulated 503 

to have neuroprotective properties 44. Enrichment in these actionable pathways is consistent 504 

with longstanding hypotheses of deficits in neurodevelopment contributing to the aetiology of 505 

schizophrenia 45. There is also evidence for aetiological overlap between schizophrenia and 506 

diabetes beyond what is attributable to metabolic effects of antipsychotic treatment, which 507 

supports our identification of an insulin related pathway as a candidate PES 46-48. 508 

 509 

The breadth of drugs which target these pathways used to construct PES suggests that 510 

individual level treatment formulation can become highly specific depending on which 511 

systems genomic risk is localised. This would include the stratification of individuals for 512 

precision treatment with compounds previously tested on undifferentiated schizophrenia 513 

cohorts, including, N-acetylcysteine, vitamin C, Atomoxiene, and Varenicline which were 514 

identified using PES in this study 24-26; 29. Repurposing drugs for individuals informed by 515 

their genetic liability may assist in the reduction of response heterogeneity, which hinders the 516 

implementation of novel treatments in very complex phenotypes like schizophrenia. We 517 

suggest that the individuals with PES in the top percentile of any pathway, particularly those 518 

with low genome wide PRS, present as the most tractable candidates for this approach; 519 

whereas the clinical significance of particular sets of common variant burden would be 520 

missed by an unannotated genome wide association indexed by total PRS alone.  521 

 522 

In order to better understand how PES profiles could be leveraged for treatment, the effect of 523 

sequence variation which comprises the PES needs to be investigated. We outlined an 524 

example of this approach in this study by testing the effect of PES on the expression of genes 525 

which comprise each pathway in schizophrenia. Several associations between PES and 526 

mRNA expression were observed after correcting for the number of genes within the tested 527 
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set. These effects may arise due to direct cis-acting loci within the PES and/or the 528 

downstream biologic effects of variation which effect genes with interrelated functionality. 529 

This was exemplified by the Regulation of insulin secretion PES, which was negatively 530 

correlated with STX1A expression, a syntaxin postulated to play a role in insulin homeostasis. 531 

Interestingly, STX1A has been shown to be positively correlated with glucose stimulated 532 

insulin secretion, suggesting downregulation conferred by the PES may have an important 533 

effect through this biological pathway49; 50. Similarly, downregulation of the calcineurin 534 

subunit gene PPP3CC was associated with the NOS1 pathway PES. Previous research 535 

suggests there is  a bidirectional relationship between nitric oxide signalling and calcineurin, 536 

where the calcineurin subunit is both regulated by redox products and able to induce nitric 537 

oxide synthesis 51; 52.  Several other genes had suggestive association with PES profiles which 538 

may be established with a larger cohort. We suspect that this approach to validation would be 539 

particularly informative for schizophrenia in genotyped expression cohorts from brain tissue. 540 

 541 

While we expect that in most circumstances the aggregate of variation constituting high PES 542 

represent pathology of the target pathways, a current limitation of this methodology is that it 543 

does not integrate the direction of effect. While this may be possible as more functional 544 

annotations become available, this would present an immensely complex paradigm to predict 545 

in silico due to the vast array of factors which influence the penetrance of genomic risk. We 546 

believe that an analysis of the effect of PES profiles on gene expression in larger cohorts will 547 

be an important future direction of this work. The impact of candidate molecules could also 548 

be modelled in patient derived cell lines to, firstly, establish the extent of dysregulation 549 

conferred by elevated PES and, secondly, investigate the interaction with the compounds 550 

implicated. The current analysis also used very stringent criteria for drug pathway gene 551 

inclusion and there are likely to be many more genes and pathways that may be implicated in 552 
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future ontologies and other investigator curated gene-sets. In a recent example of this we 553 

observed an enrichment of retinoid gene variation in schizophrenia 18.  554 

 555 

New GWAS summary statistics are emerging daily on ever larger samples and these too will 556 

further enrich the substrate for PES determination and increase its clinical utility. Despite the 557 

aforementioned challenges, we believe that this methodology provides a useful framework to 558 

better utilise the breadth of available GWAS data for personalised treatment formulations. 559 

Particularly, as there remains a largely unmet need to translate polygenic risk for complex 560 

disorders into tractable treatment outcomes for affected individuals. Whilst we have 561 

demonstrated here the potential utility in schizophrenia, there is clearly scope to adapt this 562 

analytical approach to other complex disorders with summary statistics from well-powered 563 

GWAS. This methodology may also be applicable to prophylactic intervention for 564 

individuals at high risk for a complex phenotype (Fig. 4b). This could be implemented 565 

conservatively with lifestyle or dietary measures implicated by clusters of enrichment 566 

captured within the PES framework. For example, in schizophrenia we identified multiple 567 

actionable pathways quantified by PES that are modulated by vitamins, which represent a 568 

relatively uncomplicated intervention for individuals at high genetic risk for this disorder.  569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 
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Fig. 4. Implementation of pharmagenic enrichment score (PES) in precision treatment 578 

and prophylaxis of complex disorders. (a) Using the PES framework individuals with a 579 

complex disorder provide DNA for common variant SNP genotyping, which is used to 580 

ascertain individuals with a high PES. The PES groups (heatmap rows 1-9, with enrichment 581 

denoted by darker colour) intrinsically identify precision treatment options tailored to the 582 

individual’s biological enrichment (of pathways with known drug targets) for polygenic risk 583 

in that pathway. (b) A more advanced implementation of PES could be achieved for 584 

prophylactic intervention for individuals in the population at very high polygenic risk for a 585 

variety of complex traits with clinical actionability (heatmap rows A-I, with high PRS 586 

denoted by darker colour). Conservative prophylactic measures in this context may account 587 

for environmental risk exposure and focus on lifestyle interventions, such as diet and 588 

exercise, rather than pharmaceutical treatments that may not be justified without symptom 589 

presentation because of their side effect and/or cost.  590 

 591 

SUPPLEMENTAL DATA 592 

Supplementary Fig 1. Methodology for identifying pharmacologically-relevant pathways 593 

enriched with GWAS risk variants. 594 

Supplementary Fig 2. Tissue specific expression of genes contained within candidate PES 595 

pathways derived from schizophrenia GWAS 596 

Supplementary Fig. 3. Distribution of schizophrenia and healthy control patients with 597 

multiple elevated pharmagenic enrichment scores.  598 

Supplementary Table 1. Overrepresentation of genes within candidate PES pathways in the 599 

GWAS catalogue traits with relevance to psychiatry after multiple testing correction. 600 

Supplementary Table 2. Highest confidence drug interaction between of a member of each 601 

pathway enriched with common polygenic risk for schizophrenia. 602 
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Supplementary Table 3. Enriched drug targets for each pharmagenic enrichment score with 603 

at least three interacting genes after multiple testing correction (FDR < 0.05). 604 

Supplementary Table 4. Geometric characteristics of the Gaussian models used for 605 

parameterisations of the within-group covariance matrix. 606 

Supplementary Table 5. Characteristics of the ASRB cohort analysed using the PES 607 

methodology. 608 

Supplementary Table 6. Effect of PES on gene expression for genes which comprise each 609 

of the candidate pathways.  610 
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