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Abstract 

Background 

Chloroplast are believed to arise from a cyanobacterium through endosymbiosis and 

they played vital roles in photosynthesis, oxygen release and metabolites synthesis for 

the plant. With the advent of next-generation sequencing technologies, until 

December 2018, about 3,654 complete chloroplast genome sequences have been made 

available. It is possible to compare the chloroplast genome structure to elucidate the 

evolutionary history of the green plants. 

Results 

We compared the 3654 chloroplast genomes of the green plants and found extreme 

conservation of gene orders and gene blocks in the green plant such as ATP synthase 

cluster, Phytosystem, Cytochrome cluster, and Ribosomal cluster. For the 

chloroplast-based phylogenomics, we used three different data sets to recover the 

relationships within green plants which accounted for biased GC content and could 

mitigate the bias in molecular data sets by increasing taxon sampling. The main 

topology results include: I) Chlorokybales + Mesostigmatales as the 

earliest-branching lineage and a clade comprising Zygnematales+ Desmidiales formed 

a grade as the sister group to the land plants, II) Based on matrix AA data, Bryophytes 

was strongly supported as monophyletic but for matrix nt123 data, hornworts, mosses 

and liverworts were placed as successive sister lineages of Tracheophytes with strong 

support, III) Magnoliids were placed in the outside of Monocots using the matrix 

nt123 data and the matrix AA data, IV) Ceratophyllales + Chloranthales as sister to 

the Eudicots using matrix nt123 data, but when using matrix nt12 data and AA data, 

only Ceratophyllales sister to the Eudicots. 

 

Conclusion 

We present the first of its kind large scale comparative analyses of the chloroplast 

coding gene constitution for 3654 green plants. Some important genes likely showed 

co-occurrence and formed gene cluster and gene blocks in Streptophyta. We found a 
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clear expansion of IRs (Inverted Repeats) among seed plants. The comprehensive 

taxon sampling and different data sets recovered a strong relationship for green plants.  

 

Keywords: Chloroplast genome; Phylogenetics; Evolution; Viridiplantae; Inverted 

Repeats; Gene expansion 

 

Introduction 

Chloroplast are one of the most important organelle of land plants and green algae 

which are essential for plant growth and development, and are involved in 

photosynthesis, lipid metabolism, and other cellular processes. According to 

endosymbiotic theory, chloroplast originated from a cyanobacterial endosymbiont 

into a eukaryotic host, and the photosynthetic eukaryotes were endosymbionts of 

non-photosynthetic eukaryote hosts to form secondary chloroplast, then the cellular 

chimaera subsequently diversified into glaucophytes, red algae, and green plant/algae. 

However, it is unclear whether the chloroplast of red algae, green algae, and green 

plants were from a single origin or multiple origins [1]. As the transfer of the 

chloroplast genes to the nucleus was an ongoing process, the phylogenetic tree based 

on some chloroplast genes may be complex, if sequences involved in the analyses are 

from different origins. However, chloroplast genomic DNA (cpDNA) are conserved 

in gene content, the similar set of genes in cpDNA could be explained in terms of 

large-scale gene transfer in an ancestral lineage and could help us to understand 

chloroplast origin and evolution. For instance, the presence of gene clusters like 

psbB/T/N/H could be considered as an indication of monophyly [2, 3].  

  cpDNA of green plants (Viridiplantae) normally exhibit a conserved genome 

structure which contains two copies of an inverted repeat (IR) separating the small 

single-copy region (SSC) and the large single-copy region (LSC). The chloroplast 

genome size of green plants normally ranges from 107 kb (Cathaya argyrophylla, 

Pinaceae family) [4] to 218�kb (Pelargonium, Geraniaceae family) [5]. However, 

some angiosperm lineages may have extreme variations in their genome size, for 
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instance, Cutinus (Cytinaceae) chloroplast genome is around 20 kb, while 

Chlorophyta (i.e., Floydiella, Chaetopeltidaceae) chloroplast genomes have been 

reported to host an unexpected large size of 520 kb [6]. The size of cpDNA has been 

compared within many clades [7, 8], and many factors could explain these chloroplast 

genome size variation, like (a) variations of intergenic regions, intron lengths, etc. [9, 

10]；(b) IR region variation [5, 11]; (c) gene loss [12]. 

For cpDNA of green plants, hotspots for structural variation include the IRs, gene 

loss, gene transfer, and gene arrangement. For the IR variation, the lengths of IRs are 

likely to be expanded, contracted or to be completely lost. The IR analyses of all 

green plants showed that short IRs are frequently found in Bryophyta followed by 

Chlorophyta, the lowest among Polypodiopsida followed by basal Magnoliophyta, 

Magnoliidae, Commelinids [11], and in Papilionoideae, Pinaceae, cupressophytes, IRs 

are nearly lost or missing [8, 13, 14]. Regarding the gene variation, the cpDNA of 

green plants are normally conserved, but gene losses are widely seen especially in 

parasitic plants such as Cuscuta and Epifagus, which have partially or completely lost 

the photosynthetic ability [15]. 

To understand the origin and relationships of green plants, the phylogenetic 

analyses have been widely performed based on nuclear, mitochondrial [16], and 

chloroplast loci [17, 18]. The phylogenetic relationship among Chlorophyta has been 

reviewed recently [19-22] and the branching orders of the prasinophyte lineages, the 

relationships among core chlorophyte clades (Chlorodendrophyceae, Ulvophyceae, 

Trebouxiophyceae and Chlorophyceae) required further deep analyses. Meanwhile, 

regarding the ferns [23, 24], and Bryophytes [25, 26], transcriptome sequencing data 

was used to resolve the debated topologies within the ferns and Bryophytes. For the 

gymnosperm group, Lu et al. (2014) used two nuclear genes and performed near 

complete sampling of extant gymnosperms genera, and found that the cycads are the 

basal-most lineage of gymnosperms rather than a sister to Ginkgoaceae, a sister 

relationship between Podocarpaceae and Araucariaceae [27]. For seed plants, 

Burleigh et al. used four nuclear loci, five chloroplast loci and four mitochondrial loci 
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from 31 genera to resolve the seed plant tree of life [17]. For basal angiosperms, 

Moore et al. used 61 chloroplast genes from 45 taxa to reconstruct the phylogenetic 

order among basal angiosperms [28]. Likewise, the largest chloroplast phylogenetic 

study has been performed across green plants by using a nearly complete set of 

protein-coding sequences, based on 360 species of the green plants, and 1879 taxa 

representing all the major subclades [29, 30].  

  With the advent of next-generation sequencing technologies, enormous efforts have 

been made to sequence the whole chloroplast genomes of plants. Until December 

2018, over 3,000 complete chloroplast genome sequences have been made available 

in the National Center for Biotechnology Information (NCBI) organelle genome 

database. This large amount of complete cpDNA sequences could be effectively 

utilized to understand the evolution of the chloroplast genomes and phylogenetic 

relationships among plants. With so many chloroplast genomes, we tried to answer 

three main questions from this study: i) After the split of Streptophyta and 

Chlorophyta, how the evolution shaped Streptophyta and what were the similarities 

the in the genome?  ii) IRs degenerated widely in red algal and have uneven size 

distribution in Viridiplantae, what is the formation mechanism behind IRs? iii) does 

increasing taxon sampling would help to resolve phylogenetic questions of 

relationships in Viridiplantae? In the present study, we comprehensively analyzed the 

available chloroplast genomes of Viridiplantae comprising 3,654 taxa, 298 families, 

and 111 orders. We compared the genomic organizations in their cpDNAs between 

major clades, including gene gain/loss, gene copy number, GC content, gene cluster, 

and gene blocks. We also covered a wide range of green plants species to construct 

the chloroplast-based phylogenetic trees. Increasing taxon sampling together with the 

whole coding genes of chloroplast helped us to resolve phylogenetic questions of 

relationships in Viridiplantae. 

 

Results  

General Characteristics of the Genomes 
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The genome size and gene organization in chloroplast genomes  

In this study, the complete chloroplast genomes (cpDNA) of 3,654 taxa representing 

298 families, and 111 orders were selected. The size of cpDNA ranged from 71,666 

bp to 521,168 bp. Liverworts, mosses, and gymnosperm displayed the smallest 

average genome size, while Chlorophyta had the largest genome size variation. Even 

though the chloroplast genome size showed large variation, but there were 120–130 

conserved genes as well. We recovered 79 protein-coding genes from all the 

sequenced cpDNA, but seven genes: ndhF, psaA, psaB, rpoB, rpoC1, rpoC2, ycf2 had 

no information regarding gene annotation (Liu et al 2019) (see methods), so we only 

investigated 72 protein-coding genes in the follow-up analysis.  

  To investigate the gene content similarity in the green plants, we calculated the 

average gene number in every order and the overview of the genes are presented in 

Fig 1. According to the copy number of the gene, samples were divided into three 

main clades, the first clade comprised some of Chlorophyte, Charophyta, moss, 

liverworts, fern-and-horsetails, and the second contained most of Chlorophyta, 

Genetal and Pinales of Gymnosperm, Santalales of Eudicots which possessed no ndh 

family. The third is Eudicots and Monocots which contained two copies of rpl23, rpl2, 

ndhB, rps7, and rps12. 

  We also compared the gene content in the green plants by using the Spearman 

correlation (Fig S1). Some genes appeared to co-occur, the NADH dehydrogenase 

(ndh) genes showed a strong positive correlation with other genes within the family 

(r>0.7) except ndhB (r ~0.5), however, ndhB showed a strong positive correlation 

with rpl2, rpl23, rps12, rps7, and ycf1. Ndh family showed a negative correlation with 

both clpP and infA genes. We also found that some families were closely correlated 

such as psb family (psbE, psbF, and psbH) had a positive correlation to pet family 

(petA, petB, petD, petG, and petL).  

  Similarly, the introns in land-plant chloroplast genomes are generally conserved. 

The Chlorophyta and Charophyta possess the least intron number. Most of the genes 

lacked introns with the exception among several ribosomal proteins and 
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photosynthesis genes such as atpF, ndhA, petD, rpl16 and rps12 which possess at 

least one intron (in Streptophyta). The intron number of clpP gene showed a high 

divergence, 2327 species showed the presence of two introns, and more than 100 

species owned 3-4 introns. Moreover, most of the clpP gene without introns were 

found among Chlorophyta, gymnosperms and Poaceae (Fig S2, Table S1).  

 

Gene gain/loss in chloroplast genomes 

Although the genetic content and number of protein-coding genes are generally 

conserved in the chloroplast genomes, the gene gain and loss have been reported. A 

total of 72 protein-coding genes were investigated from 3654 species (Table S1).  

   For gene gain, we found that, from Nymphaeales, almost all the flowering plants 

have two copies of ndhB, rpl2, rpl12, rpl23, rps12, and rps7 genes which correlated 

with IRs expansion, especially rps12 with four copes. In Campanulaceae, Ericaceae 

and Fabaceae, ndh family genes were duplicated. 

  For gene loss, we found some genes were more likely lost in the green plant. The 

chloroplast translation initiation factor 1 (infA) and the ribosomal protein L22 (rpl22) 

are the two housekeeping genes. We found that infA was absent in 1825 taxa, and it 

was more frequently observed among angiosperms, especially in Eudicots. On the 

other hand, rpl22 was missing in 474 taxa mainly in Chlorophyta and legumes, 

suggesting that both genes were possibly transferred from chloroplast to the nucleus 

during evolution, as reported in an earlier study [31]. The ndh genes are related to the 

cyclic electron in the photosystem I complex, and has been thought to be lost in the 

higher plants [32]. In our study, ndh genes were found to be lost in at least 300 

species, mainly in Chlorophyta, Pinaceae, Ephedrales, Welwitschiales, Gnetales and 

some species of Orchidaceae. At the same time, except ndh gene family, petN, rpl22, 

rpl33, rps15, rps16 were lost in Chlorophyta, and rps16 were lost in Gymnosperm 

and Bryophytes. In addition, we also observed the loss of accD and ycf1 genes 

together in more than 800 species (almost are Poales). Ycf1 is thought to have a 
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functional role of assembling the ACCase holoenzyme [33, 34], and both these two 

genes have been related to fatty acid synthesis.  

 

Gene conservation and rearrangement 

It is well known that the structure of chloroplast genomes conserved and the order of 

genes is relatively consistent in land plants. This opens up the possibility of 

reconstructing insertions, deletions and inversions during the evolution of green plant. 

In this study, 72 protein-coding genes were ordered according to the annotated 

position. 

  In Arabidopsis thaliana, cluster analysis has been done based on chloroplast 

transcriptomes expression and finally chloroplast genes divided into eight sub-clusters 

[35]. To calculate the blocks frequency in Streptophyta, we first removed the samples 

in the order which have the same gene content, and finally obtained 1517 cpDNA and 

the blocks frequency are listed in Table S2. Based on the functional categories, there 

are three major gene clusters. The frequency of ATP synthase cluster: 

atpA-atpF-atpH-atpI was 74%, atpE-atpB was 82%, Phytosystem and Cytochrome 

cluster:  

petA-psbJ-psbL-psbF-psbE-petL-petG was 80% 

psbB-psbT-psbN-psbH-petB-petD was 85%. Ribosomal cluster: 

rps8-rpl14-rpl16-rps3 was 83%, rpl33-rps18-rpl20 was82% and rpoA_rps11_rpl36 

was 85%. In Monocots and Eudicots, we observed three photosystem gene clusters 

with high frequency: psbM/D/C/Z [60%], psbJ/L/F/E [85%] and psbB/T/N/H [88%]. 

PsbJ/L/F/E and psbB/T/N/H nearly conserved in all the green plants and liked to form 

blocks: psbB/T/N/H-petB-petD-rpoA-rps11-rpl36 [78%], 

psbJ/L/F/E-petL-petG-psaJ-rpl33-rps18-rpl20 [76%] in Streptophyta. 

But psbM/D/C/Z block showed the highest variability in the green plant. PsbD and 

psbC genes encode the D2 and CP43 proteins of the photosystem II complex, and 

they are generally co-transcribed [36]. Similarly, psbM is highly light-sensitive and 

plays important roles in such conditions, in fact, the knock-out of psbM leads to a 
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significant decrease in the activity of photosystem II [37]. In Chlorophyta, psbD/C/Z, 

psbZ/M, and psbD/C were found to be widely distributed, but in the Charophyta 

branch, only psbD/C/Z block exists. Later in Bryophytes, psbZ/C/D and psbM were 

connected by ATP synthase: atpA/F/H/I. From ferns and horsetails clade, psbM/D/C/Z 

was formed. In Cycadales which likely represents all the seed plant, showed the 

presence of complete psbM/D/C/Z blocks, but in Pinales, psbM and psbD/C/Z were 

separated. In Poaceae atpA/F/H/I-rps2-petN-psbM was especially inverted leading to 

the production of larger block psbK/I/M/D/C/Z.  

  Except gene cluster, there are still some large blocks which contained the more than 

one functional category gene. The largest block:  

(atpA-atpF-atpH-atpI) (1) - (rps2-petN-psbM) (2) -(psbD-psbC-psbZ) (3) - 

(rps14-ycf3-rps4) (4) [51%]- (ndbJ-ndhK-ndhC-atpE-atpB-rbcL) (5) [70%] 

-accD-psaI-(ycf4-cemA-petA-psbJ-psbL-psbF-psbE-petL-petG-psaJ-rpl33-rps18-rpl2

0) [69%]- (psbB-psbT-psbN-psbH-petB-petD-rpoA-rps11-rpl36) [78%] 

 was found with high frequency in Streptophyta, and numbers in [] are the block 

frequency. In Poaceae, (1), (2) and (3) block were with complicated situation which 

experienced several rounds of recombination and in some genus of Fabaceae, (3) -(4) 

and (5) were cross interchanged. In streptophytes, the cpDNA reserved a large gene 

block:(psbB-psbT-psbN-psbH-petB-petD) [85%]- 

(rpoA-rps11-rpl36) [85%]-infA-(rps8-rpl14-rpl16-rps3-rpl22-rps19-rps2-rps23) 

[61%] which included S10-spc regions and connected directly with IRb (Table S3).  

 IRs normally contain tRNAs and rRNAs, but in this study, we didn’t annotate tRNA 

and rRNAs, we focused on coding genes: rps19-rpl2-rpl23-ndhB-rps7-rps12 which 

were newly acquired in IRs for angiosperms [8] (Fig 2). The rps19-rpl2-rpl23 were 

conserved in the green plants, but ndhB-rps7-rps12 showed great variation. The ndbB 

were found in some green algae such as Prasinococcales and Palmophyllales, then 

from Charophyta, ndhB-rps7-rps12 and rps19-rpl2-rpl23-ndhB-rps7 blocks were 

formed. In the Bryophytes and Lycophytes, ndhB-rps7-rps12 widely existed and 

Dendrocerotaceae have a complete block of rps19-rpl2-rpl23-ndhB-rps7-rps12. In 
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ferns and horsetails, except rps19-rpl2-rpl23-ndhB-rps7-rps12 block in Marattiales, 

most orders have ndhB-rps12-rps7-psbA-ycf1 block which is near the IRs regions. In 

Amborella and Nymphaeales, IRs contained rps19-rps2-rps23-ndhB-rps7-rps12 

which is similar to all other angiosperms but Trithuria filamentosa and Cabomba 

caroliniana had the largest IRs which contained 

psbB-psbT-psbN-psbH-petB-petD-rpoA-rps11- 

rpl36-infA-rps8-rpl14-rpl16-rps3-rpl22-rps19-rps2-rps23-ndhB-rps7-rps12.  

 

GC bias 

  The GC content is deemed to be in connection with the amino acid composition 

based on former research[29]. In this study, the GC content at different codon 

positions of all the 72 protein-coding genes including the first, second, and third 

codon positions, together with ntNo3rd and ntAll data sets were used for the analysis. 

The average GC content of ntNo3rd matrix ranged from 36.3% to 58.2%, while the 

ntAll data set had a slightly lower GC content of 38.2%, varying from 29.0% to 55.4% 

(Table S1). The third codon position of all 14 clades owned the lowest GC content 

compared to other position, and there was an obvious difference between different 

clades. Therefore, the One-Way ANOVA was carried out using SPSS to test whether 

there was any significance between different clades, and the result revealed that the 

GC characters were the same in Chlorophyta and Charophyta, and there was a 

non-significant difference between angiosperms. Furthermore, the GC content of 

Lycophytes and fern were significantly higher than all the other clades (p < 0.01), and 

the GC content in the clades after Lycophytes and fern were higher than that of 

Bryophytes and algae (Fig S3). 

 

Phylogenetic analysis   

To conduct the phylogenetic analysis, the concatenated alignment of three data sets 

for the 72 genes from 3654 species were used with 6 Rhodophyta as outgroups，which 

consisted of 4,724 amino acid positions (AA). A total of 44,187 positions for the 
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matrix containing all codon positions (nt123) and 29,458 positions for the matrix 

containing all but the third codon positions (nt12). We used two programs: IQ-TREE 

and RAxML to construct the phylogenetic tree, but they both produced nearly the 

same topology, so we only used IQ-TREE to illustrate our results. 

   The topology is summarized in Fig 3-4 and the details of the phylogenetic trees 

are provided in supplemental materials (Fig S4-S8). For some debated clades, the 

summary of the similarities and conflicts in topologies derived from these three data 

sets are presented in Table 1. All phyla of green plants except Charophyta are 

recovered as monophyletic. Within Chlorophyte, both matrix nt12, nt123 and the 

matrix AA supported that Palmophyllales and Prasinococcales are both the 

earliest-diverging lineage of the Chlorophyta (SH-alrt == 33%, UFboot = 100%). 

Chlorophyceae is strongly supported as monophyletic, with Chlamydomonadales + 

Sphaeropleales sister to a clade of Chaetophorales and Chaetopeltidales. The 

relationship of Chlorophyceae and Ulvophyceae (non-monophyletic) is uncertain. 

  Within Streptophyta, Charophyta lineages formed a paraphyletic assemblage with 

the land plants. Among the Charophyta groups, Chlorokybales + Mesostigmatales are 

the earliest-branching lineage and a clade of Zygnematales+ Desmidiales formed a 

grade as the sister group to the land plants.  

  Within land plants, Bryophytes were weakly supported as monophyletic based on 

matrix nt12 (SH-alrt == 33%, UFboot = 100%), while matrix AA, strongly supported 

Bryophytes as monophyletic (SH-alrt == 100%, UFboot = 100%), both matrix nt12 

and matrix AA supported liverworts and mosses are uniting and sister to hornworts. 

For matrix nt123 data, hornworts, mosses and liverworts were found to be successive 

sister lineages of Tracheophytes (SH-alrt == 100%, UFboot = 100%).  

  Within Euphyllophyta in the matrix nt12 and nt123, a well-supported Monilophyta 

is sister to Spermatophyta (UFboot = 100%), but the matrix aa indicated that 

Monilophyta is sister to Bryophytes (SH-alrt = 90.9%, UFboot = 100%). Within 

Monilophyta, matrix nt12 supported Ophioglossales as the earliest-diverging lineage 

(UFboot =100%), but matrix nt123 supported Equisetales as the earliest branch 
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(UFboot =100%). Within Spermatophyta, gymnosperms were designated as sister to 

angiosperms. Within gymnosperms, the subclades were well supported in three data 

sets, the clade of Cycadales + Ginkgoales is sister to the rest of gymnosperms. While 

the Gnetales, Welwitschiales along with Ephedrales, formed a clade (UFboot = 100%), 

which are sister to the clade comprising Cupressales and Araucariales.  

  Within angiosperms, in matrix nt12 and nt123, the Amborellales is recovered as the 

sister to all other angiosperms, followed by Nymphaeales, nevertheless, the placement 

of Nymphaeales is outermost in angiosperms in the matrix AA with weakly support 

(SH-alrt =34.9%, UFboot = 100%). The placement of Ceratophyllales is certain in the 

outside of Eudicots in the three data sets, while the Magnoliids is placed in the outside 

of monocots in matrix nt123 (SH-alrt =100%, UFboot = 100%), and nested between 

monophyletic monocot and eudicot in matrix nt12 (SH-alrt =64.9%, UFboot = 59%) 

and matrix AA (SH-alrt =90.8%, UFboot = 35%). While checking the amino acid 

composition in Magnoliids, we found the composition deviated significantly from the 

‘master’ distribution using the chi2 test. The relationship between COM clade 

supported Oxalidales is sister to Celastrales + Malpighiales. The major subclades 

were typically well supported in Monocots and Eudicots, but the position of Vitales, 

Gentianales, Petrosaviales and Arecales remained problematic. To further verify the 

phylogenetic analysis, the data of amino acids from the former research were added 

into the tree construction [30], and the results showed that the data of the same orders 

are clustered together, and the topology of the major clade is consistent with the 

matrix nt12 (Fig S9).  

 

Selective pressure of chloroplast genes 

By dissecting the chloroplast genomes (cpDNA), we learned the special gene 

gain/loss, gene copy number, gene cluster order, and GC content along the evolution 

of the green plants, we also tried to understood which clades and cpDNA genes were 

under purifying selection, nonsynonymous substitution (dN), synonymous 

substitution (dS) and the dN/dS ratio were also calculated. The ndh subunits were 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/655241doi: bioRxiv preprint 

https://doi.org/10.1101/655241


13 

 

thought to be related to the synthesis of photosystem I complex and involved in the 

adjustment of the redox level of the cyclic photosynthetic electron transporters [38]. 

Almost all the photosynthetic land plants have the ndh genes except in Chlorophyta, 

gymnosperms and some species of Orchidaceae (Table S1). To investigate the 

selective pressure of photosynthesis-related genes influenced by the absence of ndh 

subunits, 37 species in all 14 clades (10 of 37 species lost all ndh genes) were selected 

and the sequence of 14 photosynthesis genes existing in all the 37 species were 

chosen (Fig 5, Table S3). The results of the dN/dS analysis of 37 species revealed that 

the species which lost ndh genes might have a higher dN and dS, especially in 

Eudicots and gymnosperms. The dN/dS was extremely high in Chlorophyta, implying 

the occurrence of positive selection and dN/dS of all Streptophyta species except 

Downingia cuspidata is less than 1, suggesting that chloroplast genes are under 

purifying selection, even the rate was higher in the species without ndh genes. In 

addition, the independent analysis of 14 photosynthesis genes suggested that dS and 

dN in all genes for angiosperms have a relatively higher dN without ndh genes, except 

psbK (Fig S10, Fig S11).  

 

Discussion  

The green plant's chloroplast genome 

The chloroplast gene content in the green plants are conserved and plasmid genome 

architectures have been discussed based on recombination events of rDNA operons 

[39], but how similarity of the genome in Streptophyta is unknown. In our study, we 

found the same function class likely to form gene cluster, ATP synthase, Phytosystem 

and Cytochrome, Ribosomal cluster appeared more than one with high frequency. In 

Streptophyta, a block: (psbB-psbT-psbN-psbH-petB-petD) [85%] -(rpoA-rps11-rpl36) 

[85%]-infA-(rps8-rpl14-rpl16-rps3-rpl22-rps19-rps2-rps23) [61%] widely existed 

and was located nearly IRs regions, parts of them are the S10–spc–alpha operon locus 

which first appeared in eubacteria and archaebacteria. Euglena and glaucophyte 

plasmids in the S10-spc regions contained rpl23-rpl2-rps19-rpl22-rps3-rpl16-rps17- 
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rpl14-rpl5-rps8[40] which were identical to that in the E.coli operons[41], even in 

prokaryotic genomes [42], this location in cpDNA may come from archaebacteria to 

the green plant. What is more interested, in Arabidopsis thaliana, 

psbB-psbT-psbN-psbH-petB-petD and rps3-rpl22-rps19-rps2-rps23 have the same 

transcriptomes expression pattern which was exactly different from 

rpoA-rps11-rpl36-rps8-rpl14-rpl16 under various biological conditions[a1].  

Near the S10–spc–alpha operon locus, there existed another larger block: 

atpA-atpF-atpH-atpI- rps2-petN-psbM-psbD-psbC-psbZ-rps14-ycf3-rps4- 

ndbJ-ndhK-ndhC-atpE-atpB-rbcL-accD-psaI-ycf4-cemA-petA-psbJ-psbL-psbF-psbE-

petL-petG-psaJ-rpl33-rps18-rpl20-psbB-psbT-psbN-psbH-petB-petD-rpoA-rps11-rpl

36 which are ATP synthase, Phytosystem II, Cytochrome and Ribosomal genes.  

Dynamic Evolution of IR in green plant 

IR in green algal showed large fluctuation in size from 6.8 kb to 45.5kb, and sustained 

losses in major groups of green algal but in the green lineage, IR underwent 

expansion [43, 44]. When compared the IRs regions in green plants, not only for 

Eudicots but also all angiosperm, chloroplast have experienced an expansion at the 

end of IRs. For angiosperm, rps19-rpl2-rpl23-ndhB-rps7-rps12 gene copies were 

newly acquired in IRs, and there is always a big block connected with IRb. In the fern 

and horsetails, ndhB-rps12-rps7 appeared but not in IRs by rearrangement. In 

Gymnosperm except for Pinales, ndhB-rps7-rps12 block was copied and inverted to 

form rps19-rpl2-rpl23-ndhB-rps7-rps12, but we cannot tell whether the 

ndhB-rps7-ycf12 block was gained by fusion or rearrangement. From Amborellales 

and Nymphaeales, rps19-rpl2-rpl23-ndhB-rps7-rps12 gene copies were found in IRs, 

especially in Nymphaeales which still contains the largest IRs block.  

   

Congruence and conflict in phylogenetic trees with other studies 

There are two previous chloroplast’s phylogenetic analysis of Ruhfel et al. (2014) [28] 

and Gitzendanner, M.A., et al (2017) [29] where they used 360 and 1879 taxa to study 

the green plants respectively. Most topologies of our phylogenetic tree were 
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consistent, however, there were some differences between our results and those of the 

two studies. Based on the AA analysis of Gitzendanner, M.A., et al (2017) recovered 

Bryophyte clade as monophyletic, which is similar to our results but with an uncertain 

relationship to Lycophytes and fern. In our matrix AA analysis, we found Bryophyte 

+ Lycophytes are sister to ferns and horsetails (UFboot = 100%). With matrix nt123, 

hornworts, mosses, and liverworts were identified as successive sister lineages of 

Tracheophytes (UFboot = 100%). Both these two topologies were well supported by 

previous research [18, 45]. In our study, Magnoliids were placed at the outside of 

Monocots in matrix nt123 (UFboot = 100%), but nested between monophyletic 

Monocot and Eudicot in matrix nt12 (UFboot = 59%) and matrix AA (UFboot = 35%). 

But, from the gene constitution in Magnoliids, they are similar to both Monocot and 

Eudicot. In Matthew et al. (2017) analysis, Magnoliids and Chloranthales form a 

weakly supported clade (BS = 61%) that is sister to a clade of Monocots (BS = 100%) 

and Eudicots. When we combined the dataset from Gitzendanner, M.A., et al (2017) 

with our AA sequences and re-analyzed, Magnoliids moved outside of the Monocots 

(SH-alrt =97.5%, UFboot = 95%). Ruhfel et al. (2014) recovered Ceratophyllales as 

sister to the Monocots using matrix nt12 with low support (BS = 52%) and when 

using matrix nt123, Ceratophyllales was placed between the Monocots and Eudicots 

(BS = 52%). We recovered Ceratophyllales + Chloranthales as sister to the Eudicots 

using nt123 data (UFboot=73%, UFboot=99%), but when using matrix nt12 and AA 

data, only Ceratophyllales sister to the Eudicots (UFboot=100%). 

 

Conclusion 

The structure of chloroplast genomes is mostly consistent in green plants and formed 

several gene clusters and gene block except in Chlorophyta. This structural 

conservatism might be a result of the common genes between cyanobacteria or the 

same function categories are more likely to form a gene cluster. Topologies of 

phylogenetic tree of green plants, more extensive taxon indeed increased the 

phylogenetic resolution for some controversial clades. Matrix nt12 data produced 
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similar results with matrix AA data, matrix nt123 data affected the position of 

Bryophyte and Magnoliids. In general, for some controversial clades that are deep 

within green plants, such as, Bryophyte, dense taxon sampling did not improve 

phylogenetic accuracy anymore, data set will effort the topologies. Thus, resolving the 

controversial deep-level clades, simply increasing taxon sampling may not be 

necessary. In addition, chloroplast genome analysis alone seems unlikely to solve the 

relationship of these controversial clades. Using large numbers of nuclear genes or 

selecting the nuclear genes with stronger phylogenetic signals may help to solve these 

deep-level questions. 

 

Methods 

Taxon and Gene Sampling 

The complete or nearly complete chloroplast genomes of 3246 species in GenBank 

(as of May 18, 2018) and 731 species of Ruili Botanical Garden were retrieved and 

used as the raw data (Liu et al 2019). The duplicated samples and the species with 

incorrect annotation or significant gene losses were excluded from the analysis. Six 

problematic species (Monoraphidium neglectum, CM002678; Nothoceros 

aenigmaticus, NC-020259; Nymphaea ampla, NC-035680; Allium sativum, 

NC-031829; Bambusa oldhamii, NC-012927 and Potentilla micrantha, HG931056) 

were subjected to re-annotation with GeneWise v2.4.1 (Birney et al. 2000). In 

addition, 50% missing genes of a species and 50% missing species of a gene was also 

set as the filter elements, and a total of 3654 species with 72 conserved protein-coding 

genes were obtained for the further analysis. The 298 families from 111 orders of 

Chlorophyta, Charophyta, Bryophytes, Pteridophyta, Bryophytes, Gymnosperm and 

Angiosperms were used to represent most major lineages of green plants, and 6 

species of Rhodophyta as outgroups were used. The details (species name, family 

names, order names, genome size, and accession numbers) of 3654 chloroplast 

genomes are listed in Supplementary Table S1. 
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Sequence Alignment 

DNA sequences of 72 protein-coding genes were extracted from each genome 

according to the annotation files. A total of three data sets were made, which included 

the matrix of all nucleotide positions (nt123), the matrix containing only the first and 

second codon positions (nt12), and the matrix of amino acids (AA). The nucleotide 

sequence of each coding gene was processed individually with TranslatorX using 

MAFFT v7.017 (Katoh et al. 2013) to align the aa sequences, and then the TrimAL 

software was used to trim the poorly aligned positions with the gappyout option. The 

genes with 50% missing data were also discarded on the basis of the sequence 

alignment for further filtration, and the final alignments of each gene were obtained 

by repeating the aforementioned steps. The nucleotide and amino acid sequence 

alignments of 72 protein-coding genes were connected subsequently, and a total of 

44,187 sites of the ntAll matrix, 29,458 sites of nt12 matrix and 14,724 amino acid 

positions of AA matrix were used for further analysis. 

 

Phylogenetic analyses  

Three datasets containing 72 protein-coding genes of 3654 species with no 

partitioning strategies were used to reconstruct the phylogenetic tree based on 

IQ-TREE with 5000 ultrafast bootstrap replicates and 1000 bootstrap replicates for 

SH-aLRT, together with GTR+F+R10 model for nucleotide sequences and 

JTT+F+R10 model for amino acids sequences. ML analysis was also conducted using 

RAxML v8.2.4 (Stamatakis 2014) under the GTRCAT model for nucleotide and 

PROTGAMMAWAG model for amino acids. The 100 bootstrap replicates were set to 

test the reliability of each node for ML analysis.  

The optimal partitioning scheme was referred according to Brad et. (2014. For the AA 

data, we partitioned the data sets by gene (72 partitions). For the nucleotide (nt123), 

we used program PartitionFinder (ref) to find the best partitioning strategies by each 

codon position within each gene, to reduce the computational burden, only 731 

species of Ruili Botanical Garden were used for PartitionFinder. The 148 partitions 
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were selected with lnL: -3013791.4635925293, AICc: 6034073.71459. Partitioning 

strategies for both AA data and nt123 to construct phylogenetic tree were unable to 

complete due to time limitations resulting from the large samples of our data. 

To verify the topologies of the phylogenetic tree, the amino acids sequences of 72 

genes of 1901 samples in former research (Gitzendanner et al. 2018) were 

downloaded to analyze along with our data using the IQ-TREE. The Tree-doctor was 

used to obtain the simplified trees in order levels. The species of Rhodophyta was set 

as outgroups to re-root the result, and the iTOL (https://itol.embl.de/) was used for 

data visualization. 

 

Evolutionary Rate Estimation. 

According to the gene losses of ndh subunits, 37 species in all 14 clades (10 of 37 

species lost all ndh genes) were selected as the representative species, and the 

sequence of 14 photosynthesis genes existing in all 37 species was selected. The 

alignments and the topology derived from IQ-TREE of all nucleotide positions (nt12) 

of each gene and the gene set in the selected species were used to perform the 

evolutionary rate analysis. The codeml of PAML was used to estimate the ratio of 

nonsynonymous to synonymous nucleotide substitutions (dN/dS) for each branch of 

14 genes corresponding to photosynthesis. 
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Table legends 

Table 1. Summary of consensus topologies derived from the three data sets. 

 

Figure legends 

Fig 1. The gene constitution in the green plants is displayed as a heatmap. In heat map, 

the data is displayed in a grid where each row represents order and each column 

represent average gene number in the order. 

Fig 2. Coding genes in IRs in Streptophyta. Coding genes in IRs and upstream are 

shown. 

Fig 3. Chloroplast phylogenomic tree based on the matrix nt12 of 72 protein-coding 

genes of 3654 green plants and six Rhodophyta using IQTREE. The colors in the 

internal circle indicate different families while the colors in the external circle indicate 

different orders. The green branches represent the branch with UFboot more than 

95%. 

Fig 4. Summary of the phylogenomic tree based on three data sets of 72 

protein-coding genes of 3654 green plants and six Rhodophyta using IQTREE. 

Fig 5. Phylogenomic tree of selective pressure for 37 species in all 14 clades. The red 

branch stands for the length of the branch which was changed to 1. “*” indicated the 

species without ndh genes. 

 

Supporting information  

Fig S1. Gene content in the green plants, the correlation of the genes was calculated 

by the Spearman method. 

Fig S2. Characters of the chloroplast genome in the green plant. The box plots 

represent the median (central line), first and third quartiles (box), and outliers (dot). 
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Fig S3. GC content of different codon positions in green plant. The One-Way 

ANOVA and other statistical analyses were performed in SPSS software, and the 

lowercase represents the significance between 14 clades (p < 0.01). 

Fig S4. Chloroplast phylogenomic tree based on the matrix nt123 of 72 

protein-coding genes of 3654 green plants and six Rhodophyta using IQTREE. The 

colors on the internal circle indicate different families, while the colors on the external 

circle indicate different orders. 

Fig S5. Chloroplast phylogenomic tree based on the matrix aa of 72 protein-coding 

genes of 3654 green plants and six Rhodophyta using IQTREE. The colors on the 

internal circle indicate different families while the colors on the external circle 

indicate different orders. 

Fig S6. Chloroplast phylogenomic tree based on the matrix nt12 of 72 protein-coding 

genes of 3654 green plants using RaXML. The colors on the internal circle indicate 

different families while the colors on the external circle indicate different orders. 

Fig S7. Chloroplast phylogenomic tree based on the matrix nt123 of 72 

protein-coding genes of 3654 green plants using RaXML. The colors in the internal 

circle indicate different families while the colors in the external circle indicate 

different orders. 

Fig S8. Chloroplast phylogenomic tree based on the matrix aa of 72 protein-coding 

genes of 3654 green plants and 1901 species in the former research using IQTREE. 

The colors on the internal circle indicate different families while the colors on the 

external circle indicate different orders. 

Fig S9. Summary of the phylogenomic tree based on matrix aa of 72 protein-coding 

genes of 3654 green plants and 1901 species obtained from earlier reports using 

IQTREE. 

Fig S10. Phylogenomic tree of dN for 14 photosynthesis genes in 37 species. “*” 

indicated the species without ndh genes. 
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Fig S11. Phylogenomic tree of dS for 14 photosynthesis genes in 37 species. The red 

branch stands for the length of the branch which was changed to 10. “*” indicated the 

species without ndh genes. 

 

Table S1. The gene blocks frequency in Streptophyta 

Table S2. The detailed information and characters of the species used in this study. 

Table S3. The gene blocks frequency in Streptophyta 

Table S4. The hexadecimal colors used in this study. 

Table S5. The 37 selected species for the analysis of dN/dS. 
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liverworts-Marchantiales-Marchantiaceae_NC1607
hornworts-Anthocerotales-Anthocerotaceae_NC63
Charophyta-Zygnematales-Zygnemataceae_NC3060
Charophyta-Mesostigmatales-Mesostigmataceae_NC2978
Chlorophyta-Prasinococcales-NA_NC2989*
Chlorophyta-Prasinococcales-NA_NC2988
Chlorophyta-Palmophyllales-NA_NC2986
Chlorophyta-Mamiellales-Bathycoccaceae_NC2913*
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