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Abstract 

Viral factors manipulate the host post-translational modification (PTM) machinery for 

replication. Distinctly, phosphorylation and SUMOylation can regulate the activity of human 

cytomegalovirus (HCMV) protein IE2. However, the molecular mechanism of this process is 

unknown. Taking a structural, biochemical and cellular approach, we uncover a cross-talk of 

phosphorylation and SUMOylation exploited by IE2. A scan for the SUMO Interacting Motifs 

(SIMs) revealed two SIMs in IE2. A real-time SUMOylation assay indicated that the N-

terminal SIM (IE2-SIM1) enhanced IE2 SUMOylation up to 4-fold. Kinetic analysis and 

structural studies proved that IE2 is a SUMO cis-E3 ligase. Two putative CK2 sites adjacent 

to IE2-SIM1 are phosphorylated in-vitro and in cellular conditions. Phosphorylation 

drastically increased the IE2/SUMO affinity, IE2-SUMOylation and cis-E3 activity of IE2. 

Additional salt-bridges between the phosphoserines and SUMO account for the higher 

IE2/SUMO affinity. Phosphorylation also enhances the SUMO-dependent transactivation 

activity and auto-repression activity of IE2. Together, our findings highlight a novel 

mechanism where SUMOylation and phosphorylation of the viral cis-E3 ligase and 

transactivator protein IE2, works in tandem to enable transcriptional regulation of viral genes. 
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Author summary 

The host protein SUMO is a crucial regulator of cellular processes. Conjugation of other 

proteins to SUMO by a process called SUMOylation, can change the protein’s function or 

localization and regulate downstream cellular events. The SUMO pathway is exploited by 

viruses to transcribe viral genes and replicate the viral genome. IE2 is an essential gene of 

human Cytomegalovirus (HCMV), which acts as a transactivator and helps to transcribe 

other viral proteins required for viral genome replication and viral assembly. SUMOylation of 

IE2 is necessary for its function. Here, we have uncovered that IE2 functions as a cis-

SUMO-E3 ligase, where a SUMO-Interacting Motif (SIM) in IE2 enhances its SUMOylation. 

Interestingly, phosphorylation of the SIM in IE2 augments its cis-E3 activity to further 

increase SUMOylation. Moreover, SIM phosphorylation also enhances the interaction 

between IE2 and SUMOylated binding partners.  Thus, we uncover an exciting process, 

where phosphorylation enhances both covalent and non-covalent interaction of a protein 

(IE2) and SUMO. We also observe that the cross-talk of phosphorylation and SUMOylation 

has significant effects on the transactivation function of IE2. Overall, we discover how a viral 

protein IE2 exploits crosstalk between SUMOylation and Phosphorylation to enhance its 

activity and in turn, ensure efficient viral replication.  
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Introduction 

The Immediate Early (IE) genes are the first viral genes transcribed during infection. The IE 

gene products are essential to optimize the host cell environment for replication of the viral 

genome and the transcription of early and late genes. IE1 and IE2 are the two predominant 

IE proteins in Human Cytomegalovirus (HCMV), which are splicing products of the Major 

Immediate Early Promoter (MIEP) (Stenberg, Thomsen and Stinski, 1984). While IE1 is 

essential only at low MOI, IE2 is strictly indispensable for viral replication and growth 

(Marchini, Liu and Zhu, 2001).  

IE2 regulates HCMV growth at multiple levels. It arrests the cell cycle in ‘pseudo-S’ 

phase at the G1-S boundary to facilitate viral replication over host genome replication 

(Petrik, Schmitt and Stinski, 2006). IE2 is an essential factor for replication complex 

assembly (Colletti et al., 2004). Finally, IE2 works as transactivator for early/late viral genes 

and various host genes (Hiagemeier et al., 1992). IE2 transactivates TATA Box containing 

promoters with the help of basal transcription factors (TBP, TFIIB, and TAFs) (Hiagemeier et 

al., 1992; Bryant et al., 2000). Interestingly, IE2 regulates its promoter MIEP by binding to 

cis-regulatory sequence downstream of the transcription start site (Hoffmann et al., 1993). 

Apart from transcription factors, IE2 also functions with transcription coactivators and 

chromatin modifiers to regulate the host transcriptional machinery (Lang et al., 1995; Bryant 

et al., 2000; Reeves et al., 2006; Lee et al., 2011). 

IE2 is a pleiotropic regulator. Hence, its expression and activity is tightly regulated 

transcriptionally, post-transcriptionally, and also by Post Translational Modifications (PTMs) 

like SUMOylation and phosphorylation (Hoffmann et al., 1993; Ahn et al., 2001; Heider et al., 

2002; Arend, Lenarcic and Moorman, 2018). SUMOylation is the covalent addition of protein 

Small Ubiquitin-like Modifier (SUMO) to the lysine side chain of a substrate (Gareau and 

Lima, 2010).  SUMOylation occurs through an enzymatic cascade involving sequential action 

of an E1 activating enzyme, an E2 conjugating enzyme (UBC9), and a few E3 ligases. 
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SUMOylation of IE2 occurs at the two lysine residues K175 and K180 (Hofmann, Flo and 

Stamminger, 2000; Ahn et al., 2001). The Cytomegalovirus with SUMOylation-deficient IE2 

has severe growth defects due to impaired initiation of gene expression, replication 

compartment assembly and MIEP autoregulation (Berndt et al., 2009; Reuter et al., 2018). 

Proteins with a SUMO Interacting Motif (SIM) can identify SUMO or SUMOylated proteins 

via the noncovalent SIM/SUMO interaction (Song et al., 2004). IE2 also contains a SIM at its 

N-terminus, which is essential for its localization to nuclear puncta and transactivation 

activity (Kim et al., 2010). The SIM recruits SUMOylated transcription factors (e.g., TAF12) 

to facilitate transactivation. Moreover, deletion of the SIM decreases IE2 SUMOylation 

(Berndt et al., 2009; Kim et al., 2010). Despite the functional importance of IE2/SUMO 

noncovalent interaction, its molecular details are unknown. Additionally, the molecular 

mechanism underlying the role of SIM in SUMOylation of IE2 is unclear.  

IE2 is phosphorylated by several host kinases (Barrasa, Harel and Alwine, 2005). 

Phosphorylation by ERK2 (a MAP kinase) inhibits its transactivation activity without affecting 

auto-repression of MIEP (Harel and Alwine, 1998; Heider et al., 2002). IE2 is also 

phosphorylated by the kinase Casein Kinase 2 (CK2), which is intriguing because CK2 is a 

part of the viral tegument (Varnum et al., 2004). During infection, the uncoating of HCMV 

tegument releases the tegument CK2 in the host cell to activate MIEP expression (Nogalski 

et al., 2007).  CK2 phosphorylates IE2 at the serine-rich region (aa: 258-275) and in the so-

called fragment 5B region (aa:180-252, Figure 1A) (Barrasa, Harel and Alwine, 2005). 

Phosphorylation of the serine-rich region depletes the transactivation activity of IE2 (Barrasa, 

Harel and Alwine, 2005). However, the sites of phosphorylation within fragment 5B and the 

effect of this phosphorylation on the activity of IE2 is unknown.   

We carried out a study of the predicted SIMs in IE2 to uncover a new SIM at the C-

terminus of IE2 by NMR. NMR also confirmed the previously known N-terminal SIM (IE2-

SIM1). The titrations indicate that IE2-SIMs bind to both SUMO1and SUMO2 with similar 

affinity. Adjacent to the N-terminal SIM (IE2-SIM1) are the two SUMOylation sites K175 and 
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K180. We developed a fluorescence-based real-time SUMOylation assay, which confirmed 

that the IE2-SIM1 enhances SUMOylation of IE2. However, the assay also indicated paralog 

specificity in SUMOylation of IE2. Kinetic analysis revealed that IE2 functions as a SUMO 

cis-E3, where the IE2-SIM1 reduces Km between UBC9~SUMO and the IE2 SUMOylation 

sites to increase the rate of IE2 SUMOylation.  

We further carried out a comprehensive study of IE2 phosphorylation in cellular 

conditions. We report that two putative CK2 phosphorylation sites Ser203 and Ser205 in 

fragment 5B are indeed phosphorylated in cells, as well as in-vitro by CK2. Ser203 and 

Ser205 are adjacent to the IE2-SIM1. Phosphorylation of Ser203 and Ser205 increases the 

SUMO/IE2-SIM1 affinity by 8-fold. Structures of the complex between SUMO1/2 and 

phosphorylated IE2-SIM1 attribute the increased affinity to additional salt-bridges formed 

between the positively charged residues in SUMO1/2 and the negatively charged phosphate 

moiety in the phosphoserines. The drastic increase in SIM/SUMO affinity also enhances the 

SUMO cis-E3 activity, transactivation activity and auto-repression activity in IE2. Together, 

the HCMV protein IE2 uniquely exploits a cross-talk of two post-translational modifications; 

phosphorylation and SUMOylation, to regulate transcription of the viral genes and ensure a 

productive infection.   

 

Results 

The N-terminal and C-terminal SIMs in IE2 interact with SUMO1 and SUMO2 

Bioinformatics analysis using JASSA (Beauclair and Bridier-nahmias, 2015) predicted three 

SIMs in IE2, SIM1: 199-202, SIM2: 410-413 and SIM3: 501-504 as shown in Figure 1A. 

Among these, SIM1 was previously identified as a bonafide SIM by pull-down assays in cells 

(Berndt et al., 2009). However, the rest of the SIMs were not investigated before. The affinity 

of the SIM/SUMO interaction is typically weak, which is difficult to capture by pull-down 

experiments. Alternately, NMR spectroscopy can detect interaction over a broad range of 
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affinities including weak interactions (Vaynberg and Qin, 2006). We designed peptides 

corresponding to the putative SIMs and tested the binding of the SIMs to SUMO1 by NMR 

(Table 1). Perturbations due to the altered chemical environment upon ligand binding are 

reflected in a shift of the backbone amide resonances in the 15N-edited HSQC spectra. The 

IE2-SIM1 peptide was titrated into a sample of 15N-isotope labeled SUMO1, and a series of 

15N-edited HSQC experiments monitored its effect on 15N-SUMO1. An overlay of the HSQCs 

is given in Figure 1B, and two expanded areas of the HSQC are plotted in figure 1C. A 

subset of SUMO1 peaks shifted consistently with increasing concentrations of IE2-SIM1. 

The chemical shift perturbations (CSP) against SUMO1 residues given in Figure 1D, 

indicated that the maximum perturbations occurred in the residues 35 to 55, which includes 

the -strand , -helix  and the loop between themFigure 1EThe interface 

corresponds to the canonical interface observed in other SUMO/SIM complexes (Song et al., 

2004). The same titration experiments were repeated for IE2-SIM2 and IE2-SIM3 domains in 

separate experiments. IE2-SIM3 but not IE2-SIM2, bound to SUMO1 (Figure S1A). The 

pattern of CSP in SUMO1 upon binding IE2-SIM3 is similar to IE2-SIM1, indicating that both 

the SIMs bind at the same interface.  

We repeated the titration experiments with IE2-SIMs against 15N-labeled SUMO2 and 

monitored the effects using 15N-edited HSQC spectra of 15N-SUMO2. Similar to SUMO1, a 

significant subset of SUMO2 peaks shifted upon titration with IE2-SIM1 as shown in Figure 

S1B and S1C. The most perturbed region is between  and  of SUMO2, which is the 

known SUMO2/SIM interface (Figure 1F, 1G). Additionally, IE2-SIM3 but not IE2-SIM2, 

interacted with SUMO2 (Figure S1D).  

The CSPs observed during titration were fit against peptide: protein concentration to 

yield the dissociation constant (Kd) of the complex (Figure S2, S3, Table 1). The Kd of N-

terminal IE2-SIM1 was 6-fold lower than the C-terminal IE2-SIM3, indicating that the N-

terminal SIM has a higher affinity for SUMO than the C-terminal SIM. Both IE2-SIM1 and 

IE2-SIM3 do not have paralog specificity and have similar affinities for SUMO1 and SUMO2. 
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Taken together, while IE2-SIM1 and IE2-SIM3 interacted with both SUMO1 and SUMO2, the 

interaction between IE2-SIM1 and SUMO1/2 was stronger. Hence, the IE2-SIM1 was 

studied further. 

 

Casein Kinase II phosphorylates two serines adjacent to IE2-SIM1 

IE2 phosphorylation modulates its transactivation activity (Barrasa, Harel and Alwine, 2005). 

Previous phosphorylation studies have focused on specific sites or domains in IE2 (Harel 

and Alwine, 1998; Heider et al., 2002; Barrasa, Harel and Alwine, 2005). A comprehensive 

report of phosphorylation sites in the cellular condition is missing. Thus, we studied the sites 

of IE2 phosphorylation in HEK293T cells taking a proteomics approach, (Figure 2A, Figure 

S4). Interestingly, in addition to various newly identified phosphorylation sites, two serines 

adjacent to IE2-SIM1, Ser203, and Ser205, were phosphorylated in cells (Figure 2A).  

Ser203 and Ser205 are putative Casein Kinase II (CK2) target phosphorylation sites. An in-

vitro phosphorylation assay of IE2-SIM1 by CK2 was carried out to confirm if these sites are 

indeed modified by CK2 (Figure 2B). IE2-SIM1 peptide does not include any serines apart 

from Ser203 and Ser205. It consists of a threonine, which is not the putative CK2 

phosphorylation site. Phosphorylation of IE1-SIM1 was carried out using -ATP, resolved on 

SDS-PAGE and detected by autoradiography. As shown in Figure 2C, phosphorylated IE2-

SIM1 was observed in the reaction with active CK2, while the heat inactivated CK2 could not 

phosphorylate IE1-SIM1. IE2-ppSIM1 was further analyzed by MALDI-TOF to find out if it 

was phosphorylated at a single serine or both the serines (Figure 2D). While mass (m/z) for 

IE2-SIM1 was 2098 Da, the same for phosphorylated IE2-SIM1 was 2258 Da. The difference 

of 160Da corresponds to the addition of two phosphate groups, indicating that indeed CK2 

phosphorylates IE2-SIM1 at Ser203 and Ser205. 

 

Phosphorylation increases the affinity between IE2-SIM1 and SUMO1/2 
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Phosphorylation of SIMs may regulate the SUMO/SIM interaction (Stehmeier and Muller, 

2009). NMR titrations were repeated using a synthetic peptide of IE2-SIM1 where the two 

serines Ser203 and Ser205 are phosphorylated (IE2-ppSIM1, Table 1), to examine the effect 

of Ser203,205 phosphorylation on its interaction with SUMO1/2. The pattern of CSPs 

observed in SUMO1 upon titration with IE2-ppSIM1 are similar to that observed during 

interaction with unphosphorylated IE2-SIM1 (Figure S5A), indicating that the interface of 

binding is identical. However, several peaks went into an intermediate exchange during the 

titration, suggesting that the affinity between SUMO1 and the IE2-SIM1 has increased upon 

phosphorylation. Indeed, the fitting of NMR chemical shifts against ligand: protein 

concentration yielded the dissociation constant to be 7.1 (±0.4) M, which is 8-fold lower 

than unphosphorylated IE2-SIM1 (Figure S5B, Table 1). When IE2-ppSIM1 was titrated to 

SUMO2, the interface of interaction was similar to IE2-SIM1 (Figure S6A). The Kd of 

interaction with SUMO2 was 7.2 (±1.6) M, confirming a significantly tighter binding upon 

phosphorylation (Figure S6B). In summary, phosphorylation increased the interaction 

between IE2-SIM1 and SUMO1/2. 

  It was important to determine the structure of the complex between SUMO and IE2-

ppSIM1 to understand the molecular mechanism of phosphorylation induced tighter 

SUMO/IE2-SIM1 interaction. A 13C, 15N half-filtered NOESY-HSQC was acquired on a 

sample of 13C, 15N-SUMO1/IE2-ppSIM1 at the stoichiometric ratio of 1:1.5 (SUMO1:IE2-

ppSIM1) (Figure 3A). 1H-1H TOCSY and 1H-1H NOESY experiments on free IE2-ppSIM1 

provided the proton chemical shifts of IE2-ppSIM1. The chemical shifts of SUMO1 in the 

complex were assigned by comparing the 15N-1H edited HSQC and 13C-1H edited HSQC of 

13C, 15N-SUMO1/IE2-ppSIM1 complex with the assignments of free SUMO1.  Using the 

intermolecular NOEs as distance restraints; the structure of the SUMO1/IE2-ppSIM1 

complex was solved by HADDOCK (Dominguez, Boelens and Bonvin, 2003) (Table 4 

provides the structural statistics). Figure S7A shows the twenty lowest energy structures, 

which superposed well with an rmsd of 0.5Å. In the structure, the hydrophobic residues I200 
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and I202 packed into the hydrophobic patch between the β2 strand and α1 helix (Figure 3B). 

Two hydrogen bonds between D204 in IE2 and K46 in SUMO1 also stabilized the interface. 

The two salt-bridges between the sidechain phosphate oxygen atoms of the phosphorylated 

serines pSer203/pSer205 in IE2-ppSIM1 and K39 of the β2-strandin SUMO1 is responsible 

for the higher affinity between IE2-ppSIM1 and SUMO1 (Figure 3C). 

The structure of the SUMO2/IE2-ppSIM1 complex was studied to determine if a 

similar mechanism operates between phosphorylated IE2-SIM1 and SUMO2. We prepared a 

sample of 13C, 15N-labeled SUMO2/IE2-ppSIM1 at the stoichiometric ratio of 1:1.5 

(SUMO2:IE2-ppSIM1). Half-filtered 13C, 15N NOESY-HSQC of this sample detected several 

intermolecular NOES between SUMO2 and IE2-ppSIM1 (Figure S7B), which were used to 

determine the SUMO2/IE2-ppSIM1 structure. The twenty lowest energy structures 

superimposed with a low rmsd of 0.4Å (Figure S7C). Similar to SUMO1, the IE1-I200 and 

I202 sidechain are buried in the hydrophobic patch between β2 and α1 of SUMO2 (Figure 

3D). The oxygen atom of phosphate groups of pSer203 and pSer205 form salt-bridges with 

K33, K35 in β2 and H17 in 1 (Figure 3E). The additional salt-bridges in the between the 

phosphoserines in IE2-ppSIM1 and SUMO, explain the higher affinity of the IE2/SUMO non-

covalent interaction upon phosphorylation of IE2. 

 

IE2-SIM1 enhanced SUMOylation of IE2  

SIMs often regulate the SUMOylation of a protein in-cis (Kolesar et al., 2012). The identified 

SUMOylation sites in IE2 are K175 and K180, which are adjacent to IE2-SIM1. In-vitro 

SUMOylation assays were carried out to assess the effect of IE2-SIM1 on the SUMOylation 

of IE2. A FITC was attached to the N-terminal region of IE2 (aa: 172-210), which we termed 

as IE2 N-Terminal Domain (IE2-NTD, Figure 4A). IE2-NTD includes both the SUMOylation 

sites K175 and K180 as well as the IE2-SIM1. Sumoylation reactions were carried out using 

IE2-NTD as the substrate. Robust and rapid poly-SUMOylation of IE2-NTD with SUMO1 
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could be observed in the reaction (Figure 4B).  The reaction was repeated with a SIM 

mutated IE2-NTD (IE2-NTDm), where the central hydrophobic residues CIVI were mutated 

to AAAA. IE2-NTDm showed a significantly reduced rate of SUMOylation (Figure 4C). The 

efficiency of SUMOylation was estimated by the decay rate of unmodified or apo IE2-NTD 

signal against time. Faster decay reflected a higher rate of SUMOylation. Apo IE2-NTD 

signal decayed rapidly compared to IE2-NTDm, which indicated efficient SUMOylation of 

IE2-NTD due to the presence of IE2-SIM1 (Table 2, Figure 4D). When SUMOylation of IE2-

NTD was repeated with SUMO2, the rate of SUMOylation was again higher in IE2-NTD than 

IE2-NTDm (Figure 4E, Figure S8A, S8B and Table 2), indicating that the IE2-SIM1 promotes 

IE2 SUMOylation.  

The poly-SUMOylation of IE2-NTD would increase its size and anisotropy. Hence, 

the SUMOylation of the substrate IE2-NTD can be monitored in real time by measuring the 

change in fluorescence anisotropy of IE2-NTD (Figure 4F). As a control, a reaction without 

ATP was carried out, where the absence of SUMOylation did not change the anisotropy 

(Figure S8C). In the SUMOylation reaction using SUMO1 and IE2-NTD/IE2-NTDm as the 

substrate, the rate of increase in fluorescence anisotropy of was higher for IE2-NTD than 

IE2-NTDm, confirming that the IE2-SIM1 increased SUMOylation of IE2-NTD. When the 

reaction was repeated with SUMO2, the rate of SUMOylation was higher than SUMO1  

(Table 2). This could be because SUMO2 has a consensus SUMOylation motif at K11, 

which enhances the rate of poly-SUMOylation. Nevertheless, IE2-SIM1 increased the rate of 

SUMOylation (Figure 4G and Table 2). Together, the IE2-SIM1 enhanced the SUMOylation 

of IE2 significantly.       

 

Mechanism of SIM enhanced IE2 SUMOylation 

In principle, IE2-SIM1 could increase the SUMOylation of IE2 either by reducing Km 

(increasing affinity) between the substrate IE2 and the enzyme UBC9~SUMO conjugate or 
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by increasing the activity (Kcat) of the enzyme UBC9~SUMO. To determine the exact effect 

of IE2-SIM1, we carried out a kinetic study of the IE2 SUMOylation. IE2-NTD is poly-

SUMOylated rapidly, which made quantification of the SUMOylated species difficult. We 

used the mutant of SUMO2 (K11R-SUMO2) that is deficient in poly-SUMOylation, which 

allowed us to effectively monitor the mono-SUMOylated IE2 (Figure 5A, Figure S9).  Kinetic 

analysis of IE2 SUMOylation revealed that IE2-SIM1 reduced the Km of IE2 by 2.5 fold 

(Figure 5B), but does not alter the Vmax (Kcat) significantly (Figure 5C). Thereby, IE2 SIM1 

increases specificity constant (Kcat/Km) by decreasing Km of the SUMOylation reaction. 

(Table 3). The presence of IE2-SIM1 significantly increased the SUMOylation of IE2 in 

cellular conditions (Figure 5D, 5E). 

Three mechanisms of IE2-SIM1 enhanced SUMOylation are possible (Figure 6A-C). 

The binding of IE2-SIM1 to the SUMO conjugated at the active site of Ubc9 can increase the 

rate of SUMOylation (Figure 6A). Alternately, SUMO has a non-covalent interaction with 

UBC9 at its “backside binding” area, and this interaction could also enhance IE2 

SUMOylation (Figure 6B). Moreover, UBC9 is SUMOylated covalently at K14, which could 

also impact IE2-SUMOylation (Figure 6C). NMR titration experiments studied the hypothesis 

in Figure 6A. 15N-labeled wt-UBC9 was titrated with IE2-NTD, and the observed CSPs in 

UBC9 are plotted in Figure 6D. The IE2-NTD was truncated from the N-terminal end such 

that K180 was the sole acceptor lysine present in IE2-NTD. The high CSPs at the α’-α2 and 

α2-α3 loops indicated the binding site of acceptor K180 and UBC9. The other significant 

CSPs were observed in the α1-1 region. The pattern of CSPs was consistent with NMR 

titrations of UBC9 with SUMO-acceptor sites of p53 and c-Jun (Lin et al., 2014). Then, 

C93K-UBC9~15N-SUMO1 conjugates were purified and titrated with IE2-NTD. The pattern of 

CSPs on SUMO1 matched with the CSPs observed in isolated SUMO1/IE2-SIM1 complex 

(Figure 6E), indicating that the IE2-SIM1 within the IE2-NTD binds to the same interface on 

the SUMO1 conjugated to UBC9. IE2-NTD does not bind to the UBC9 active site when the 

active site is mutated to lysine (C93K-UBC9), and hence the binding to the C93K-
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UBC9~15N-SUMO1 conjugate could not be studied (Figure S10A). Nevertheless, combining 

the NMR data of IE2-SIM1/SUMO interaction, IE2-NTD/UBC9~SUMO1 interaction and the 

UBC9~SUMO1 structure (PDB: 1Z5S), a model of UBC9~SUMO1/IE2-NTD complex was 

determined by Xplor-NIH (Figure 6F and Figure S11A). The structure shows how the IE2-

SIM1 binds to SUMO1, while the acceptor lysine K180 attacks the active site (Figure 6I). 

Interestingly, the essential negatively charged residue of the ψKxD/E motif, which is E182 in 

this context, forms a salt-bridge with the positively charged K101 in the 4α2 loop of UBC9. 

K101 is essential for the recognition of substrates like p53, PML and IB (Tatham, Chen and 

Hay, 2003). The molecular details provided by the structural model explain the underlying 

mechanism of substrate recognition by K101 in UBC9.  

A structural model corresponding to Figure 6B was build using the NMR CSP data, 

the structure of UBC9~SUMO1 and the structure of UBC9/SUMO (PDB), where SUMO 

binds to the ‘backside’ beta-sheet of UBC9 (Figure 6G, S11B and S12). Again, the E178 

forms a salt-bridge with K101.  The structural model of Figure 6C was determined using 

covalently linked SUMO1-UBC9 structure (PDB ID: 2VRR, Figure 6H, S11C, and S12). In 

this case, the E178 prefers to form a salt-bridge with K74, which is present on the beta-

strand 4. K74 is vital to identify substrates like RANGAP1 (Bernier-Villamor et al., 2002). 

K175 is further away from the IE2-SIM1 than K180 and had more flexibility to access the 

active site of UBC9 when the IE2-SIM1 binds to either conjugated, covalently linked or non-

covalently linked SUMO. Overall, structural modeling suggested that all the three 

possibilities of SIM enhanced SUMOylation are possible in IE2-NTD.   

SUMOylation assays were performed with appropriate substitutions of UBC9 to 

delineate the effects of each mechanism. The non-covalent interaction between UBC9 and 

SUMO involves Histidine 20 in UBC9, and the H20D mutation abolishes the interaction 

(Knipscheer et al., 2007). Alternately, The K14R UBC9 abolishes the covalent SUMO 

conjugation. The IE2-NTD SUMOylation was studied by initiating a SUMOylation reaction 

using E1, SUMO1, and wt-UBC9 or H20D-UBC9 or K14R-UBC9. Gel-shift assays or real-
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time fluorescence anisotropy assay monitored the SUMOylation of IE2-NTD. When the 

covalent or non-covalent mediated interactions between UBC9 and SUMO were abolished 

individually, the rate of IE2-NTD SUMOylation did not change significantly (Figure 6H, 6I).  A 

possible cause of the result is that the mechanisms involving the covalent or non-covalent 

UBC9/SUMO interaction do not contribute much to IE2 SUMOylation. However, the three 

mechanisms could be redundant, such that when one is interrupted, the others compensate.  

 

Phosphorylation of IE2-SIM1 further enhances IE2 SUMOylation 

The SUMOylation assays were repeated with IE2-NTD and phosphorylated IE2-NTD (IE2-

ppNTD) to find out whether the phosphorylation of IE2-SIM1 enhances the SUMOylation 

IE2. FITC-tagged IE2-NTD was incubated with CK2 for phosphorylation. The CK2 was 

subsequently inactivated, and the IE2-NTD was checked by Mass-spec to ensure that the 

serines Ser203 and Ser205 were phosphorylated. The phosphorylated IE2-NTD (IE2-

ppNTD) was later used as a substrate in the SUMOylation assay (Figure 7A). The rate of 

SUMOylation was higher in IE2-ppNTD than IE2-NTD (Figure 7B). At 60min, 50% of total 

IE2-ppNTD was SUMOylated, while IE2-NTD was only SUMOylated up to 30% (Figure 7C).   

The altered rate of SUMOylation upon SIM phosphorylation was also monitored in 

real-time by the fluorescence anisotropy assay using SUMO1 and IE2-NTD/IE2-ppNTD as 

the substrate (Figure 7D). The rate of increase in anisotropy was measured to be 1.2 x 10-4 

/min for wt IE2-NTD, which almost doubled to 2.1 x 10-4 /min for IE2-ppNTD, indicating that 

phosphorylation of IE2-SIM1 enhances the SUMOylation of IE2-NTD.  

SUMOylation of IE2 was measured in HEK293T cells to assess if the effect of 

phosphorylation on SUMOylation of IE2 is persistent in full-length IE2 in cellular conditions. 

HA-tagged IE2 or a double phospho-inactive mutant IE2pm: Ser203A/Ser205A was co-

transfected with SUMO1, lysed 24/48 hours post-transfection and probed with HA antibody 

(Figure 7E, F). The amount of IE2pm~SUMO1 was significantly lower than IE2~SUMO1, 
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indicating that the phosphorylation of serines near SIM1 enhances SUMOylation of IE2. The 

enzyme kinetics experiments were repeated with IE2-NTD and IE2-ppNTD. The experiments 

were carried out at 16oC to slow down the reaction and effectively measure the kinetics 

(Figure 7G, Figure S13). The kinetic analysis given in Table 3, indicates that the 

phosphorylation reduces the Km of the reaction by 3.5-fold but does not change the Vmax 

significantly (Figure 7H, 7I). Together, phosphorylation of two serines near IE2-SIM1 by CK2 

increases the SUMOylation of IE2.    

 

Phosphorylation of IE2-SIM1 increases transactivation by IE2  

IE2 functions as a transactivator for various viral promotors and auto-repressor for its 

promoter. IE2 SUMOylation and IE2 SIM1 are essential for its function. Ser203, Ser205 

phosphorylation enhanced both the IE2-SIM1/SUMO interaction and IE2-SUMOylation. The 

role of phosphorylation on the IE2 mediated transactivation was examined by a luciferase 

assay, where the luciferase gene is expressed under IE2 responsive promoter (pUL54-Luc). 

Consequently, the level of luciferase expression was proportional to the IE2 transactivation 

activity. A phosphorylation inactive S203A, S205A mutant (pmIE2) and a SIM mutant (CIVI 

to AAAA, smIE2) of IE2 were designed. PUL54-Luc was transfected into HEK293T along 

with HA-IE2 (wt or mutants) and SUMO1 (Figure S14).  Transactivation activity of pmIE2 is 

reduced by ~25% in comparison to wt-IE2, indicating that phosphorylation of Ser203 and 

Ser205 is vital for transactivation (Figure 8A). Interestingly, the activity of pmIE2 is 

comparable to smIE2, indicating that SIM phosphorylation is necessary for the SUMO-

dependent transactivation activity of IE2.  

The effect of phosphorylation was also checked with co-transfection of only IE2 and 

pUL54-Luc, but not SUMO. Interestingly, the activity of wt-IE2 with endogenous SUMO 

reduced by 50% in comparison to overexpressed SUMO (Figure 8B). IE2 SUMOylation 

increases upon overexpression of SUMO (Figure S15). The increase of both SUMOylation 
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and transactivation activity of IE2 upon overexpression of SUMO underscores the 

importance of IE2 SUMOylation for its transactivation activity. Alternately, increased 

SUMOylation of IE2 associated transcription factors may also increase the IE2 mediated 

transactivation (Figure 8D). Nevertheless, the activity of pmIE2 dropped by 40% in 

comparison to wt-IE2, emphasizing the significance of SIM phosphorylation when the 

amount of SUMOylated transcription factors or SUMO is not abundant (Figure 8B). 

Additionally, the importance of Ser203, 205 phosphorylation on the auto-repression activity 

of IE2 was studied using similar luciferase assays where Luc was expressed under MIEP. 

Expression of luciferase decreases on over-expression of IE2 indicating MIEP repression by 

IE2. Interestingly, MIEP repression is relieved in pmIE2, indicating the importance of SIM 

phosphorylation for the auto-repression activity (Figure 8C). IE2 SUMOylation is important 

for MIEP repression and SIM phosphorylation enhances IE2 SUMOylation. Our data suggest 

that SIM phosphorylation augments SUMOylation dependent activity of IE2 as an auto-

repressor.   

 

Discussion  

SUMOylation is an essential component of cell signaling pathways, and it is unsurprising that 

the intracellular viruses have co-evolved to exploit the host cell SUMOylation system 

(Wimmer, Schreiner and Dobner, 2011; Everett, Boutell and Hale, 2013). However, very little 

is known about the molecular mechanism of how viruses co-opt the machinery. For example, 

it is known that IE2 binds SUMO non-covalently and this interaction is indispensable for 

SUMOylation of IE2 (Berndt et al., 2009). However, the molecular details of IE2/SUMO non-

covalent interaction and its role in the SUMOylation of IE2 are unknown. In this work, NMR 

titrations studies determined that apart from the known N-terminal SIM, IE2 includes another 

C-terminal SIM. Unlike some other SIMs that have paralog specificity, IE2-SIMs binds 

equally well to both SUMO1 and SUMO2. The C-terminal SIM is located in the DNA-binding 
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domain of IE2, and the non-covalent interaction with SUMO may affect its binding to the cis-

regulatory elements in MIEP. The N-terminal SIM is located near the SUMOylation sites and 

is indispensable for the SUMOylation of IE2. The binding of N-terminal SIM to SUMO is 8-

fold tighter than the C-terminal SIM.  

The structural studies showed IE2-SIM1 binds to the 2α1 groove of SUMO and 

forms a parallel beta-strand with 2. The four central hydrophobic residues in IE2-SIM 

199CIVI202 pack against the hydrophobic interface between 2 and α1. SUMOylation 

monitored by fluorescence spectroscopy revealed that the IE2-SIM1/SUMO interaction 

enhances the rate of SUMOylation. The effect is more for SUMO1 than SUMO2, probably 

because the inherent SUMOylation site in SUMO2 makes the reaction more processive. 

Kinetic studies indicated that IE2-SIM1 increases the affinity between the substrate (IE2) and 

enzyme complex (UBC9~SUMO), but does not change Kcat of the SUMOylation reaction. 

Typically, E3s decrease the binding constants of E2~Ubl for substrate (Km) and increase the 

turnover rate of E2 (Kcat) to increase the specificity constant (Kcat/Km) of the reaction. In 

SUMOylation, thioester conjugation of SUMO to UBC9 reduces the flexibility of residues 

Cys93, Asp127, and Pro128, which help the acceptor lysine of the substrate to attack the 

active site (Tozluoǧlu et al., 2010). Consequently, UBC9~SUMO active site is constitutively 

primed for SUMOylation, and reducing the Km is sufficient to induce catalysis. IE2 can be 

considered as a SUMO cis-E3, where the IE2-SIM1 binds to SUMO in the UBC9~SUMO 

enzyme complex to bring the complex in the vicinity of SUMOylation sites K175/K180 and 

increase the rate of SUMOylation. 

The thioester conjugated SUMO, covalent bound SUMO, and non-covalent bound 

SUMO can potentially interact with IE2-SIM1 to enhance the rate of SUMOylation. Generally, 

the mechanism used by the enzyme/substrate complex depends on the substrate. For 

example, although the presence of SIM enhanced SUMOylation of SP100, Daxx, PML and 

TDG, covalent binding of SUMO to UBC9 only enhanced SUMOylation of SP100 and Daxx, 

but not of PML and TDG (Knipscheer et al., 2008). In the case of IE2, modeling studies 
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indicated that sterically all three mechanisms are possible. However, disruption of either 

covalent or non-covalent SUMO interaction had little effect on the rate of SUMOylation. The 

thioester conjugated UBC~SUMO/IE2-NTD complex could be energetically favorable and 

the only mechanism at play here. Alternately, all three mechanisms could be redundant for 

IE2.  

In vitro, CK2 phosphorylates IE2 at the Serine-rich segment and the region fragment 

5B (aa: 180-252) (Barrasa, Harel and Alwine, 2005). However, the exact sites of 

phosphorylation in fragment 5B are unknown. The putative CK2 phosphorylation sites in 

fragment 5B are Ser203 and Ser205. We report that in cellular conditions, Ser203 and 

Ser205 are indeed phosphorylated in IE2. The same residues are also phosphorylated by 

CK2 in-vitro. These serines are immediately next to IE2-SIM1 and influence both the 

covalent and non-covalent binding between SUMO and IE2. The affinity of IE2-SIM1/SUMO 

non-covalent interaction increases significantly by 8-fold upon phosphorylation of the 

adjacent serines. Structures of SUMO/IE2-ppSIM1 complexes show that pSer203 and 

pSer205 form additional salt bridges with positively charged residues in SUMO to tighten the 

interaction between SIM and SUMO.  The stronger non-covalent interaction also impacts the 

covalent interaction between SUMO and IE2. In-vitro SUMOylation of IE2 increases 

significantly upon phosphorylation of Ser203 and Ser205. Kinetic analysis revealed that the 

phosphorylated SIM reduces the Km between UBC9~SUMO and IE2 to increase the 

specificity of the reaction by three-fold. Moreover, in cellular conditions, SUMOylation of IE2 

was severely affected in the phospho-deficient variant. Hence, phosphorylation by CK2 

increases both non-covalent and covalent interaction between IE2 and SUMO.  

The covalent interaction between IE2 and SUMO is vital for IE2’s auto-repression 

activity (Reuter et al., 2018). SUMOylated IE2 can recruit chromatin modifiers, e.g., HDAC 

and HMTs, to repress its promoter.  Phosphorylation by CK2 enhances IE2 SUMOylation 

and consequently, facilitates auto-repression. The non-covalent interaction with SUMO is 

essential to recruit SUMOylated transcription factors (e.g., TAF12) during transactivation 
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(Kim et al., 2010). The functional significance of CK2-mediated phosphorylation of IE2-SIM1 

is highlighted by the fact that the transactivation activity of phospho-deficient mutant pmIE2 

decreased by 25% in comparison to wt-IE2. While phosphorylation of the Serine-rich region 

depletes the transactivation activity of IE2, phosphorylation of IE2-SIM1 in fragment 5B 

enhances the transactivation activity, indicating that PTMs regulate the complex functional 

interplay of IE2 domains.  

Intriguingly, the activity of phospho-deficient pmIE2 is comparable to SIM mutated 

smIE2, suggesting that the effect of phosphorylation is equivalent to the presence of SIM in 

cellular conditions. Since the IE2-SIM1/SUMO interaction is weak, the tighter binding upon 

phosphorylation may be critical to ‘switch on’ the interaction with SUMOylated transcription 

factors and enable efficient transactivation. Global SUMOylation, including the SUMOylation 

of transcription factors, increase during HCMV infection (Scherer et al., 2016). The surge in 

SUMOylated transcription factors and the phosphorylation of viral transactivator IE2 by 

tegument CK2 may work in tandem to regulate the transcription of the viral genome. 

A comparison of Km values obtained from the kinetic analysis indicated that the 

presence of SIM reduced Km by 2.5-fold, and phosphorylation reduced the Km by another 

3.5-fold. Together, the presence of SIM and its phosphorylation decreased the Km between 

the substrate and the enzyme by 8-fold, which drastically enhances the rate of the 

SUMOylation. Herein, we have uncovered that the HCMV transactivator protein IE2 hijacks a 

cross talk between two host PTMs; SUMOylation and phosphorylation. The intriguing 

mechanism of phosphorylation-enhanced SUMO interaction improves the transactivation 

and auto-repression activity of the viral protein. A better understanding of the molecular 

mechanisms underlying viral hijack of the cross-talk between multiple PTMs might provide 

novel opportunities for intervention. 
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Material and Methods: 

Plasmid and Peptides: HCMV IE2 peptides were synthesized from Lifetein. pET28- 

SUMO1(C-His), pET28-SUMO2(C-His), pET11-AOS1/UBA2 and pET28-ΔN364 SENP2 

were gifted by Dr. Christopher Lima, Sloan Kettering Institute, New York. pET28-UBC9 was 

obtained from Addgene (25213). This construct was used as a template for site-directed 

mutagenesis to obtain H20D UBC9, K14R UBC9, and C93K UBC9. SUMO1-pQE80L and 

SUMO2- pET15b were obtained from TIFR, Mumbai. Mammalian expression vectors, 

pDEST-SG5 HA- IE2, pUL54-Luc, and pSG5 Flag-SUMO1, were kind gifts from Dr. Jin-Hyun 

Ahn, Sungkyunkwan University School of Medicine. The pDEST-SG5 HA-IE2 was used as a 

template for site-directed mutagenesis to generate CIVI199/200/201/202AAAA HA-IE2 and 

S 203/205 A HA-IE2. 

Protein purification: All the proteins were expressed and purified from BL21 (DE3) cells in 

15NH4Cl-M9 medium for labeled proteins and in LB for unlabelled proteins. Labeled proteins 

were purified in phosphate buffer for NMR, while in Tris buffer for in-vitro assays. 15N labeled 

SUMO1/2 were cultured at 37 C̊ to 0.8 OD600 and induced with 0.5 mM IPTG for 4-5 hour. 

Cells were lysed by sonication in lysis buffer containing 50mM Na2HPO4 pH 8.0, 20 mM 

imidazole and 300 mM NaCl. Lysate was clarified by centrifugation and supernatant was 

incubated with pre-equilibrated Ni-NTA beads for 1 hour. After incubation, flow through was 

collected and beads were washed with at least 5 column volume lysis buffer. Protein was 

eluted by increasing concentration of imidazole in lysis buffer. Fractions containing 
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SUMO1/2 were concentrated and were further processed through a gel-filtration column 

(Superdex 75 16/600) in PBS buffer.  

For in-vitro assays, E1 (UBA2/AOS1) and E2 (UBC9) were purified with Ni NTA 

affinity purification followed by Gel filtration as discussed above, but in Tris buffer. 

Lysis/wash buffer composition was 50 mM Tris pH 8, 350 mM NaCl, 1 mM PMSF, 1 mM 

beta-mercaptoethanol, 20 mM imidazole. Elution buffer contained 25 mM Tris pH8, 150 mM 

NaCl, 1 mM beta-mercaptoethanol, 250 mM imidazole and gel filtration buffer contained 20 

mM Tris pH8, 50 mM NaCl, 1 mM beta-mercaptoethanol.  

For SUMOylation assays, the mature form of SUMO1 and SUMO2 were obtained by 

processing CHis-SUMO1 or CHis-SUMO2 with SENP2. After Ni NTA purification, fractions 

containing CHis-SUMO1/2 were pooled up and incubated with purified His- ΔN 364 SENP2 

(1:1000 molar ratio) at room temperature till complete digestion of C terminal extension. 

SENP2 and unprocessed SUMO were removed by passing the reaction mixture through Ni 

NTA beads, and flow-through containing mature SUMO was collected, concentrated and 

further purified with Superdex 75. ΔN 364 SENP2-pET 28b was expressed in BL21 (DE3) 

and purified through Ni NTA affinity purification as mentioned above. The buffer used for 

SENP2 purification is similar to the buffer used for E1 purification. After Ni-NTA, partially 

purified SENP2 was concentrated and stored.  

In-vitro biochemical assays: For SUMOylation of IE2-NTD or IE2-ppNTD or IE2-NTDm, 5 

μM peptide and 5 μM SUMO1/2 were incubated with 1 μM E1 and 2.5 μM E2. The reaction 

was started by adding ATP. SUMOylation buffer contains 20 mM HEPES pH 7.5, 50 mM 

NaCl, 5 mM MgCl2, 0.1% Tween 20. The reaction was analyzed either on 12% SDS PAGE 

or by a change in anisotropy. Gels were imaged for FITC fluorophore (λex- 495 nm, λem - 519 

nm). While anisotropy was measured using MOS450 fluorimeter (λex- 470 nm, λem- 520-

560nm). 
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IE2-ppNTD was obtained by phosphorylating IE2-NTD with purified CK2. Human 

CK2 was obtained from NEB (P6010S). IE2-NTD was phosphorylated in buffer provided by 

the manufacturer which contains 50mM Tris pH 7.5, 10mM MgCl2, 0.1mM EDTA, 2mM DTT 

and 0.1% Brij35. In 50 μl reaction, 50 unit of CK2 was sufficient to phosphorylate 50 μM IE2 

peptide in 2 hours at 30 C̊. CK2 was heat inactivated at 65 C̊ for 15 min after IE2 

phosphorylation. IE2-NTD phosphorylation was analysed using autoradiography or by 

MALDI-TOF mass spectrometry. Phosphorylated IE2-NTD (IE2-ppNTD) was used as a 

substrate for SUMOylation assays. 

C93K UBC9-SUMO1 conjugates were made either with 15N-C93K UBC9 or 15N-SUMO1. 

Conjugation reaction was performed in buffer containing 20 mM CAPS (pH9.5), 50 mM 

NaCl, 5 mM MgCl2, 3 mM DTT in presence of 10 μM E1, 300 μM C93K UBC9, 500 μM 

SUMO1 and 3 mM ATP. The reaction was performed overnight at 37 C̊. Conjugate formation 

was analysed on a SDS gel before further purification by MonoQ and SEC. Conjugation 

reaction mixture was diluted by 25 mM Tris (pH8) to reduce salt concentration. The diluted 

reaction mixture was loaded onto the MonoQ column and proteins were eluted with 

increasing concentration of NaCl (up to 1 M). Fractions containing C93K UBC9-SUMO1 

conjugate were pooled and further purified by SD75 in PBS buffer.     

Single turn over reactions was performed for Michaelis–Menten kinetics experiments. 

UBC9~K11R SUMO2 conjugates were formed in a 50 μl reaction with 1 μM E1, 10 μM E2 

and 10 μM K11R SUMO2 in SUMOylation buffer. The reaction was started by adding E1and 

was incubated at 37 C̊ for 10min. The reaction was stopped by adding 1450 μl quenching 

buffer. Quenching buffer contained 20 mM HEPES pH 7.5, 50 mM NaCl, 5 mM EDTA, 0.1% 

Tween 20. IE2-NTD SUMOylation was performed by adding an equal volume of quenched 

reaction to different concentration of serially diluted IE2-NTD peptides (so that conjugates 

and peptides are further diluted by half to give desired concentration). Aliquots were taken at 

desired time points and the reaction was stopped by SDS loading dye.  The reaction was 
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resolved on 12% SDS PAGE in non-reducing conditions which was then transferred onto 

PVDF membrane and was blotted with SUMO2 antibody.  

 

NMR experiments 

The NMR spectra of SUMO1 and SUMO2 were recorded at 298K on 800 MHz Bruker 

Avance III HD spectrometer with a cryoprobe head, processed with NMRpipe (Delaglio et al., 

1995) and analyzed with Sparky(Kneller and Kuntz, 1993). All the NMR experiments with 

FHA-Chk2 were performed at 293K. The SUMO1/2 samples were prepared in PBS buffer, 

with 5 mM DTT at pH 7.4 and 10% D2O. 1H-1H TOCSY and 1H-1H NOESY were acquired 

and used to assign IE2-ppSIM. For NMR titration experiments, ~3 mM peptides were titrated 

into ~0.3 mM 15N-SUMO1 or 15N-SUMO2. The titration data was fit in 1:1 protein:ligand 

model using the equation CSPobs = CSPmax {([P]t+[L]t+Kd) - [([P]t+[L]t+Kd)2- 4[P]t[L]t]1/2}/2[P]t, 

where [P]t and [L]t are total concentrations of protein and ligand at any titration point. The 

SUMO/IE2-ppSIM1 NMR samples were prepared in PBS buffer, with 5 mM DTT at pH 7.4 

and 10% D2O.  13C, 15N half-filtered NOESY was collected on a 13C, 15N-SUMO1/IE2-ppSIM1 

(1:1.5) complex sample with a mixing time of 200ms to measure intermolecular NOEs 

between SUMO1 and IE2-ppSIM1. A similar experiment was performed to obtain 

intermolecular NOEs in the SUMO2/IE2-ppSIM1 complex.  

 

Structure Determination and Modelling 

Unambiguous restraints between the SUMO1 and IE2-ppSIM1 were determined from the 

intermolecular observed NOEs. Dihedral angles of IE2-ppSIM1 determined from 1H-1H 

TOCSY experiments were used to determine a structure of IE2-ppSIM1. The solution 

structure was calculated in HADDOCK (Dominguez, Boelens and Bonvin, 2003) using the 

structure of SUMO1 (PDB ID: 4WJO) and the extended structure of IE2-ppSIM1. Rigid body 

energy minimization generated one thousand initial complex structures, and the best 200 by 
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total energy were selected for torsion angle dynamics and subsequent Cartesian dynamics 

in an explicit water solvent. Default scaling for energy terms was applied. The interface of 

SUMO1 was kept semi-flexible during simulated annealing and the water refinement steps.  

Following the standard benchmarked protocol, cluster analysis of the 200 water-refined 

structures yielded a single clear ensemble. The SUMO2/IE2-ppSIM1 complex was similarly 

docked, except that intermolecular restraints between SUMO2 and IE2-ppSIM1 were used 

and the starting structure of SUMO2 was taken from a crystal structure of free SUMO2 (PDB 

ID: 1WM3). The structures of IE2-SIM1/SUMO1 and IE2-SIM1/SUMO2 are deposited in the 

PDB with accession codes xxx and xxx. 

The model of UBC9~SUMO1/IE2-NTD was calculated in xplor-NIH. The restraints of 

UBC9~SUMO1 were obtained from the PDB: 1Z5S. IE2-NTD was flexible. The other 

restraints used were the SUMO1/IE2-ppSIM1 noe restraints and UBC9/IE2-NTD CSPs. The 

distance of acceptor lysine K180 and the active site was restrained to 1.8Å. A hundred 

structures were calculated, and the ten lowest energy structures were used for analysis. The 

model of SUMO1/UBC9~SUMO1/IE2-NTD, where an additional SUMO1 molecule is non-

covalently bound to UBC9 was calculated similarly, except the SUMO1/UBC9 intermolecular 

restraints were estimated from the PDB: 2YZZ and the SUMO1/IE2-SIM1 restraints were set 

between the non-covalent bound SUMO1 and IE2-SIM1.   The model of SUMO1- 

UBC9~SUMO1/IE2-NTD complex, where the SUMO1 is covalently bound to UBC9, was 

calculated similarly, except that SUMO1-UBC9 restraints were obtained from PDB: 2VRR 

and the SUMO1/IE2-SIM1 restraints were set between the covalent bound SUMO1 and IE2-

SIM1.  

Cell culture and transfection: HEK293T cells were maintained in DMEM with 10% serum. 

For any experiment, cells were seeded into 12 well tissue culture plates. Cells were 

transfected at 60-80% confluency with 500 ng Flag-SUMO1 and 500 ng HA-IE2 (wt or 

mutant as mentioned) using Lipofectamine 3000 reagent. Cells were harvested 48-hours 
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post-transfection and lysed with 2x SDS loading dye. Lysates were run on 12% SDS gel and 

were probed with HA antibody (CST- 3724) after blotting.  

For Transactivation assays, HEK293Tcells were seeded into a 12 well plate and 

were cultured to 70-80% confluency. Cells were transfected with 100ng pUL54-Luc, 5 ng 

pTK-renilla (transfection control) and 400 ng wt-IE2 with or without 400ng Flag-SUMO1. In 

the case of mutants (Ser203, 205A-IE2 and 199CIVI202, AAAA- IE2) transfected plasmid 

amount was increased to acquire similar expression as wt-IE2. Luciferase concentration was 

measured 36-40 hour post-transfection by Dual-Glo-luciferase kit (Promega). 

HA-IE2 was immuno-precipitated form HEK293T for PTM analysis by Mass 

spectrometer. One 100mm dish was transfected with 10µg HA-IE2 plasmid with 

Lipofectamine 3000. IP was performed 36-hour post-transfection. HA-tag Sepharose beads 

(CST) were used for pull down. The protocol provided by the manufacturer was followed for 

the IP. After IP, beads were directly loaded onto reducing SDS PAGE, and 

immunoprecipitated proteins were resolved. The band, matching the size of the protein of 

interest, was excised and analyzed by Mass Spectrometry.   
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Table1: Analysis of possible SUMO Interaction motifs in IE1 and IE2 

 

 

Table 2. The rate of SUMOylation in IE2-NTD 

The decay of Unmodified IE2-NTD signal 

 SUMO1 Fit 

IE2-NTD 8.0 x 10-3 /min Exponential  

IE2-NTDm 6.6 x 10-7 /min Exponential  

 SUMO2  

IE2-NTD 2.7 x 10-2 /min Exponential 

IE2-NTDm 1.4 x 10-2 /min Exponential 

Fluorescence Anisotropy 

 SUMO1 Fit 

IE2-NTD 3.5 x 10-4 /min Linear  

IE2-NTDm 0.8 x 10-4 /min Linear 

 SUMO2  

IE2-NTD 1.2 x 10-2 /min Exponential 

IE2-NTDm 0.7 x 10-2 /min Exponential 

 

SIMs Resid# Sequence Kd (M) 

   SUMO1 SUMO2 

IE2-SIM1 199-202 NKIIDTAGCIVISDSEEEQG 58.2 (± 9.2) 53.5 (± 8.3) 

IE2-SIM2 410-413 TMQVNNKGIQIIYTRNHEVK N.B N.B 

IE2-SIM3 501-504 1IIHAATPVDLLGALNLC 368.3 (± 29.1) 319.85 (± 40.4) 

IE2-ppSIM1 199-202 NKIIDTAGCIVIpSDpSEEEQG 7.1 (±0.4) 7.2 (± 1.6) 
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Table 3. Kinetic Analysis of IE2 SUMOylation 

Substrate Vmax (nM/s) 

 

Kcat (1/s) Km (M) 

Specificity, 

Kcat/Km         

(M-1 s-1) 

Temp 

(oC) 

IE2-NTD 0.35 (±0.04) 8.7x10-3 (±5.2x10-4) 27.5 (±3.0) 3.2 x 10-4 25 

IE2-NTDm 0.42 (±0.04) 10.4x10-3 (±5.6x10-4) 68.9 (±10.7) 1.5 x 10-4 25 

IE2-NTD 0.12 (±0.01) 3.3x10-3 (±1.2x10-4) 22.1 (±2.9) 1.4 x 10-4 16 

IE2-ppNTD 0.16 (±0.01) 3.9x10-3 (±0.5x10-4) 6.7 (±0.4) 6.8 x 10-4 16 
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Table 4. NMR and refinement statistics of the SUMO/IE2-ppSIM1 complexes. 

 SUMO1/IE2-ppSIM1 SUMO2/IE2-ppSIM1 

NMR restraints   

Unambiguous restraints (NOE) 61 52 

Dihedral restraints(phi,psi) 18 20 

 

Haddock parameters 

Cluster Size 200 200 

Haddock score -60.6 (± 11.5) -79.8 (± 7.5) 

Van Der Waals Energy -32.9 (± 7.3) -36.6 (± 4.2) 

Electrostatic Energy -285.3 (± 36.6) -323.7 (± 25.6) 

Restraints Violation Energy +3.6 (± 1.6) +0.8 (± 0.5) 

Buried surface area +1365.7 (± 50.0) +1187.1 (± 27.9) 

  

All backbone 0.4 0.3 

All heavy atoms 0.6 0.6 

 

RMS deviationsa 

Bond Angles 0.7 0.6 

Bond Lengths 0.004Å 0.004Å 

Molprobity Clashscoreb 6.4 6.5 

 

Ramachandran Statisticsa 

Most Favoured regions (%) 96.1 99.0 

Allowed regions (%) 3.8 1.0 

Disallowed regions (%) 0.1 0.0 

 
a Calculated for an ensemble of 20 lowest energy structures. 
b Calculated for the lowest energy structure.  
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Figure 1. Interactions between IE2-SIM1 and SUMO. (A) A schematic of the 

domains in IE2. The three predicted SIMs, and the two SUMOylation site lysines 
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K175 and K180 are shown. Yellow circles marked ‘S’ denote SUMO. The 

transactivation domains are shown as blue boxes and marked as ‘TAD.’  The 

Fragment 5B, Serine rich region, and DBA binding domain are shown. (B) Overlay of 

the 15N-edited HSQC spectra of free 15N-SUMO1 (red) with different stoichiometric 

ratios of IE2-SIM1 as given in the top left-hand side of the spectra. (C)Two regions of 

the spectra are expanded to show a shift of SUMO1 resonances during titration. (D) 

The CSPs in SUMO1 upon binding to IE2-SIM1. The chemical shift perturbations 

(CSP) between the free and the bound form are calculated as CSP = [(H
free – 

H
bound)2+ ((N

free – N
bound)/5)2]1/2, where H and N are the chemical shift of the amide 

hydrogen and nitrogen, respectively. The yellow and red dashed lines indicate 1 x 

standard deviation and 2 x standard deviation, respectively. The secondary structure 

alignment of SUMO1 against its sequence is provided above the plot. The residues 

with CSPs significantly above the dashed lines are present at the interface of the 

SUMO1/IE2-SIM1 complex. (E) The significant CSPs are mapped onto the SUMO1 

structure. The residues with CSP above yellow and red lines are colored in yellow 

and red, respectively. (F) The CSPs in SUMO2 upon binding to IE2-SIM1. (G)  The 

significant CSPs mapped on the SUMO2 structure. The residues with CSP above 

yellow and orange lines are colored in yellow and orange, respectively. 
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Figure 2. CK2 phosphorylates IE2. (A) Phosphorylation of IE2 detected in cells by Mass-

spectrometry based proteomics. All vertical black lines denote detected phosphorylation 

sites in IE2. Green and red vertical lines denote detected phosphorylation sites in IE2, that 

are predicted MAPK and CK2 sites, respectively. The region around SIM1 is expanded to 

show that only two serines immediately adjacent to SIM1 are phosphorylated. (B) Schematic 

of IE2-SIM1 and IE2-ppSIM1. (C) IE2-SIM1 was incubated with CK2 and -ATP, run on SDS 

page gel and analyzed using autoradiography. CP is the control peptide that is a known 

substrate of CK2. In-CK2 in the last lane is inactivated CK2. The higher molecular weight 

band corresponds to CK2, which auto-phosphorylates itself. This band is not observed in the 

heat inactivated lane. (D) Mass spectra of IE2-SIM1, and IE2-SIM1 incubated with CK2 (IE2-

ppSIM1). The spectra of synthesized IE2-ppSIM1 is given below as a reference. The lines 

with an asterisk are coming from impurities.   
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Figure 3. Molecular basis of the enhanced interaction between SUMO and IE2-

ppSIM1. (A) Selected strips from the 13C, 15N half-filtered NOESY spectra depicting 
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intermolecular NOEs between 13C-bonded protons of 13C, 15N-labeled SUMO1, and 

unlabeled IE2-ppSIM1. 13C and 1H assignment of SUMO1 atoms are given on the 

right and left of the strips, respectively. The protons of IE2-ppSIM1 that show NOEs 

to SUMO1 are assigned. (B) and (D) highlights the hydrophobic interactions in the 

SUMO1/IE2-ppSIM1 and SUMO2/IE2-ppSIM1 complexes, respectively. The 

SUMO1/2 surface is colored white, except the hydrophobic patches are colored 

green. The IE2-ppSIM1 backbone is shown as an orange ribbon. The sidechains of 

central hydrophobic residues ‘CIVI’ are shown as yellow spheres.  (C) and (E) shows 

the hydrogen bonds between phosphorylated side-chains of IE2-SIM1 with SUMO1 

and SUMO2, respectively. The hydrogen bonds are shown as black lines. The two 

phosphoserines and the residues in SUMO1/2 that form hydrogen bonds are shown. 

Nitrogen atoms are colored in blue, oxygen atoms are colored in red, and 

phosphorous atoms are colored in yellow. 
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Figure 4. In-vitro SUMOylation of IE2-NTD. (A) FITC fluorophore-labeled IE2-NTD used as a 

substrate in SUMOylation assays. The substrate lysines and SIM1 are shown. (B) The 
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products of the SUMOylation reaction with SUMO1 and IE2-NTD as the substrate is 

resolved on the SDS-PAGE gel and imaged with a filter at 519 nm corresponding to FITC 

fluorescence. Bands of free IE2-NTD or conjugated with one, two or multiple (n) SUMO1 are 

marked. The time-points are given on the top of the gel. (C) Same as (B) except that IE2-

NTDm (CIVI to AAAA) was used as the substrate. (D) and (E) Fraction of free IE2-NTD is 

plotted against time for SUMOylation reactions using SUMO1 and SUMO2, respectively. (F) 

Experimental design to monitor SUMOylation of IE2-NTD in real-time. (G) Change of 

fluorescence anisotropy with time for IE2-NTD and IE2-NTDm in a SUMOylation reaction 

using SUMO1. (H) The same as in (G) using SUMO2 instead of SUMO1. 
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Figure 5. The IE2-SIM1 enhances SUMOylation of IE2. (A) Kinetic data for SUMOylation of 

IE2-NTD and IE2-NTDm. (B) and (C) are the calculated Km and Vmax, respectively. (D) IE2 

and SIM mutant IE2 (smIE2) SUMOylation detected in HEK293T cells. (E) The fraction of 

IE2~SUMO over total IE2 is quantified from (D) and plotted. 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 30, 2019. ; https://doi.org/10.1101/655282doi: bioRxiv preprint 

https://doi.org/10.1101/655282


 

Figure 6. Mechanism of cis SUMO-E3 ligase activity of IE2. The three possible mechanisms 

are shown in (A), (B) and (C). C93 is the catalytic cysteine in UBC9, which is conjugated to 

G97 in SUMO1. The critical residue H20 for non-covalent UBC9/SUMO interaction is shown. 
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The critical residue K14 for covalent UBC9/SUMO interaction is also shown. (D) The CSPs 

observed in UBC9 upon titration with IE2-NTD. (E) The CSPs in SUMO1 within the 

UBC9~SUMO1 conjugate, upon titration with IE2-NTD. (F) The ten lowest energy model 

structures of the UBC9~SUMO1/IE2-NTD complex. UBC9, SUMO1, and IE2-NTD are color-

coded as in (A). The active site C93 is colored purple, G97 of SUMO1 is colored yellow and 

K180 is colored blue. (G) Same as in (F) for the SUMO1/UBC9~SUMO1/IE2-NTD, where 

SUMO1 is non-covalently bound to UBC9. (H) Same as in (F) for the SUMO1-

UBC9~SUMO1/IE2-NTD complex, where SUMO1-UBC9 denotes the SUMO1 covalently 

linked to K14 of UBC9. (I)  Lowest energy structure of the UBC9~SUMO1/IE2-NTD complex. 

(J) A close-up of the active site shows that E178 forms a salt-bridge with K101, while K180 

attacks the active site. The inset is shown the complete structure, where the zoomed region 

is marked with a box. (K) Gel shift assay and (L) fluorescent anisotropy assay monitored the 

rate of SUMOylation using either wt, K14R or H20D UBC9.  
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Figure 7. Phosphorylation enhanced SUMOylation of IE2-NTD. (A) Schematic of IE2-NTD 

and the phosphorylated IE2-NTD. (B) SUMOylation of IE2-NTD and IE2-ppNTD against 
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time. The SUMOylation reaction using either IE2-NTD or IE2-ppNTD was run for different 

times, resolved on the SDS-PAGE gel and imaged with a filter at 519 nm corresponding to 

FITC fluorescence.  The time of reaction is given on the top. M stands for the marker. (C) 

The IE2-NTD~SUMO conjugate was quantified and plotted against time for IE2-NTD and 

IE2-ppNTD. (D) Real-time fluorescence anisotropy measurement of IE2-NTD and IE2-

ppNTD SUMOylation. (E) The SUMOylation of IE2 and phosphorylation mutant pmIE2 

observed in HEK293T cells. Cells lysates 48 hours post-transfection were separated on SDS 

page and blotted with anti-HA. (F) The ratio of conjugated and total IE2 is quantified from (E) 

and plotted against the time of transfection. (G) Michelis Menten curves for IE2-NTD and 

IE2-ppNTD. (H) and (I) are the calculated Km and Vmax, respectively.     

 

 

. 
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Figure 8. Functional implications of phosphorylation induced enhanced SIM/SUMO 

interaction and SUMOylation. (A) Luciferase transactivation assays were performed in 

HEK293T cells 36 hours post-transfection with or without IE2 or mutants of IE2, and 

SUMO1. The relative Luciferase activity is plotted against the IE2 or its mutants. (B) The 

same is repeated without transfection of SUMO1. (C) Luciferase auto-repression activity was 

monitored using IE2 and its mutants. C denotes the control where IE2 was not transfected. 

(D) Model of phosphorylation induced enhanced IE2 transactivation/auto-repression activity. 

IE2 is colored in light-blue, and the DNA binding domain (DBD) is colored in dark blue. IE2 

binds to the TATA-box binding protein (TBP), which binds to the promoter. Phosphorylation 

increases the interaction between IE2-SIM1 and SUMOylated transcription factors (e.g., 

TAF12) to enhance the transactivation activity. IE2 can directly bind to the cis-regulatory 

sequences (crs) for auto-repression via the DBD. Phosphorylation can enhance 

SUMOylation of IE2 to increase its association with the chromatin modifiers like 
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HDAC/HMT/CoREST complex and increase auto-repression. HDAC: Histone Deacetylase 

and HMT: Histone Methyltransferase. 
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Supplementary Information Legends 

Figure S1. (A) CSPs of NMR titration between 15N-SUMO1/IE2-SIM3. (B) Overlay of the 
15N-edited HSQC spectra of free 15N-SUMO2 (red) with different stoichiometric ratios of IE2-

SIM1 as given in the top left-hand side of the spectra. (C)Two regions of the spectra are 

expanded to show a shift of SUMO2 resonances during titration. (D) The CSPs in SUMO2 

upon binding to IE2-SIM3. 

Figure S2. The fit of SUMO1 peak shifts against the concentration ratio [IE2-SIM1]/[SUMO1] 

yielded the Kd of the SUMO1/IE2-SIM1 complex. The fit of nine typical residues is shown. 

The residues are labeled at the bottom right corner of each window. 

Figure S3. The fit of SUMO2 peak shifts against the concentration ratio [IE2-SIM1]/[SUMO2] 

yielded the Kd of the SUMO2/IE2-SIM1 complex. The fit of nine typical residues is shown. 

The residues are labeled at the bottom right corner of each window. 

Figure S4. Detected phosphorylation sites in IE2. The unphosphorylated residues are 

colored blue. The phosphorylated sites are colored either black, red or green. MAPK 

predicted sites are colored in green, CK2 predicted sites are colored in red and rest is 

colored in black. The SIM and SUMOylation sites are highlighted with a yellow background.  

Figure S5. (A) CSPs of NMR titration between 15N-SUMO1/IE2-ppSIM1. (B) The fit of 

SUMO1 peak shifts against the concentration ratio [IE2-ppSIM1]/[SUMO1] yielded the Kd of 

the SUMO1/IE2-ppSIM1 complex. The fit of nine typical residues is shown. The residues are 

labeled In the bottom right corner of each window. 

Figure S6. (A) CSPs of NMR titration between 15N-SUMO2/IE2-ppSIM1. (B) The fit of 

SUMO2 peak shifts against the concentration ratio [IE2-ppSIM1]/[SUMO2] yielded the Kd of 

the SUMO2/IE2-ppSIM1 complex. The fit of nine typical residues is shown. The residues are 

labeled In the bottom right corner of each window. 

Figure S7. (A) The twenty lowest energy structure of SUMO1/IE2-ppSIM1 complex. (B) 

Selected strips from the 13C, 15N half-filtered NOESY spectra depicting 

intermolecular NOEs between 13C-bonded protons of 13C, 15N-labeled SUMO2, and 

unlabeled IE2-ppSIM1. 13C and 1H assignment of SUMO2 atoms are given on the 

right and left of the strips, respectively. The protons of IE2-ppSIM1 that show NOEs 

to SUMO2 are assigned. (C) The twenty lowest energy structure of SUMO2/IE2-ppSIM1 

complex. 

Figure S8. (A) The products of the SUMOylation reaction with SUMO2 and IE2-NTD as the 

substrate is resolved on the SDS-PAGE gel and imaged with a filter at 519 nm 

corresponding to FITC fluorescence. Bands of free IE2-NTD or conjugated with one, two or 

multiple (n) SUMO2 are marked. The time-points are given on the top of the gel. (B) Same 

as in (A) where IE2-NTDm replaced IE2-NTD. (C) SUMOylation of IE2-NTD monitored in 

real-time by Fluorescence anisotropy measurements. The –ATP experiment is a negative 

control, where IE2-NTD is not SUMOylated, and the fluorescence anisotropy does not 

change.    
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Figure S9. A representative graph of the detected IE2-NTD~SUMO conjugates against time 

with various concentrations of IE2-NTD. 

Figure S10. A) CSPs observed in 15N-UBC9(C93K) upon titration with IE2-NTD. The CSPs 

in the loop between the active site and α2, and in the loop between α2 and α3, that were 

observed in a similar titration in wt-UBC9, are absent here. B) CSPs observed in SUMO1 

non-covalently bound to UBC9 and titrated with IE2-NTD. The major CSPs are between 

2α1 region, which is the same as apo SUMO1/IE2-SIM1 interactions. The residues marked 

with asterisk disappear during titration.  

Figure S11. (A) The ten lowest energy model structures of the UBC9~SUMO1/IE2-NTD 

complex. (B) Same as in (A) for the SUMO1/UBC9~SUMO1/IE2-NTD, where SUMO1 is 

non-covalently bound to UBC9. (C) Same as in for the SUMO1-UBC9~SUMO1/IE2-NTD 

complex, where SUMO1-UBC9 denotes the SUMO1 covalently linked to K14 of UBC9. 

UBC9 is colored orange, thioester conjugated SUMO1 is colored purple, covalently/non-

covalently bound SUMO1 is in pink, and IE2-NTD is colored cyan. IE2-SIM1 is colored red.  

K180 in IE2-NTD is colored blue. C-terminal Glycine 97 is conjugated SUMO1 is colored 

yellow. Active site cysteine in colored magenta. 

Figure S12. (A) Model and lowest energy structure of the SUMO1/UBC9~SUMO1/IE2-NTD 

complex, where SUMO1 is non-covalently bound to UBC9. Surface representations of 

UBC9, conjugated SUMO1, and non-covalently bound SUMO1 is shown. UBC9 is colored 

orange, conjugated SUMO1 is purple, non-covalently bound SUMO1 in pink, and IE2-NTD is 

colored in cyan. (B) Zoomed view of the active site in (A), where E178 forms a salt-bridge 

with K101. (C) Same as in (A) for the SUMO1-UBC9~SUMO1/IE2-NTD complex, where 

SUMO1-UBC9 denotes the SUMO1 covalently linked to K14 of UBC9. (D) Zoomed view of 

the active site in (A), where E178 forms a salt-bridge with K74. IE2-SIM1 is colored red in all 

figures.   

Figure S13. (A) The IE2-NTD~SUMO and IE2-ppNTD conjugates were resolved on an SDS 

page gel and blotted with the anti-SUMO antibody with various concentrations of IE2-NTD.  

(B) The modified IE2-NTD~SUMO were quantified against time with various concentrations 

of IE2-NTD. 

Figure S14. Expression profile of wt IE2 and mutant IE2s used in the Luciferase 

transactivation assay.  

Figure S15. Figure 5D is replotted here to show that IE2~SUMO conjugates increase upon 

overexpression of SUMO. IE2~SUMO has two bands. The lower band IE2~SUMO is where 

IE2 is conjugated with endogenous SUMO. The upper band is where IE2 is conjugated with 

transfected FLAG3x-SUMO1.  
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