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Abstract: 47 

The modern nitrogen cycle consists of a web of microbially mediated redox 48 

transformations. Among the most crucial reactions in this cycle is the oxidation of ammonia to 49 

nitrite, an obligately aerobic process performed by a limited number of lineages of bacteria 50 

(AOB) and archaea (AOA). As this process has an absolute requirement for O2, the timing of its 51 

evolution – especially as it relates to the Great Oxygenation Event ~2.3 billion years ago – 52 

remains contested and is pivotal to our understanding of nutrient cycles.  To estimate the 53 

antiquity of bacterial ammonia oxidation, we performed phylogenetic and molecular clock 54 

analyses of AOB. Surprisingly, bacterial ammonia oxidation appears quite young, with crown 55 

group clades having originated during Neoproterozoic time (or later) with major radiations 56 

occurring during Paleozoic time. These results place the evolution of AOB broadly coincident 57 

with the pervasive oxygenation of the deep ocean. The late evolution AOB challenges earlier 58 

interpretations of the ancient nitrogen isotope record, predicts a more substantial role for AOA 59 

during Precambrian time, and may have implications for understanding of the size and structure 60 

of the biogeochemical nitrogen cycle through geologic time. 61 

 62 

 63 

Introduction: 64 

The biogeochemical nitrogen cycle is second only to carbon in size and, arguably, 65 

importance for the biosphere (e.g. Tyrrell 1999). The nitrogen cycle supplies fixed nitrogen for 66 

biomass while also fueling diverse microbial metabolisms, with fluxes hundreds of teramoles of 67 

nitrogen per year (e.g. Canfield et al. 2010). Nitrogen primarily enters this cycle by way of 68 

reduced forms (i.e. ammonia fixed from N2 by the enzyme nitrogenase), and so biological 69 

nitrification (i.e. the oxidation of ammonia to nitrite and nitrate) is an essential step for enabling 70 

downstream processes such as anammox and denitrification (Zerkle and Mikhail 2017). No 71 

metabolism has yet been discovered that is capable of oxidizing ammonia in the absence of O2 or 72 

O2-derived compounds like nitrite or NO (Hu et al. 2019)—therefore the modern nitrogen cycle 73 

where oxidized forms are regenerated and recycled are necessarily tied to O2.  74 

Aerobic oxidation is found in a limited, polyphyletic set of Bacteria (AOB) and Archaea 75 

(AOA). In both AOB and AOA, the first step in ammonia oxidation is performed via ammonia 76 

monooxygenase (AMO), a member of the copper membrane monooxygenase (CuMMO) family.  77 

The CuMMO family includes the related particulate methane monooxygenases (pMMO) and 78 

enzymes that oxidize other small hydrocarbons (Khadka et al. 2018). CuMMO enzymes have an 79 

absolute requirement for O2, leading to the hypothesis that metabolic pathways utilizing these 80 

enzymes—including ammonia oxidation—evolved after the evolution of oxygenic 81 

photosynthesis provided significant O2 to the environment. While alternative, O2-independent 82 

ammonia oxidation processes such as the coupling of ammonia oxidation to phototrophy or 83 

metal reduction have been hypothesized, no organism has ever been characterized that can 84 

perform these reactions (Ward et al. 2019b, in ‘t Zandt et al. 2018). The evolution of oxygenic 85 

photosynthesis in Cyanobacteria led to the accumulation of atmospheric O2 to biologically 86 

meaningful concentrations ~2.3 billion years ago (Ga) during the Great Oxygenation Event 87 

(GOE), and it has been suggested that the onset of the aerobic nitrogen cycle occurred shortly 88 

thereafter (Zerkle et al. 2017). However, others have argued from isotopic evidence that an 89 

aerobic nitrogen cycle was in place much deeper in Earth history (e.g. Garvin et al. 2009). 90 

Distinguishing between these possibilities from the rock record alone is difficult due to the poor 91 

preservation of Archean strata and the lack of a robust framework for interpreting the ancient 92 
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nitrogen isotope record. Moreover, signatures in the nitrogen isotope record may reflect only the 93 

expansion to geochemical prominence or first preservation of signatures of nitrogen 94 

metabolisms, and not necessarily their initial evolutionary origin. Instead, the biological record 95 

can provide opportunities for querying the antiquity of organisms and metabolisms responsible 96 

for driving the nitrogen cycle.  97 

Here, we estimate the antiquity of AOB via phylogenetic and molecular clock analyses. 98 

We show that ammonia oxidation in bacteria has evolved convergently at least twice and that 99 

crown group AOB clades originated <1 Ga, with major radiations occurring within the last ~500 100 

million years (Ma). This suggests that bacteria did not continue to ammonia oxidation until late 101 

in Earth history—more than 1.5 Ga after O2 first accumulated in the atmosphere.  The predicted 102 

appearance of AOB at a time when Earth surface environments underwent oxygenation to 103 

modern-like levels points to the potential role for niche expansion in fostering evolution and 104 

boosting turnover of the marine fixed nitrogen inventory. This suggests a substantial difference 105 

in scale or structure of the biogeochemical nitrogen cycle during Precambrian time, likely with a 106 

more dominant role for AOA. 107 

 108 

Phylogenetic distribution of proteins involved in ammonia oxidation: 109 

Phylogenetic analysis of the distribution of genes associated with ammonia oxidation 110 

shows that this metabolism is restricted to four clades of characterized ammonia oxidizers 111 

(Figure 1).  These include members of the Nitrosphaeria class of 112 

Crenarchaeota/Thaumarchaeota, the Nitrococcaceae family within the Gammaproteobacteria, the 113 

Nitrosomonadaceae family within the Betaproteobacteria, and some members of Nitrospira (the 114 

“comammox” bacteria, the only known organisms capable of oxidizing ammonia to nitrite and 115 

subsequently to nitrate, van Kessel et al., 2015, Daims et al., 2015)(Figure 2). These results are 116 

based on ammonia monooxygenase and homologous proteins from the copper membrane 117 

monooxygenase family (Figure 2, Supplemental Figures 1 and 2). While CuMMO sequences 118 

were recovered from diverse lineages including some that have not previously been characterized 119 

to possess the capacity for methanotrophy (e.g. members of the UBP10 and Myxococcota phyla), 120 

these proteins are most closely related to enzymes that are characterized as performing carbon 121 

oxidation (e.g. pMMO, butane monooxygenase), and no organisms outside of characterized 122 

clades of ammonia oxidizers were found to encode AMO. In all cases, ammonia oxidation 123 

appears to be a derived trait, with basal members of the clades and closely related outgroups 124 

lacking the capacity for ammonia oxidation. Importantly, these clades of ammonia oxidizing 125 

microorganisms are not closely related and are phylogenetically separated by many lineages 126 

incapable of ammonia oxidation (Figure 1).  127 
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128 

Figure 1: Tree of life built with concatenated ribosomal proteins following129 

methods from Hug et al. 2016. Clades of ammonia oxidizing organisms130 

highlighted in orange and labeled. The distribution of ammonia oxidation is131 

polyphyletic, spread across one lineage within the Archaea (Nitrososphaeria) and132 

three within the Bacteria (Nitrosococcales and Nitrosomonadaceae in the133 

Proteobacteria phylum, and some members of the genus Nitrospira within the134 

Nitrospirota phylum).  135 

 136 
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137 

Figure 2: Phylogeny of concatenated protein sequences of CuMMO A and B138 

subunits (i.e. AmoA and AmoB, PmoA and PmoB), with ammonia139 

monoxygenases highlighted in orange. Major clades are collapsed and labeled by140 

the taxonomy of the organisms in which they are found as determined with141 

GTDB-Tk (Parks et al. 2018). The highly divergent archaeal ammonia142 

monooxygenase is placed as an outgroup, though the placement of the root is143 

indeterminate. Transfer Bootstrap Expectation (TBE) support values shown as144 

calculated by BOOSTER (Lemoine et al. 2018).  145 

 146 

Phylogenetic analysis of proteins involved in ammonia oxidation, compared to147 

organismal relationships among AOB, provide evidence for convergent evolution and horizontal148 

gene transfer as major drivers for the extant diversity of organisms with the genetic capacity for149 

ammonia oxidation.  These relationships are consistent with major clades of AOB acquiring the150 

capacity for ammonia oxidation through separate evolutionary events, followed largely by151 

vertical inheritance within each AOB clade. These data are not consistent with a much more152 

ancient acquisition of ammonia oxidation (e.g. in the last common ancestor of Nitrosococcales153 

and Nitrosomonadaceae) followed by extensive loss. As a result, the age of total group154 

Nitrosococcales, Nitrosomonadaceae, and the extant diversity of comammox Nitrospira can155 

confidently be used to constrain the timing of acquisition of the capacity for ammonia oxidation156 

in each lineage. Additionally, our data are consistent with hypotheses for ammonia oxidation157 

evolving from earlier aerobic methane oxidation pathways (Supplemental Information). 158 

 159 

Molecular clock evidence for the late evolution of ammonia oxidizing bacteria 160 

To connect the evolution history of AOB described above to events in Earth history, we161 

performed molecular clock analyses to determine when AOB clades diverged from non-162 

ammonia oxidizing relatives (i.e. age of total groups) and when AOB clades subsequently163 

radiated (i.e. age of crown groups). Molecular clocks estimate the origin of each AOB clade to164 

Neoproterozoic or Phanerozoic time, with each stem group AOB lineage emerging between 238165 

(comammox Nitrospira) and 894 Ma (Nitrosococcaceae) and radiation of crown groups166 

occurring after 538 Ma (Figure 3, Table 1). The 95% confidence intervals of divergence times167 

introduce uncertainty of +/- 150 Ma to these estimates (Table 1, Supplemental Figure 4), but in168 

all cases firmly place the major radiation of extant AOB to Phanerozoic time even if the origin of169 
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crown groups was in late Neoproterozoic time. Between the uncertainty in the ages of total group170 

AOB clades, and the fact that the acquisition of ammonia oxidation could in theory occur at any171 

point along stem lineages prior to the divergence of crown groups, the range of 95% confidence172 

intervals of ages of origin of the first AOB consistent with our data is between 1169 and 414 Ma.173 

This age range includes scenarios involving the first evolution of ammonia oxidation in the174 

earliest stem group Nitrosococcaceae (1169 Ma) or at the base of crown group175 

Nitrosomonadaceae (414 Ma).  This also accommodates the possibility that these groups176 

acquired ammonia oxidation roughly simultaneously between 414 and 490 Ma. The analysis177 

therefore does not allow for a unique determination of which proteobacterial lineage first178 

acquired the capacity for ammonia oxidation. However, all scenarios consistent with our data179 

involve a later acquisition of ammonia oxidation within the Nitrospira, after the radiation of180 

ammonia oxidizing Nitrosomonadaceae and nitrite oxidizing Nitrospira.  181 

182 

Figure 3: Molecular clock showing estimated age of clades of ammonia oxidizing183 

bacteria. Phylum-level clades highlighted in gray and brown, with ammonia184 

oxidizing clades highlighted in orange. Approximate timing of Great Oxygenation185 

Event (~2.45-2.3 Ga) and Neoproterozoic/Paleozoic Oxygenation Event (~635-186 

420 Ma) shown with light blue bars. While stem lineages of AOB clades may187 

predate the NOE, the radiation of crown groups all occur broadly coincident or188 

subsequent to the NOE, suggesting that evolutionary radiations of nitrogen-189 

cycling organisms may have been causally linked with expansions in ocean190 

oxygenation and/or productivity during this time period.  191 

 192 
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Table 1: Age ranges for key divergences discussed in the text in millions of years (Ma).  195 

Clade Estimated 
age of crown 
group 

95% 
Confidence 
Interval 

Estimated age 
of total group 

95% confidence 
interval 

Nitrosococcaceae 325 194-490 894 596-1169 
Nitrosomonadaceae 538 414-662 657 510-821 
Nitrospira 124 59-197 238 149-329 
 196 

The Neoproterozoic to early Phanerozoic origin of crown group AOB suggested by our 197 

data is ~1.5 Ga later than previous suggestions that placed ammonium oxidation at or before the 198 

GOE ~2.3 Ga (e.g. Garvin et al. 2009, Zerkle et al. 2017), suggesting that the first rock record 199 

evidence for ammonia oxidation records the activity of ammonia oxidizing archaea or other 200 

biological or abiotic processes. Our estimate for the origin of bacterial ammonia oxidation is 201 

during the time in Earth history that saw the biosphere transition from a low-productivity, 202 

exclusively microbial state characteristic of Proterozoic time (Dick et al. 2018, Ward and Shih 203 

2019) to a more modern system fueled by eukaryotic algae and supporting complex multicellular 204 

organisms including animals (Erwin et al. 2011, Brocks et al. 2017) possibly triggered by 205 

increased phosphate availability (Laakso et al. 2020) . Net primary productivity of the biosphere 206 

is thought to have increased significantly at this time (Ward et al. 2019a, Ward and Shih 2019), 207 

along with a rise in atmospheric oxygen concentrations to near-modern levels and the more 208 

permanent oxygenation of the deep ocean (Sperling et al. 2015).  The timing of this final rise in 209 

atmospheric and marine O2 is not well-constrained and may have occurred as early as Ediacaran 210 

time (Lyons et al 2014) or as late as ~420 Ma (e.g. Stolper and Keller 2018). The divergence of 211 

stem group proteobacterial AOB during Neoproterozoic time and the radiation of crown group 212 

proteobacterial AOB clades during Paleozoic time suggests that these evolutionary innovations 213 

may be causally linked. Increased oxygenation of the oceans would have provided additional O2 214 

for ammonia oxidation, while higher NPP necessitates higher fluxes of fixed nitrogen through 215 

the biosphere leading to higher rates of N2 fixation to reduced forms (e.g. Ward et al. 2019a). As 216 

a result, the necessary substrates for ammonia oxidation would have been more abundant after 217 

this later rise of O2 than earlier in Proterozoic time, potentially opening additional niche space 218 

that enabled the radiation of AOB. This hypothesis is further supported by the tendency of AOB 219 

to be adapted to higher ammonia (e.g. Martens-Habbena  et al. 2009, Schleper 2010, Kits et al., 220 

2017, Hink et al. 2018) and possibly oxygen (e.g. Ke et al. 2015, Qin et al. 2017) concentrations 221 

than AOA. 222 

The delayed evolution and radiation of AOB may also be a consequence of limited 223 

copper availability in Proterozoic oceans. Aerobic ammonia oxidation has a relatively high 224 

requirement for copper for enzyme cofactors (e.g. Amin et al. 2013), and copper availability in 225 

Proterozoic oceans may have been limited due to the insolubility of copper sulfide minerals in 226 

periodically euxinic oceans (e.g. Saito et al. 2003) and/or lower continental weathering of copper 227 

and subsequent runoff into the oceans (Hao et al. 2017).  The expansion of some metabolic 228 

pathways may therefore have been impeded by the availability of trace metals necessary as 229 

enzyme cofactors (Saito et al. 2003). AOA have a comparable copper requirement for electron 230 

transport and nitrogen metabolic proteins as AOB (e.g. Walker et al., 2010), and so extreme 231 

copper limitation during Proterozoic time would be expected to impede AOA as well as AOB. 232 

Copper limitation may therefore have limited the expansion and potential productivity of the 233 

oxidative nitrogen cycle for much of Proterozoic time. 234 
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 235 

Implications for the Proterozoic nitrogen cycle 236 

The late evolution of crown group AOB clades suggests that bacteria were not playing a 237 

dominant role in driving the oxidative arm of the nitrogen cycle during Proterozoic time, though 238 

it is always possible that there is a deeper history of bacterial ammonia oxidation by other 239 

lineages that remain undiscovered or that are now extinct. The nitrogen isotope record is 240 

consistent with active nitrification and denitrification through most of Proterozoic time (e.g. 241 

Stüeken et al., 2016, Koehler et al., 2017, Kipp et al., 2018), but does not provide direct evidence 242 

for the taxonomic affinity of organisms driving these processes. While the lack of an archaeal 243 

fossil record for calibrating molecular clocks makes estimating the antiquity of AOA 244 

challenging, recent work (Ren et al., 2019) has suggested that ammonia oxidizing 245 

Thaumarchaeota originated ~2.3 Ga, in time to drive the aerobic nitrogen cycle shortly after the 246 

GOE ~2.3 Ga (e.g. Zerkle et al. 2017). Consistent with this hypothesis is the lower oxygen 247 

requirements of AOA compared to proteobacterial ammonia oxidizers, leading to the continued 248 

dominance of AOA in modern oxygen minimum zones (e.g. Bristow et al. 2016). This is also in 249 

keeping with AOA having evolved at a time with one to several orders of magnitude lower O2 250 

than was present during the origin of AOB (e.g. Lyons et al. 2014). The relative contribution of 251 

AOA and AOB to ammonia oxidation fluxes through time has not previously been constrained as 252 

the nitrogen isotope signatures of these groups overlap (Santoro and Casciotti 2011) and the 253 

relative abundance and activity of AOA and AOB in modern environments is only determined 254 

roughly on a local scale via sequencing-based approaches that are not applicable to deep time 255 

(e.g. Bristow et al. 2016). However, our results in combination with those of Ren et al., suggest 256 

that the AOA were responsible for driving all biological ammonia oxidation for most of 257 

Proterozoic time until the origin of the first AOB <1 Ga.  258 

It is important to note that AOA and AOB utilize different biochemical pathways 259 

downstream of AMO, so their relative contribution to ammonia oxidation through time has 260 

significant implications for modeling of the productivity and atmospheric impact of the ancient 261 

biosphere. For example, extant AOA fix carbon using a uniquely energy-efficient O2-tolerant 262 

carbon fixation pathway (a variant of the hydroxypropionate/hydroxybutyrate pathway), while 263 

AOB typically utilize the Calvin Cycle (or, in comammox Nitrospira, the rTCA cycle, Lücker et 264 

al. 2010) (Könneke et al. 2014, Ward and Shih 2019). This allows AOA to fix 1.3g of dry cell 265 

mass for every mole of ammonia oxidized, in contrast to only 0.8g/mol in ammonia oxidizing 266 

Proteobacteria (Könneke et al. 2014). Further, nitrification currently accounts for ~75% of non-267 

photosynthetic carbon fixation in aquatic environments (Raven 2009), so a nearly twofold 268 

difference in efficiency of carbon fixation in AOA versus AOB may lead to significant 269 

differences in predictions of net primary productivity of the biosphere through time. This is 270 

particularly important in the Proterozoic when photosynthetic carbon fixation rates are thought to 271 

have been much lower than today (e.g. Crockford et al. 2018, Ward and Shih 2019, Hodgskiss et 272 

al., 2019). Furthermore, the typical release of N2O by AOA is significantly lower than from 273 

AOB (Hink et al. 2018), particularly under low-oxygen conditions (Stieglmeier et al. 2014). As a 274 

result, an increased contribution of AOA to nitrification during Proterozoic time would likely be 275 

associated with a lower biogenic N2O flux, potentially at levels sufficiently low to prevent N2O 276 

from accumulating as an important greenhouse gas in the Proterozoic atmosphere as previously 277 

proposed (e.g. Buick 2007).  278 

Our results provide necessary constraints for establishing a timeline for the evolution of 279 

the biological nitrogen cycle. Before the origin of the first ammonia oxidizers, the nitrogen cycle 280 
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would have consisted primarily of a vector toward reduced forms, with perhaps some oxidized 281 

nitrogen produced abiotically via processes like lightning (e.g. Navarro-Gonzalez et al., 1998, 282 

Wong et al. 2017). This reduced biogeochemical nitrogen cycle is thought to have persisted 283 

through Archean time (e.g. Ward et al. 2019a, Yang et al. 2019) and may have continued into 284 

Proterozoic time until the evolution of the first ammonia oxidizing Archaea. Due to the stability 285 

of fixed nitrogen in the oceans as ammonia at this time, the nitrogen demands of phototrophic 286 

primary productivity would have been readily met (Ward et al., 2019a, Yang et al., 2019). 287 

Following the evolution of the AOA, the Proterozoic biosphere may have still been nitrogen 288 

limited, as the conversion of ammonia to nitrite/nitrate in oxygenated surface oceans would 289 

likely be followed by substantial loss of fixed nitrogen via denitrification and anammox in 290 

anoxic bottom waters (e.g. Fennel et al. 2005). This extensive nitrogen loss would have 291 

maintained low concentrations of fixed nitrogen in the oceans, consistent with the relatively high 292 

substrate affinity of AOA (e.g. Martens-Habbena et al., 2009) and low overall GPP predictions 293 

for that time (Crockford et al., 2018, Ward et al., 2019a, Hodgskiss et al., 2019).  294 

The Earth experienced several evolutionary and environmental revolutions during 295 

Neoproterozoic and Paleozoic time including the rise of atmospheric oxygen to near-modern 296 

levels (e.g. Lyons et al., 2014, Stolper and Keller 2018), persistent oxygenation of the deep 297 

oceans (e.g. Stolper and Bucholz 2019), the rise of eukaryotic algae and animals (e.g. Brocks et 298 

al., 2017), and finally the evolution of plants and colonization of terrestrial environments (e.g. 299 

Ibarra et al., 2019). These events had a number of effects on weathering and geochemical cycles 300 

and may have triggered evolutionary innovations in the nitrogen cycle. For instance, higher 301 

primary productivity (e.g. Ward and Shih 2019) would have increased fluxes of nitrogen through 302 

the biosphere while increased oxygenation would have increased the stability of nitrate in the 303 

oceans and subsequently allowed the accumulation of a large marine fixed nitrogen pool for the 304 

first time since the GOE (e.g. Stüeken et al., 2016). These changes may have provided 305 

opportunities for the convergent evolution of multiple lineages of ammonia oxidizing bacteria, 306 

particularly Nitrosomonadaceae and Nitrosococcaceae.  307 

Finally, it appears that comammox Nitrospira evolved last of all known lineages of 308 

ammonia oxidizers. Comammox Nitrospira appear to be derived from a larger and more ancient 309 

clade of nitrite oxidizing Nitrospirota via HGT of ammonia oxidation genes. Molecular clocks 310 

suggest that this transition occurred during Mesozoic time (Figure 3). Comammox Nitrospira 311 

and their nitrite oxidizing relatives are adapted to low O2 concentrations (e.g. Palomo et al., 312 

2018); the apparent coincidence of the evolution of comammox Nitrospira with Mesozoic 313 

Oceanic Anoxic Events (e.g. Robinson et al., 2016) may reflect the expansion of niches for 314 

ammonia oxidizers with low oxygen demands at this time. 315 

 316 

Conclusions 317 

The molecular clock evidence for broadly coincident radiations of multiple convergently 318 

evolved crown group AOB clades (Nitrosomonadaceae, Nitrosococcaceae, and comammox 319 

Nitrospira) shown here is largely unprecedented in molecular clock studies, which typically 320 

address the age of a single clade (e.g. acquisition of phototrophy within a bacterial phylum, Shih 321 

et al. 2017b) or show multiple evolutionary events scattered through time (e.g. evolution of C30 322 

sterols in sponges and algae, Gold et al. 2016). This adds strength to interpretations that the 323 

convergent evolutionary transitions to ammonia oxidation in these groups and/or their 324 

subsequent radiation may be linked to increases in ocean oxygenation at this time and highlights 325 

the interconnectedness between evolution of biogeochemically relevant microorganisms and 326 
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major environmental perturbations. These interpretations are made only stronger in combination 327 

with other work indicating evolutionary and ecosystem expansion of AOA around this time (Ren 328 

et al., 2019). 329 

The necessity of reevaluating the structure and size of the Proterozoic nitrogen cycle in 330 

light of evidence for late-evolving AOB highlights a recurring problem in assessing the antiquity 331 

of microbial lineages—the rock record typically records the indirect effects of a 332 

(bio)geochemical process or the metabolism driving it, not directly the organisms that perform it. 333 

As a result, care must be taken in applying a strictly uniformitarian interpretation of the 334 

biological drivers of geochemical processes in deep time, as this overlooks evolutionary 335 

processes such as convergent evolution or horizontal gene transfer of metabolic pathways that 336 

lead to incongruent histories and potentially different combinations of traits in ancient drivers of 337 

biogeochemical cycles from the organisms responsible for these processes today.  338 

 339 

Methods: 340 

Phylogenetic methods followed those described previously (Ward and Shih 2020) and 341 

summarized here. Genomes were downloaded from the NCBI Genbank and WGS databases. 342 

Completeness and contamination of metagenome-assembled genomes (MAGs) was estimated 343 

based on presence and copy number of conserved single-copy proteins by CheckM (Parks et al. 344 

2015). Protein sequences used in analyses (see below) were identified locally with the tblastn 345 

function of BLAST+(Camacho et al. 2009), aligned with MUSCLE (Edgar 2004), and manually 346 

curated in Jalview (Waterhouse 2009). Positive BLAST hits were considered to be full length 347 

(e.g. >90% the shortest reference sequence from an isolate genome) with e-values greater than 348 

1e-20. Presence of metabolic pathways of interest in incomplete MAGs was predicted with 349 

MetaPOAP (Ward et al. 2018b) to check for False Positives (contamination) or False Negatives 350 

(genes present in source genome but not recovered in metagenome-assembled genomes). 351 

Phylogenetic trees were calculated using RAxML (Stamatakis 2014) on the Cipres science 352 

gateway (Miller et al. 2010). Transfer bootstrap support values were calculated by BOOSTER 353 

(Lemoine et al. 2018), and trees were visualized with the Interactive Tree of Life viewer (Letunic 354 

and Bork 2016). Taxonomic assignment was confirmed with GTDB-Tk (Parks et al. 2018). 355 

Histories of vertical versus horizontal inheritance of metabolic genes was inferred by comparison 356 

of organismal and metabolic protein phylogenies (Doolittle 1986, Ward et al. 2018a). 357 

A concatenated protein alignment was generated by extracting protein sequences for 358 

marker genes from genomes of interest via the tblastn function of BLAST+ (Camacho et al. 359 

2009), aligning protein sequences with MUSCLE (Edgar 2004), and then concatenating aligned 360 

sequences. Concatenated alignments were curated with Gblocks (Castresana 2000) and manually 361 

in Jalview (Waterhouse 2009). Taxa included in this alignment consist of all available AOB 362 

genomes on the NCBI GenBank and WGS databases as well as sister groups and outgroups 363 

spanning the full diversity of the Proteobacteria and Nitrospirota as well as closely related phyla 364 

(e.g. Methylomirabilota and Nitrospinota) as assessed by GTDB (Parks et al. 2018) and 365 

concatenated ribosomal protein phylogenies of the tree of life (Figure 1, Hug et al. 2016), as well 366 

as Cyanobacteria, Plastids, and Mitochondria. Phylogenetic markers were chosen as conserved 367 

proteins across bacteria, plastids, and mitochondria, as previously reported (Shih et al 2017a, 368 

Shih et al. 2017b), and consisted of AtpA, AtpB, EfTu, AtpE, AtpF, AtpH, AtpI, Rpl2, Rpl16, 369 

Rps3, and Rps12 protein sequences. Bayesian molecular clock analyses were carried out using 370 

BEAST v2.4.5 (Bouckaert et al. 2019) using the Cyberinfrastructure for Phylogenetic Research 371 

(CIPRES) Science Gateway v 3.3 server (Miller et al. 2010). As previously reported, the CpREV 372 
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model was chosen as the best-fitting amino acid substitution model for the concatenated protein 373 

dataset based on ProtTest analysis (Shih et al 2017b) Cross-calibration techniques utilizing 374 

plastid and mitochondrial endosymbiosis events were used as priors, utilizing time constraints 375 

for the most recent common ancestor of Angiosperms (normal distribution with a mean of 217 376 

Ma and sigma of 40 Ma) and of land plants (normal distribution with a mean of 477 Ma and 377 

sigma of 70 Ma) as has been previously described by Smith et al (Smith et al. 2010,Shih and 378 

Matzke 2013). We also constrained the most recent common ancestor of Rhodophytes with as a 379 

more recent study and precise estimate of the fossil constraint Bangiomorpha pubescens utilizing 380 

Re-Os isotopic measurements of the Bylot Supergroup of Baffin Island where the fossil was first 381 

described (Gibson et al. 2017). Taking into account previously reported ages of Bangiomorpha, 382 

we set this constraint as a uniform prior from 1030-1200 Ma, in order to account both Re-Os and 383 

Pb-Pb isotopic measurements estimating the age of Bangiomorpha (Butterfield 2000). A 384 

conservative uniform prior between 2300-3800 Ma was set on the divergence between 385 

Cyanobacteria and Melainabacteria, as oxygenic photosynthesis evolved prior to the Great 386 

Oxygenation Event and most likely evolved sometime after the Late Heavy Bombardment. 387 

Finally, a uniform prior for all taxa was again set conservatively between 2400-3800 Ma, 388 

assuming that the Last Bacterial Common Ancestor most likely evolved after the Late Heavy 389 

Bombardment. Wide uniform priors were used as a means to provide very conservative upper 390 

and lower limits. Three Markov chain Monte Carlo chains were run for 100 million generations 391 

sampling every 10,000th generation, and the first 50% of generations were discarded as burn-in. 392 

TreeAnnotator v1.7.5 (Bouckaert et al. 2019) was used to generate maximum clade credibility 393 

trees. 394 

As there are no known fossils of archaea to be used as molecular clock calibrations 395 

(Ward and Shih 2019), calibrating archaeal molecular clocks with plant and algal fossils requires 396 

extrapolating evolutionary rates across the entire Tree of Life. Rates of molecular evolution can 397 

vary substantially across deeply diverging lineages (e.g. Kuo and Ochman 2009) and so 398 

application of molecular clocks to inter-domain datasets in the absence of robust calibrations can 399 

introduce untenable artifacts and uncertainty (e.g. Roger and Hug 2006). Recent molecular 400 

clocks spanning the full Tree of Life built with calibrations from only a single domain, for 401 

example, can produce dates for the divergence of bacteria and archaea spanning > 4 Ga between 402 

different marker sets (Zhu et al., 2019) and with credible intervals spanning >1 Ga for nodes in 403 

unconstrained domains (Betts et al., 2018). The methods we utilize here were therefore 404 

determined to not be viable for performing molecular clock analyses on ammonia oxidizing 405 

archaea and so these organisms were not included in our molecular clock analyses.  406 
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d  Archaea p  Crenarchaeota c  Nitrososphaeria o  Nitrososphaerales

d  Bacteria p  UBP10 c  GR-WP33-30 o  bin18 f  bin18 g  bin18

d Bacteria p Actinobacteriota c Actinobacteria

d Bacteria p Verrucomicrobiota c Verrucomicrobiae o Methylacidiphilales f Methylacidiphilaceae
d  Bacteria p  Myxococcota c  UBA9160 o  UBA9160 f  UBA6930 g  UBA6930

d Bacteria p Methylomirabilota c Methylomirabilia o Methylomirabilales f Methylomirabilaceae g Methylomirabilis

d Bacteria p Proteobacteria c Gammaproteobacteria
d Bacteria p Proteobacteria c Alphaproteobacteria o Rhizobiales f Beijerinckiaceae g Methylocystis s Methylocystis rosea
d Bacteria p Proteobacteria c Gammaproteobacteria o Methylococcales f Methylomonadaceae g Methyloglobulus

d Bacteria p Proteobacteria c Gammaproteobacteria o Nitrosococcales f Nitrosococcaceae

d  Bacteria p  Proteobacteria c  Gammaproteobacteria o  UBA7966 f  UBA7966 g  USCg-Taylor

d Bacteria p Proteobacteria c Gammaproteobacteria o Methylococcales

d  Bacteria p  Proteobacteria c  Alphaproteobacteria o  Azospirillales f  Azospirillaceae g  Skermanella s  Skermanella aerolata

d Bacteria p Proteobacteria c Alphaproteobacteria o Rhizobiales f Beijerinckiaceae

d Bacteria p Nitrospirota c Nitrospiria o Nitrospirales f Nitrospiraceae g Nitrospira

d Bacteria p Proteobacteria c Gammaproteobacteria o Betaproteobacteriales f Nitrosomonadaceae
d Bacteria p Proteobacteria c Gammaproteobacteria o Methylococcales f Cycloclasticaceae g UBA2780
d Bacteria p Proteobacteria c Gammaproteobacteria o Betaproteobacteriales f Rhodocyclaceae g Rugosibacter

d Bacteria p Proteobacteria c Gammaproteobacteria o Nevskiales f Nevskiaceae g Solimonas s Solimonas aquatica
d Bacteria p Proteobacteria c Gammaproteobacteria o Nevskiales f Nevskiaceae g Polycyclovorans
d Bacteria p Proteobacteria c Alphaproteobacteria o Rhizobiales f Xanthobacteraceae g Bradyrhizobium s Bradyrhizobium manausense
d Bacteria p Proteobacteria c Gammaproteobacteria o Betaproteobacteriales f Ga0077523 g Ga0077526
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