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Abstract 

The process of transcription initiation and elongation are primary points of control in the regulation of gene 

expression. While biochemical studies have uncovered the mechanisms involved in controlling transcription at 

each step, how these mechanisms manifest in vivo at the level of individual genes is still unclear. Recent 

experimental advances have enabled single-cell measurements of RNAP molecules engaged in the process of 

transcribing a gene of interest. In this manuscript, we use Gillespie simulations to show that measurements of cell-

to-cell variability of RNAP numbers and inter-polymerase distances can reveal the prevailing mode of regulation 

of a given gene. Mechanisms of regulation at each step, from initiation to elongation dynamics, produce 

qualitatively distinct signatures which can further be used to discern between them. Intriguingly, depending on 

the initiation kinetics, stochastic elongation can either enhance or suppress cell-to-cell variability at the RNAP 

level. To demonstrate the value of this framework, we analyze RNAP number distribution data for ribosomal 

genes in S. cerevisiae from three previously published studies and show that this approach provides crucial 

mechanistic insights into the transcriptional regulation of these genes.  

 

Author Summary 

The process of transcription comprises many distinct steps and understanding the regulation of each of these steps 

provides insight into how the levels of gene expression are controlled in the cell. In this manuscript, we use 

stochastic simulations to explore how regulation at the level of elongation and initiation together influences the 

distribution of actively transcribing RNAP on a gene. We find that each of these steps of regulation leaves a 

distinct imprint on the gene-to-gene variability of number of actively transcribing RNAP on the gene and their 

inter-RNAP distances. Using these results, we analyze recent experimental data of transcribing RNAP 

distributions and find that the perturbations in these studies primarily impact the transcription initiation dynamics 

of the genes. 

Introduction 

Transcription broadly consists of three steps: Initiation, elongation, and termination [1,2]. It has become evident 

that each of these steps can play an important role in the regulation of gene expression to varying degrees [3].   

Experimental [4–6] and theoretical [7–9] approaches have typically studied these mechanisms by directly 

monitoring them individually to gain a mechanistic understanding of each. In this manuscript we aim to 

demonstrate how single-cell measurements of the number of active, transcribing RNAP can be used to infer the 

regulatory dynamics of the initiation and elongation process that is controlling the expression of that gene.   

Recent experimental advancements have stimulated the analysis of the mechanisms of transcription elongation in 

vivo. Electron micrograph (EM) images [10–13] enable counting nascent RNAs i.e. the number of RNAP 

molecules engaged in the elongation process of any one gene (shown in Fig. 1B). Similar quantitative information 

is obtained from Fluorescence In Situ Hybridization (FISH) experiments [4,14–16], although distinguishing 

number of nascent RNAs from the raw signal intensity presents a challenge. Moreover, EM images allow us to 

extract the inter-RNAP distances along a gene (shown in Fig. 1C). These two kinds of measurements, i.e. the 

number of transcribing RNAPs and the inter-RNAP distances, obtained from these abovementioned experiments 
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have revealed how different transcription elongation factors such as Spt5 [17] and Nus-factors [18] can affect 

elongation of ribosomal genes in both E. coli and yeast. However, this manuscript lays a foundation for using the 

variability in these measurements as a way to reveal the specific kinetics of regulation of the measured genes. 

There is a history of using kinetic models to describe the dynamic processes of transcriptional regulation [19,20] 

In particular these models have been used to inform how the mean transcriptional levels and the variability around 

that mean depends on the dynamics of the processes that regulate transcription. This has culminated in a prevalent 

“On-off” model [14,19,21–28] of promoter dynamics that considers initiation as being regulated by switching 

between a transcriptionally active and inactive state, the origin of this switching has been proposed as related to 

mechanisms such as transcription factor dynamics, chromatin accessibility or condensates of transcriptional 

machinery. This model has been extended to include the dynamics of the elongation process, to varying degrees; 

the roles of simple stochastic hopping, pausing and steric hindrance have all been considered and their contribution 

to phenomena such as traffic jams and transcription rate has been examined. These models of elongation dynamics 

have been used to predict how mRNA and protein distributions [29,30] depend on elongation dynamics.  In light 

of the data introduced above, the goal of this manuscript is to develop the theoretical predictions that can be used, 

in conjunction with single-cell transcribing RNAP distributions, to reveal the molecular mechanisms that control 

transcription of a given gene. Although previous studies have used mRNA and protein distributions to infer these 

mechanisms, these measurements are conflated with the stochasticity of downstream processes such as translation, 

post-processing, degradation and partitioning [30–37]. In this work we use direct measurement of nascent mRNA 

distributions which are not subject to these additional sources of variability. 

We find that different mechanisms of elongation lead to distinct signatures at the level of transcribing RNAP 

numbers and inter-polymerase distances, which can further be used to discriminate between these mechanisms. 

We also find that for bursty transcription initiation (characterized by periods of high initiation activity followed 

by extended periods of silence [33]), elongation dynamics enhance cell-to-cell variability (noise) in RNAP 

numbers for low initiation rates. However, for high initiation rates, elongation dynamics suppresses noise, leading 

to a masking of the bursty initiation dynamics. To further show the utility of our theoretical framework, we analyze 

published distributions of RNAP numbers for ribosomal genes in budding yeast (S. cerevisiae) and show that in 

each case the observed effect on the gene-to-gene variability in RNAP numbers, for each perturbation, is 

consistent with bursty initiation mechanism for those genes. 

Methods 

Model 

To demonstrate how the distribution of RNAP numbers and inter-polymerase distances can be used to extract 

dynamical information about the process of transcription elongation in vivo, we examine a simple model of 

transcription (shown in Fig. 1A) which incorporates both promoter and elongation dynamics. The promoter can 

transition between two states: an active state (ON), from which transcription initiation can occur, and an inactive 

state (OFF) from which initiation does not occur through mechanisms such as transcription factor binding 

[8,10,81–89]. The rate of switching from the active to the inactive state is kOFF and inactive to the active state is 

kON, while the rate of initiation from the active state is kINI. Next, we consider transcription elongation. In vivo 
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[6,34–51] and in vitro [52–70] experimental studies have reported the asynchronous nature of the motion of RNAP 

molecules during elongation which includes ubiquitous pausing and stochastic hopping. To incorporate these 

features of RNAP elongation in the model, we assume that each individual RNAP molecule on the gene transitions 

between two states: an active state, where it stochastically processes (through single base pair hops) down the 

gene at a rate kEL, called the hopping rate, or a paused state, where hopping ceases. Similar models [29,39–41] 

have been developed to capture the stochasticity of elongation dynamics. An RNAP molecule in the active state 

can switch stochastically to the paused state with a rate kP+, whereas it can again switch back to the active state 

with rate kP-. For elongation, we explicitly consider two different scenarios. First, we study the limit when the 

RNAPs do not pause along the gene (kP+→ 0 in Fig 1A) and elongation is governed by the hopping rate, kEL. We 

call this limiting case the simple elongation model. In the other scenario, RNAPs pause along the gene at random 

sites and elongation is characterized by three processes, namely forward hopping, pausing (at rate kP+), and 

unpausing (at rate kP-) of the RNAPs. This second case is referred to as the pausing model. The polymerases are 

treated as extended, solid objects of length LP base-pairs and so any reaction that would create an overlap is 

forbidden. We assume that each polymerase can pause at any base along the gene and the rate at which it pauses 

is independent of the identity of the base. However, inclusion of site-specific pausing [41–43] does not change 

the conclusions of our work and, as such, are primarily presented in the supplementary materials. Additionally, 

there are several other mechanisms that can affect the progression of RNAP on a gene, e.g., backtracking of 

polymerases [74, 75], crowding by nucleosome [44], and DNA supercoiling [45,46]. However, to keep the model 

simple and to reduce the parameter space, we do not incorporate these additional mechanisms. Model parameters 

used in the simulation are listed in table 1 and 2 and are taken from previously reported papers. We discuss in 

detail the parameter selection in method section. 

Results and discussion 

Different models of elongation can be discriminated by their signatures at the level of 

nascent RNA distribution 

The goal of this study is to demonstrate how the cell-to-cell variability of RNAP numbers and inter-polymerase 

distances can be used to extract dynamical information about the process of transcription elongation in vivo. Of 

particular interest is the dependence of these quantities on the initiation rate; the initiation rate is a readily 

accessible parameter in experiments, both due to the natural variation in initiation rate, and the ability to 

systematically alter the rate of initiation by genetic manipulation [47]. The key finding of this paper is that the 

inclusion of pausing in the model results in qualitatively distinct predictions for the cell-to-cell variability of 

RNAP numbers and inter-RNAP distances as a function of the initiation rate (Fig. 2) compared to simple 

elongation (kP+→ 0). In the following section we discuss the model predictions in the absence of promoter 

dynamics (a constitutive promoter) by setting the OFF rate (kOFF) to zero. 

Variability in transcribing RNAP numbers - The Fano factor, defined as the ratio of the variance to mean, is a 

useful measure of the variability in actively transcribing RNAP on a gene because deviation from one indicates 

departure from a “Poisson” process, i.e., a random process dictated by a single rate-limiting step (initiation, in this 

case) [48]. As seen in Fig. 2A, when the initiation rate is small, the dynamics of RNAP hopping do not strongly 

influence the noise profile. The expected distribution of both models is approximately Poissonian and is dictated 
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by the initiation rate. However, for both models, we see a distinct signature in the Fano factor as it deviates from 

the Poissonian nature of stochastic initiation. 

For simple elongation, the Fano factor drops below one as the initiation rate is increased. In this case, collision 

events between polymerases become more frequent, thus narrowing the polymerase number distribution and the 

Fano factor decreases below one (blue curve in Fig. 2A).  As the density of polymerases on the gene increases, 

the steric interactions between them order the polymerases along the gene, further reducing variability. In the case 

of extremely high initiation rate, the polymerases pack the gene with an inter-polymerase distance set by their 

footprint and thus the variability approaches zero because they are all just hopping along in a line, uniformly 

spaced. This sub-Poissonian behavior can also be seen by separately observing the mean and variance of the 

RNAP number distribution as a function of the initiation rate. While both quantities initially increase linearly with 

the initiation rate, the variance plateaus while the mean continues to rise (see SI Fig. S3). Consequently, Fano 

factor, being a ratio of the variance and the mean, goes down as the initiation rate is increased. 

When pausing is included in the model, the distribution departs from Poisson statistics in a non-monotonic way 

(red curve in Fig. 2A) due to a combination of two effects: bunch formation driven by pausing and the steric 

occlusion that reduces variability. When the initiation rate is much smaller than the pausing (kP+) and unpausing 

rate (kP-) of a polymerase molecule, pausing of polymerases on the gene do not impact the RNAP number 

distribution on a gene [48]. Hence the Fano factor remains close to one. As we increase the initiation rate, the 

stochastic pausing of a single polymerase molecule on the gene can cause a roadblock. If the lifetime (1/kP-) of a 

paused polymerase molecule is long enough (i.e. greater than the time it takes for a polymerase molecule to 

traverse the average distance between two polymerases) such that polymerase molecules from behind catch up, 

then bunches of polymerases will form. Bunch formation blocks the procession of polymerases past the stalled 

polymerase, leading to congestion on the gene which can result in bursts of mRNA production [29,30]. However, 

some RNAPs do not pause on the gene and bunch formation does not occur, enabling periods without traffic. This 

leads to a large variability in the time it takes for a polymerase molecule to traverse the gene. The intermediate 

peak in the Fano factor of RNAP number distribution (see Fig. 2A) corresponds precisely to the peak in variability 

of travel time (see SI Fig. S12). Snapshots of polymerases on the gene obtained from simulations evidently 

demonstrate the high variability in bunch formation at intermediate initiation rates (SI Fig. S11).  For high 

initiation rates, bunch formation happens very frequently and typically gives rise to congestion. As a result, at 

these elevated levels of congestion the variability in the time a polymerase molecule takes to traverse the gene is 

reduced. Consequently, variability in the polymerase number goes down because polymerases will line up behind 

roadblocks. Interestingly, the pausing kinetics can also significantly alter the RNAP occupancy along the gene 

(see Fig. 2C). At high initiation rates, the occupancy is maximum at the start of the gene and gradually decreases 

towards end of the gene. This feature disappears for low initiation rates and is completely absent for the simple 

elongation model regardless of initiation rate (Fig. 2C). This is intuitive because downstream jams can contribute 

to higher density in earlier regions of the gene, however, this is a clear signature of pausing dynamics. As a 

consequence, separately examining three regions of the gene (1-1000 bp, 1001-2000 bp, and 2001-3000bp), which 

is experimentally more feasible to examine, reveals that when the initiation rate is small, mean RNAP number in 

each region is equal (see SI Fig. 2E). But as the initiation rate is increased the number of RNAP in the first one-

third of the gene increases and saturates at much higher values compared to the middle one-third, and the end of 
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the gene which has the lowest number of RNAP. Although data of this type is not typically reported, it is 

experimentally accessible and a strong indicator of the elongation dynamics regardless of the promoter dynamics. 

Variability in inter-RNAP distances - Next, we seek to unravel the effect of elongation kinetics on the 

distribution of inter-polymerase distances along a gene.  We use coefficient of variation (CV; defined as the ratio 

of the standard deviation and the mean), a dimensionless quantity, to capture the variability of the inter-polymerase 

distance distribution along a gene, as shown in Fig. 2B. The CV gives an intuitive interpretation of noise in the 

inter-polymerase distance distribution; when the initiation rate is much smaller than the hopping rate, the inter-

polymerase distances are expected to be exponentially distributed, i.e., CV=1 [49]. The two models of elongation 

considered above make distinct predictions for the CV, as a function of the initiation rate. It must be noted that 

the distribution of inter-polymerase distances is restricted by the gene length, i.e., any distances between two 

polymerases that is greater than the gene length is unphysical and thus the idealized exponential distribution we 

expect is truncated due to the finite gene length. This feature essentially limits the range of the distribution from 

zero to L- LP, where L is the gene length and LP is the RNAP footprint. For the simple elongation model, when 

the initiation rate is much smaller than the hopping rate i.e., (kEL/kINI ≫ 1) there are few polymerases on the gene 

at any given instant and inter-polymerase distances on the order of the gene length are frequent. As a result, the 

gene length restriction impacts the distribution significantly. Consequently, for a finite gene size, the CV is slightly 

less than one for the simple elongation model (blue line in Fig. 2B). However, as the initiation rate is increased, 

the gene becomes more densely packed with polymerase and long inter-polymerase distances become rarer. Hence 

the inter-polymerase distance distribution obtained from simulations captures the first two moments reliably. The 

CV approaches one as the initiation rate is increased. For the ‘pausing model’, the CV increases to a value greater 

than one as a function of the initiation rate and later plateaus (see Fig. 2B). Increasing the initiation rate leads to 

the formation of bunches, as discussed in the previous section. Bunch formation gives rise to two distinct length 

scales for inter-polymerases distances- one defined by the intra-bunch distances and the other by inter-bunch 

distances. This bunch formation accounts for the high CV. In fact, this mechanism has been previously suggested 

as a possible way of generating ‘bursts’ in mRNA production [33]. Importantly, the two models, simple elongation 

and pausing model, have a distinct imprint on the cell-to-cell variability of inter-polymerase distances that allow 

us to discriminate between these models from measured distributions of in vivo inter-polymerase distance 

distributions. 

The above-mentioned results hold for both models (simple elongation and pausing model) over a wide range of 

parameter values. For example, choosing a different hopping rate (kEL = 40 s-1, kEL = 20 s-1) qualitatively produce 

the same results as shown in SI Fig. S1, S4. In general, a smaller hopping rate tend to reduce the noise in the 

RNAP number for both the models. CV of inter-RNAP distance is not affected for the simple elongation model. 

For the pausing model at higher initiation rate the CV goes down with the hopping rate (see SI Fig. S4). Similarly, 

varying gene length (L = 1000 bp, 5000 bp) also does not affect the results (see SI Fig. S2, S5) qualitatively. 

However, the frequency or duration of pauses can significantly alter the peak noise as the initiation rate is tuned 

(see SI Fig. S7, S8). 
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Elongation can either enhance or suppress cell-to-cell variability generated by ‘bursty’ 

transcription initiation 

To examine how stochastic initiation and elongation together impact cell-to-cell variability in RNAP numbers and 

inter-polymerase distances along a gene, we now consider bursty initiation dynamics followed by stochastic 

elongation. The Fano factor of transcribing RNAP number has been analytically solved when polymerase move 

deterministically (at a constant speed) along a gene without pausing [23,48,50]. In this case, the RNAPs do not 

interfere with each other while hopping, and consequently the RNAP number distribution is governed by the 

promoter dynamics alone. The Fano factor increases linearly as a function of initiation rate for this model, shown 

as a black dashed line in Fig. 3B (see SI for analytic solution). As such, promoter dynamics alone can result in 

high cell-to-cell variability in gene expression [14]. However, we find that incorporating stochastic elongation 

dynamics strongly impacts this relationship. 

For the bursty initiation model followed by simple elongation, the Fano factor as a function of kINI is shown in 

Fig. 3B (blue line). When the initiation rate is much smaller than the hopping rate, the Fano factor is, once again, 

dictated by the promoter dynamics. However, as the initiation rate increases, RNAPs start colliding with each 

other on the gene, resulting in a reduction of the Fano factor compared to promoter dynamics alone; this behavior 

is similar to the Fano factor reduction observed when initiation occurs at a constant rate (Fig. 2A). As such, we 

see that simple elongation dynamics can result in dampening some of the variability imparted from the promoter 

dynamics.  

When pausing is included in the elongation dynamics (green line, Fig. 3B), intriguingly, we find that although 

increasing the rate of initiation initially increases the Fano factor above what is expected from the on-off  behavior 

of the promoter, further ramping up of the initiation rate leads to a suppression of noise generated from the 

promoter dynamics alone. At low initiation rates, RNAPs that initiate transcription elongation during the 

promoter’s active period tend to form bunches, which in turn enhances the noise generated from the periodic 

promoter state switching; for low initiation rates, noise generated at the initiation and elongation levels are additive. 

Consequently, when the polymerase can pause, the Fano factor for small initiation rates can exceed the Fano factor 

generated from promoter dynamics alone, as shown in Fig. 3B. However, as the initiation rate is increased further, 

in the regime where the rate of initiation is comparable or greater than the rate of unpausing of polymerases 

(kINI/kP- > 1), elongation dynamics govern the RNAP number distribution, in the process disrupting the signature 

of the initiation dynamics. Hence, the Fano factor of the distribution of RNAP numbers decreases.  

We see a similar phenomenon in the CV of the inter-polymerase distances. For the same reasons described above, 

for small initiation rates the CV of inter-polymerase distances can be higher than the CV expected from the 

promoter dynamics, as shown in Fig. 3C. As the initiation rate is increased, the inter-polymerase distance 

distribution is dictated by the elongation dynamics. Consequently, the CV of the inter-polymerase distance 

distribution gets saturated, as shown in Fig. 3C. These findings hold for a wide range of model parameters, as 

shown in the SI Fig. S9, S10.  

Analysis of RNA polymerase number distributions for ribosomal genes in S. cerevisiae suggests expression 

controlled by altering “off rate” of promoter 
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The theoretical framework developed in the previous sections can be used to extract mechanistic insights about 

the dynamics of transcription initiation and elongation from in vivo measurements of RNAP number distributions. 

To demonstrate this, we have analyzed three different published data sets of RNAP I (Pol I) distribution on 

ribosomal RNA (rRNA) genes in budding yeast obtained from electron micrographs (EM) of fixed cells [51–53]. 

In each dataset, a different perturbation is applied to yeast and the effect on RNAP distributions on the rRNA 

genes is measured. Ideally, to infer the mechanism of initiation and elongation dynamics one should analyze both 

the RNAP number and inter-RNAP distance distributions but due to unavailability of the data we look only at the 

RNAP number distributions in the following sections. 

To analyze these data sets, we plot the Fano factor in number of transcribing RNAPs as a function of mean and 

find that for each data set the studied perturbation leads to a unique response; specifically, one set of data shows 

a (roughly) constant Fano factor for differing mean levels, while another shows a decrease in Fano factor with the 

mean, and yet another shows a non-monotonic curve with an intermediate maximum in Fano factor (Fig. 4).  

We find that the data is inconsistent with a constitutive, non-bursty, promoter. This type of promoter with simple 

elongation predicts a Fano factor of less than or equal to one, which stands in sharp contrast to all these datasets; 

all measured Fano factors are greater than one. Moreover, although pausing can lead to higher Fano factors and a 

non-monotonic relationship between mean RNAP numbers and Fano factor, this model is unable to reproduce the 

large quantitative values exhibited in the data with realistic pausing and unpausing rates (see SI Fig. S14). When 

pausing is included in the bursty initiation model (as in Fig. 3B), frequent pauses strongly reduce the Fano factor 

and make it very difficult to match the values for the control strain; as such we find that pausing is not a significant 

contributor to the RNAP dynamics for these genes. Therefore, below we focus on the model for bursty initiation 

with simple elongation, although we cannot exclude the possibility that weak pausing exists in the data. As a way 

to identify the mechanism responsible for the RNAP distribution data we have available, we make predictions for 

how the Fano factor changes as a function of the mean as any single model parameter is tuned and compare these 

predictions with the data. 

First, for each data set, we extract the parameters characterizing the bursty model (kINI, kON, and kOFF) using mean 

RNAP number and the Fano factor of the control strain as constraints, such that the mean RNAP number and the 

Fano factor is identical to the control wild type strain (defined in the individual descriptions below). Such 

strategies have been used in simulation by Klump et al [39] to estimate the pause duration in presence/absence of 

anti-termination complex for ribosomal genes. Other model parameters (RNAP footprint, gene-length, and 

hopping rate) are directly taken from experimental measurements [11,51] and are kept constant. The fitted values 

for the control strain of each dataset are listed in Table 2. Upon fitting the WT strains for each dataset, the rates 

of promoter dynamics we obtain (kON = 0.01, 0.015, 0.04/s, and kOFF = 0.012, 0.013, 0.012/s) are in close agreement 

with the rates reported for Pol II transcription (kON = 0.01/s and kOFF = 0.011-0.015/s) [46,54]. 

Next, we observe the impact of altering any one of these model parameters individually. In each panel of Fig. 4, 

the solid blue curve corresponds to altering kOFF, the dark grey curve corresponds to altering kON and the light grey 

curve corresponds to altering kINI. Below, we show that for each dataset we can either rule out or highlight which 

process is being impacted by examining the relationship between the Fano factor and the mean of transcribing 

RNAP number. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 31, 2019. ; https://doi.org/10.1101/655712doi: bioRxiv preprint 

https://doi.org/10.1101/655712


9 

 

Role of histone subunits H3 and H4 in transcription of yeast rRNA genes – In ref. [52], the authors investigate 

the observation that histone depletion leads to a decrease in transcription of rRNA genes in budding yeast. On one 

hand, histones are often thought of as barriers that inhibit or slow transcription, however an essential initiating 

factor, UAF, is often found to contain H3 and H4 implying that the absence of these subunits may cause this 

decrease in transcription by decreasing the availability of UAF at rRNA genes. 

The authors measured RNAP distributions on rRNA genes by examining EM chromatin spreads of two strains: 

one depleted of H3 and a control strain (WT) with unperturbed H3 levels. They find that a 50% depletion of H3 

lowers the average number of polymerases per gene while also keeping the Fano factor roughly constant, these 

two data points are shown in Fig. 4A. Through various biochemical experiments they indicate that the role of H3 

depletion is due to two factors: a decrease in RNAP efficiency (by way of processivity or elongation rate) and 

periodic “impediments” to initiation. With this in mind, first, we fit the data for the control strain (WT) to find 

values for the individual rates of the ON-OFF model. Each individual rate of the ON-OFF model is varied over a 

wide range to get the mean and Fano factor approximately same as the wild type strain (a mean of 39.28 and Fano 

factor of 15.01, the rates for the control strain is listed in Table 2). Next, we predict how changes in each parameter 

from the control strain influence the mean and Fano factor (solid and dashed lines in Fig. 4A) and compare the 

predictions with the data. We find that certain parameters such as modulation of the on rate of the promoter (kON) 

or the initiation rate of the promoter (kINI) are incompatible with the trend in the data. In fact, the single rate that 

is compatible with this observation is modulation of the promoter off rate (kOFF), implying that H3 depletion may 

cause UAF to be less stable at the promoter, rather than (for instance) decreasing the probability of activation by 

UAF. 

Role of Spt4p in transcriptional elongation of rRNA genes – Spt4p and Spt5p are known to form a complex 

that facilitates transcription elongation in Pol II. Furthermore, it has been shown that this complex competes with 

an initiation factor, TFE, for the RNAP clamp of Pol II [55].  

In ref. [53], the role of Spt4p in transcription by Pol I is investigated by examining chromatin spreads of a control 

(WT) strain and a strain with SPT4 deleted. From the examination of chromatin spreads of each of these strains 

the authors find that the deletion of SPT4 causes an increase in average polymerase number per gene and a small 

decrease in Fano factor (data points shown in Fig. 4B). The mechanistic reason for this increase is not explored. 

First, we find values for the individual rates of the ON-OFF model to match the mean and Fano factor of RNAP 

number with the control strain (a mean of 32.66 and Fano factor of 20.03, see Table 2) and then varied each rate 

individually. We find that any alterations in the promoter off rate (kOFF) or the promoter on rate (kON) both 

influence the noise to mean relationship in a way that is consistent with the data. However, tuning the promoter 

off rate, shown as solid blue line in Fig. 4B, matches the data points more closely. To distinguish between these 

two outcomes, we would require more, systematic data points. However, either way we predict that Spt4 is playing 

a role in the promoter dynamics for Pol I transcription. Naively, we might expect that Spt4 may play a similar role 

in competing for the clamp of Pol I and thus “turn off” the promoter by out competing an initiation factor. 

Downregulation of rRNA synthesis in stationary phase - In yeast, gene expression is regulated by different 

signaling pathways as cells transit from log phase (when cell number grows exponentially in a population) to 

stationary phase (when cell number on average remains constant in time). In particular, as cells enter the stationary 
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phase, rRNA synthesis decreases [56]. It is also known that chemical treatment of yeast cells (with rapamycin) 

inhibits the functions of Tor signaling pathway, and also inhibits transcription of rRNA genes, leading to a state 

that mimics the stationary phase.  

Using the above systematic perturbation of a control yeast strain in the log phase, Claypool et al. [51] investigated 

how the Tor signaling pathway affects rRNA transcription. The authors showed that a pre-initiation complex, 

consisting of Pol I and a specific transcription factor (Rrn3p), is almost absent in the chemically perturbed cells, 

and also in the stationary phase. This reduction in the pre-initiation complex thus explains the down-regulation of 

rRNA synthesis and suggests that Tor signaling pathway acts on the step of transcription initiation. To quantify 

the down-regulation of rRNA synthesis, the authors calculated the mean and variance of RNAP number 

distributions from EM images of the fixed cells. This was done for four different cases: (i) cells in log phase (used 

as a control), (ii) cells treated with rapamycin for 10 min, (iii) cells treated with rapamycin for 30 min, and (iii) 

cells in stationary phase. When the chemical inhibition of Tor pathway is systematically intensified, the mean 

RNAP number per gene decreases from the control and reaches a minimum in the stationary phase, as shown in 

Fig. 4B. Surprisingly, the EM images showed that when the cells transit from the log phase to the stationary phase, 

a very different pattern of polymerase occupancy of the rRNA genes emerges. While the mean number of RNAP 

molecules along each gene decreases, the Fano factor of the RNAP distribution shows a non-monotonic behavior 

showing an intermediate peak. 

Upon fitting our model to the control strain (a mean of 110.06 and Fano factor of 8.41, see Table 2) we further 

check that the extracted parameters correctly reproduce the measured range of transcription rate for the control 

strain [51] (the experimental value is 0.8/s – 1.1/s per gene, while the calculated value from the simulations is 

0.9/s). While modulating any of the three parameters can produce a downregulation of the mean number of RNAPs 

on the ribosomal genes, only an alteration in the rate of promoter-inactivation (kOFF) matches the trend of the data 

(see Fig. 4C). Changing the rate of initiation (kINI) and promoter activation (kON) either lead to a decrease or an 

increase in the Fano factor as functions of the mean (dashed lines in Fig. 4C). A change in the rate of promoter 

inactivation alone predicts a non-monotonic behavior of the Fano factor as a function of the mean: The Fano factor 

first increases to a maximum and then decreases, shown as solid blue line in Fig. 4C. Assuming only one of these 

rates is tuned, our results thus signify that yeast cells most likely regulate the inactivation rate of the bursty 

promoters as they approach the stationary phase from the log phase. That being said, more systematic data, 

particularly between 40 and 80 polymerases per gene, would help to further substantiate this finding. Regardless, 

our analysis demonstrates how useful mechanistic information about the initiation and elongation dynamics can 

be extracted from the experimental data by employing a mathematical framework akin to that demonstrated here. 

Discussion 

Regulation of gene expression at the level of transcription has been a topic of intense inquiry over the last few 

decades [57,58]. Consequently, the dynamics of initiation has received a lot of attention from researchers and led 

to a deepening of understanding of how it’s regulated. This view though is getting challenged in the light of recent 

experimental findings; the events downstream of transcription initiation, such as RNAP pausing along the gene 

play significant roles in regulating RNA production. Hence it is imperative to catalog how the different steps in 
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transcription contribute to the regulation of gene expression in order to develop a comprehensive understanding. 

In this paper, we examine a common model of transcription initiation and elongation dynamics in order to predict 

the impact of these processes on nascent RNA (RNAs in the process of being synthesized by the RNAP molecule) 

distributions. Recent experimental advancements bestow a unique opportunity to make progress in this direction. 

Single molecule FISH measurements and EM images of transcribing RNAPs provide the distribution of RNAP 

molecules along a gene across an isogenic population. Motivated by these advances, we utilize a kinetic model of 

transcription to connect mechanisms of transcription to this type of experimental data. The models of transcription 

initiation and elongation considered here provide a route to delineate the impact of elongation on the distributions 

of RNAP numbers and inter-polymerase distances. In particular, we consider two different models of transcription 

elongation that incorporate two broad classes of elongation mechanisms and show that they make qualitatively 

distinct predictions for the distributions of RNAP numbers and inter-polymerase distances, which in turn allows 

us to discern them. For bursty initiation followed by simple elongation cell-to-cell variability at the RNAP 

numbers, generated at the level of the initiation get suppressed due to the collision between RNAP molecules on 

the gene. Intriguingly though for the ‘pausing model’ elongation dynamics can have a non-monotonic influence 

on RNAP number distribution, as we increase the initiation rate. While in the beginning the noise is determined 

primarily by the initiation dynamics, a further increase in initiation rate leads to a regime where the cell-to-cell 

variability due to initiation and elongation dynamics are additive. On the other hand, for an even higher initiation 

rate, RNAP number distribution is primarily dominated by the elongation dynamics.  

Armed with these simulation results, we analyzed three available RNAP number distribution data for ribosomal 

genes in budding yeast (S. cerevisiae) [51–53]. Our analysis reveals that when this data is interpreted through a 

simple ON-OFF model of transcription, the mechanistic effect of each experiment can be identified, or at least 

narrowed down. For instance, in all cases the Fano factor is much greater than one, immediately ruling out such 

simple models as stochastic initiation (a promoter that does not have an off-state) followed by very efficient 

elongation by polymerase i.e. simple elongation or insignificant pausing events. In all cases, we find that a bursty 

initiation model followed by simple elongation can explain the data well. Our data analysis finds that for each 

case perturbations caused the yeast cells to tune the rate of promoter-inactivation to modify rRNA synthesis rates. 

However, importantly, our model considers only intrinsic sources of noise and does not explicitly consider 

extrinsic sources that would result from variability in the cellular environment of individual cells [59–61]. Such 

sources of noise can be included in simulations by treating the rates of, for instance, initiation or promoter 

switching as stemming from a distribution of possible values that reflect differences in cellular concentrations of 

the responsible proteins. 

While using noise in gene expression has been a successful strategy in disentangling the molecular mechanism of 

transcription initiation [7,9,62–64], our theoretical attempt can provide a further leap in developing a 

comprehensive understanding of how initiation and elongation together affect nascent RNA distribution. 
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Methods 

Computational method 

We implement the simulations using Gillespie's algorithm [65] for stochastic reaction systems in C/Matlab. The 

gene template is assumed to be a one-dimensional lattice of length L, where each lattice site represents one base-

pair of the gene. Transcription initiation starts by loading RNAP on the gene template with rate kINI, if the first 35 

bp of the gene, treated as promoter region, is not already occupied by another RNAP. The RNAP then 

stochastically move forward, a one base-pair step, with rate kEL. The forward hopping occurs only if the lattice 

site is not occluded by another RNAP. It is assumed that at each lattice site a transcribing RNAP pauses with a 

probability determined by the pausing rate kP+. A paused RNAP switches back to active state stochastically with 

a rate kP- and continue to hop forward with rate kEL. For simple elongation model the probability of pausing is set 

to zero. Termination of RNAP occurs when a forward step is taken at the last base of the gene. For the bursty 

initiation model, the promoter switches back and forth between an ON state and an OFF state with rate kOFF and 

kON, respectively. Transcription initiation occurs only when the promoter is in ON state. Each simulation is run 

for sufficiently long time (~105 s) to reach the steady state. Typically, for the rates used in the paper the steady 

state is achieved in 102-104 s. Data for steady state distributions (number of RNAP molecules on the gene template 

and the inter-RNAP distances) are then recorded by sampling over time with a time interval (TS) long enough for 

the slowest reaction to occur 20 times on an average (TS = 20 / rate for slowest reaction). Fano factor and CV is 

calculated using at least 30,000 data points for each set of parameters. The rates of the reactions are kept constant 

for any given simulation, i.e., the cell-to-cell variability comes only from the stochasticity of the reaction steps 

and not from the extrinsic sources such as population of cells having different initiation rate, hopping rate etc. 

Parameter selection 

Model parameters used in the simulation are listed in table 1 and 2 and are taken from previously reported papers. 

The pausing frequency (kP+) and pause duration (1/kP-) has been measured in vitro using single-molecule 

experiments [43,66]. Experiments have revealed that RNAP exhibit both short pauses (majority of the pauses 

lasting less than 10 s with a frequency of 0.07-0.15/s) and longer pauses (duration of ~ 20 s). The longer pauses 

are found to be strongly sequence dependent and associated with the backtracking of RNAPs. The ubiquitous 

short pauses on the other hand show a weak sequence dependence. In our simulation we have checked that if 

RNAP pauses at 1 site per 100 bps gives similar results when pausing occur at every nucleotide (the frequency of 

pausing being tuned to get similar number of pauses during elongation). Hence to keep the model simple we 

consider that the pauses are sequence independent. In our simulation we have used a pausing rate in a range 0.1-

1/s and unpausing rate in a rage 0.1-1/s (i.e. pause duration of 1-10 s). The initiation rate, kINI, is varied from 0.01-

2/s. We have used elongation rate, kEL= 80/s throughout the paper unless specified. We chose the rate such that 

the average velocity of elongating RNAPs are within the range of 10-80 bps/s [67,68]. We have used kON = 0.047/s 

and kOFF = 0.2/s to incorporate promoter dynamics in Fig. 3. These rates were previously estimated by Choubey 

et. al. [49] from EM images of transcribing RNAP molecules attached to ribosomal genes. For the data analysis 

of the ribosomal genes the on and off rates are estimated by fitting the mean and the Fano of transcribing RNAPs 

and are listed in Table 2. 
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Analysis of the experimental data 

To test our model predictions, we analyze experimental data for the RNAP number distribution from three 

different studies [51–53]. For the dataset from Claypool et al. [51], the number of polymerase counted for 

individual genes was provided by the authors. From this raw data, we corrected these measurements by adding 

zero counts to each data set corresponding to the fraction of inactive genes. Error bars in both mean and Fano 

factor represent the standard deviation of 1000 independent, resampled data sets with replacement obtained using 

the method of Bootstrapping in Matlab. 

Due to unavailability of raw data for other two data sets analyzed [90,91], the Fano factor is recalculated to correct 

for the inactive gene fraction by incorporating the following simple algebraic calculation. We assume that for a 

given dataset without zeros, xi (i=1:n), the mean and the variance (square of the standard deviation) are u0 and 

var0, respectively. These values are reported in the References [52,53]. Now, to correct for the number of inactive 

genes, denoted by letter m, we use the following equations 

∑ 𝑥𝑖
2 = (𝑛 − 1)𝑣𝑎𝑟0 +

𝑛

𝑖=1

𝑛𝑢0
2, 

corrected mean:  𝑢 =  
𝑛𝑢0

𝑛 + 𝑚
, 

corrected variance: 𝑣𝑎𝑟 =  
1

𝑛 + 𝑚 − 1
(∑ 𝑥𝑖

2

𝑛

𝑖=1

− (𝑛 + 𝑚)𝑢2). 

Error bars in the mean of these measurements is the standard error, however because we do not have the raw data, 

we cannot compute an error bar for the Fano factor of these data. The final corrected mean and Fano factor are 

listed in table 3 for each study. 

Table 3: Correcting for inactive gene copies in experimental datasets 

Strain u0 var0 Active/Inactive 

(n/m) 

Corrected 

Mean (u) 

Corrected 

Fano (var / u) 

WT (177 copy) [53]  46 302.76 29/71 32.66 20.03 

spt4Δ [53]  59.3 201.64 20/80 47.44 15.37 

WT  [52]  49 256 23/93 39.28 15.01 

H3 depleted [52] 35 289 10/43 28.4 14.95 

WT (40 copy) [51]  - - - 100.06 8.41 

10 min rapamycin (40 copy) [51]  - - 2/233 59.81 8.96 

30 min rapamycin (40 copy) [51] - - 2/202 35.15 11.82 

Post-log phase (40 copy) [51] - - 22/229 25.75 9.15 
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Table and figure legends 

Fig. 1 Model of transcription elongation. (A) The promoter for the gene on interest switches between two states: 

an active and an inactive one. The rate of switching from the active state to the inactive state is kOFF, and from the 

inactive to the active state is kON. From the active state transcription initiation proceeds at a rate kINI. Once on the 

gene, each polymerase molecule can either be in an active or a paused state, independent of the state of other 

RNAPs. A polymerase molecule in the active state can switch stochastically to the paused state with a rate kP+, 

whereas it can again switch back to the active state with rate kP-. In the active state, the polymerases move from 

one base pair to the next at a rate kEL, until they reach the end of the gene and fall off at the same rate. From this 

model, we compute the mean and the variance of the number of RNA polymerases, in steady state, and the inter-

polymerase distances along the gene as a function of the initiation rate. (B) Histogram of the RNAP number 

distribution is shown for rrn gene in yeast (adapted from [17]) obtained from EM images of the DNA extracted 

from single cells. (C) Histogram of inter-polymerase distances along a gene in E. coli (adapted from [18]). EM 

images also provide inter-polymerase distances along a gene of interest. 

 

 

 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 31, 2019. ; https://doi.org/10.1101/655712doi: bioRxiv preprint 

https://doi.org/10.1101/655712


19 

 

 

Fig. 2 Noise profiles for different models of transcription elongation. (A, B) Using Gillespie simulations [65], 

we computed the Fano factor of the RNAP number distribution and the coefficient of variation of the inter-

polymerase distance distribution along the gene, as a function of the initiation rate of the gene being transcribed, 

for the two different models of transcription elongation: simple elongation (blue) and pausing model (red). The 

two different models give qualitatively distinct predictions. To illustrate this point, we use the rates, as shown in 

Table 1.  (C) Probability that a nucleotide on a gene is occupied by an RNAP for simple elongation (kINI = 1 s-1 

shown in blue) and pausing model (kINI = 1 s-1, kP+ = 0.1 s-1, and kP- = 0.1 s-1 shown red). (D, E) Mean number of 

RNAP transcribing a gene for three different regions (1-1000 bp, 1001-2000 bp, and 2001-3000bp) as a function 

of initiation rate for simple elongation (D) and pausing model (E). 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 31, 2019. ; https://doi.org/10.1101/655712doi: bioRxiv preprint 

https://doi.org/10.1101/655712


20 

 

 

Fig. 3 Effect of elongation dynamics on RNAP noise for a bursty promoter. (A) We computed the Fano factor 

of the nascent RNA number distribution and (B) the coefficient of variation of the inter-polymerase distance 

distribution as a function of the initiation rate, for the three different models of elongation: on-off promoter 

dynamics alone (dashed line), simple elongation (blue), pausing model (green) for kP+ = 0.1 s-1 and kP- = 0.05 s-1. 

While for the simple elongation Fano factor goes down as the initiation rate is increased, for the pausing model 

for lower initiation rates an increment in the initiation rate enhances Fano factor. However, for higher initiation 

rates, any increase in initiation rate decreases Fano factor.  

 

Fig. 4: Noise in the RNAP number distributions for ribosomal genes in budding yeast. Fano factor of RNAP 

number distribution is plotted as a function of mean from the published experimental data [51–53]. For each data 

set, shown in red squares with error bars, we fit the control stain (WT, filled squares) with the ON-OFF model to 

extract the parameters (kINI, kON, and kOFF; see table 2) and then vary each of them separately keeping the other 

parameters fixed. Simulation results from varying the initiation rate only (dashed light gray line), promoter 

activation rate only (dashed dark gray line), and promoter inactivation rate only (solid blue line) are shown for 

each. Error bars for mean in (A, B) represent standard error of mean (SEM). There are no error bars for Fano 

factor due to unavailability of raw-data sets. Error bars in (C) represent standard error of mean (SEM), and 

standard deviation of the Fano factor. The errors in Fano factor are determined by bootstrapping each experimental 

RNAP number distribution 1000 times and calculating the standard deviation in the Fano factor for those 

independent bootstrapped data sets. 
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Table 1: Rate parameters used in Fig. 2 

Parameters Symbol Value 

RNAP footprint   LP 35 bp [48,49] 

Gene length L 3000 bp 

Hopping rate kEL 80 bps-1 [69] 

Pausing rate kP+ 0.1 s-1 (19 and reference therein) 

Unpausing rate kP- 0.1 s-1 [70] 

Rate of promoter activation kON 0.047 s-1 [49] 

Rate of promoter inactivation kOFF 0.2 s-1[49] 

 

Table 2: Rate parameters used in Fig. 4 

 

Parameters Symbol Value Dataset 

RNAP footprint LP 35 bp [51,69]  All data [51–53] 

Gene length L 6700 bps [51,69] All data [51–53] 

Hopping rate kEL 60 bps-1 [51,69] All data [51–53] 

Initiation rate 

(fit to WT data) 

kINI 

1 s-1 Tongaonkar et al. [52] 

1 s-1 Schneider et al. [53] 

3.5 s-1  Claypool et. al. [51] 

Rate of promoter 

activation 

(fit to WT data) 

kON 

0.01 s-1 Tongaonkar et al. [52] 

0.015 s-1 Schneider et al. [53] 

0.04 s-1 Claypool et. al. [51] 

Rate of promoter 

inactivation 

(fit to WT data) 

kOFF 

0.012 s-1 Tongaonkar et al. [52] 

0.013 s-1 Schneider et al. [53] 

0.012 s-1 Claypool et. al. [51] 
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