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Abstract

On the problem of scoring genes for evidence of changes in the distribu-
tion of single-cell expression, we introduce an empirical Bayesian mixture
approach and evaluate its operating characteristics in a range of numeri-
cal experiments. The proposed approach leverages cell-subtype structure
revealed in cluster analysis in order to boost gene-level information on
expression changes. Cell clustering informs gene-level analysis through
a specially-constructed prior distribution over pairs of multinomial prob-
ability vectors; this prior meshes with available model-based tools that
score patterns of differential expression over multiple subtypes. We de-
rive an explicit formula for the posterior probability that a gene has the
same distribution in two cellular conditions, allowing for a gene-specific
mixture over subtypes in each condition. Advantage is gained by the com-
positional structure of the model, in which a host of gene-specific mixture
components are allowed, but also in which the mixing proportions are
constrained at the whole cell level. This structure leads to a novel form
of information sharing through which the cell-clustering results support
gene-level scoring of differential distribution. The result, according to our
numerical experiments, is improved sensitivity compared to several stan-
dard approaches for detecting distributional expression changes.

Introduction

The ability to measure genome-wide gene expression at single-cell res-
olution has accelerated the pace of biological discovery. Overcoming data
analysis challenges caused by the scale and unique variation properties of
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single-cell data will surely fuel further advances in immunology (Papalexi
and Satija (2017)), developmental biology (Marioni and Arendt (2017)),
cancer (Navin (2015)), and other areas (Nawy (2013)). Computational tools
and statistical methodologies created for data of lower-resolution (e.g.,
bulk RNA-seq) or lower dimension (e.g., flow cytometry) guide our re-
sponse to the data-science demands of new measurement platforms, but
they remain inadequate for efficient knowledge discovery in this rapidly
advancing domain (Bacher and Kendziorski (2016)).

An important feature of single-cell studies that could be leveraged bet-
ter statistically is the fact that cells populate distinct, identifiable subtypes
determined by lineage history, epigenetic state, the activity of various tran-
scriptional programs, or other distinguishing factors. Extensive research
on clustering cells has produced tools for identifying subtypes, including
SC3 (Kiselev et al. (2017)), CIDR (Lin, Troup and Ho (2017)) and ZIFA (Pier-
son and Yau (2015)). We hypothesize that such subtype information may
be usefully utilized in other inference procedures in order to improve their
operating characteristics.

Assessing the magnitude and statistical significance of changes in gene
expression associated with changes in cellular condition has been a central
statistical problem in genomics. New tools specific to the single-cell RNA-
seq data structure, including MAST (Finak et al. (2015)), scDD (Korthauer
et al. (2016)), and D3E (Delmans and Hemberg (2016)), have been deployed
to address this problem. These tools respond to scRNA-seq characteris-
tics, such as high prevalence of zero counts and gene-level multimodality,
but they do not fully exploit cellular-subtype information. Our proposed
method measures changes in a gene’s marginal mixture distribution and
acquires sensitivity to a variety of distributional effects by how it inte-
grates gene-level data with estimated cellular subtypes. It is implemented
in software in the R package scDDboost 1.

Through the compositional model underlying scDDboost, subtypes in-
ferred by clustering inform the analysis of gene-level expression. The pro-
posed methodology merges two lines of computation after cell clustering:
one concerns patterns of differential expression among the cellular sub-
types, and here we take advantage of the powerful EBseq method for de-
tecting patterns in negative-binomially-distributed expression data (Leng
et al. (2015)). The second concerns the counts of cells in various subtypes;
for this we propose a Double-Dirichlet-Mixture distribution to model the
pair of multinomial probability vectors for subtype counts in two exper-

1http://github.com/wiscstatman/scDDboost/
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imental conditions. Further elements are developed, on the selection of
the number of subtypes and on accounting for uncertainty in the clus-
ter output, in order to provide an end-to-end solution to the differential
distribution problem. We note that modularity in the necessary elements
provides some methodological advantages. For example, improvements in
clustering may be used in place of the default clustering without altering
the form of downstream analysis. Also, by avoiding Markov chain Monte
Carlo, scDDboost computations are relatively inexpensive for a Bayesian
procedure.

To set the context by way of example, Figure 1 highlights the ability
of scDDboost to sense subtype composition changes and thus detect sub-
tle gene expression changes between conditions. The three panels on the
left compare expression from 91 human stem cells known to be in the
G1 phase of the cell cycle, as well as from 76 such cells known to be in
the G2/M phase (Leng et al. (2013)) in three genes (BIRC5, HMMR, and
CKAP2), which we happen to know from prior studies have differential
activity between G1 and G2/M (Li and Altieri (1999); Sohr and Engeland
(2008); Dominguez et al. (2016)). Several standard statistical tools applied
to the data behind Figure 1 do not find the observed differences in any of
these genes to be statistically significant when controlling the false discov-
ery rate (FDR) at 5%, but scDDboost does include these genes on its 5%
FDR list. Considering prior studies, these subtle distributional changes
are probably not false discoveries. The right panel in Figure 1 shows these
three among many other genes also known to be involved in cell-cycle
regulation but not identified by standard tools as altered between G1 and
G2/M at the 5% FDR level. The color panel provides insight into why
scDDboost has identified these genes. For this data set, six cellular sub-
types were identified in the first step of scDDboost (colors red, blue, green,
and orange are visible). These subtypes have changed in their proportions
between G1 and G2/M; there is a lower proportion of red cells and a
greater proportion of orange cells in G2/M, for example. These proportion
shifts, which are inferred from genome-wide data, stabilize gene-specific
statistics that measure changes between conditions in the mixture distri-
bution of expression, and thereby increase power. We note that scDDboost
agrees with other statistical tools on very strong differential-distribution
signals (not shown), but it has the potential to increase power for subtle
signals owing to its unique approach to leveraging cell subtype informa-
tion.
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Fig 1: Genes involved in cell-cycle that are identified by scDDboost, but not standard
approaches, as differentially distributed between cell-cycle phases G1 and G2/M in human
embryonic stem cells. Density estimates on the left show expression data (log2 scale) of
three genes identified by scDDboost at 5% FDR, but not similarly identified by MAST,
scDD, and DESeq2. Prior studies have shown that the expression of BIRC5, CKAP2, and
HMMR is dependent on the phase of cell-cycle, suggesting that these subtle shifts are not
false positives. Heatmap (right) shows these three genes among 137 other cell-cycle genes
(GO:0007049) identified exclusively by scDDboost, with expression from low (blue) to high
(red). Cells (columns) are clustered by their genome-wide expression profiles into distinct
cellular subtypes, as indicated by the color panel.

Numerical experiments on both synthetic and published scRNA-seq
data bear out the incidental finding in Figure 1, that scDDboost has sen-
sitivity for detecting subtle distribution changes. In these experiments we
take advantage of splatter for generating synthetic data (Zappia, Phip-
son and Oshlack (2017)) as well as the compendium of scRNA-seq data
available through conquer (Soneson and Robinson (2017)). Additional nu-
merical experiments show a relationship between scDDboost findings and
more mechanistic attempts to parameterize transcriptional activation (Del-
mans and Hemberg (2016)). Finally, we establish first-order asymptotic re-
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sults for the methodology.

On manuscript organization, we present the modeling and methodol-
ogy elements in 2, numerical experiments in Section 3, asymptotic analy-
sis in Section 4, and a discussion in Section 5. We relegate some details to
an appendix and many others to a Supplementary Material document.

Results

Modeling

Data structure, sampling model, and parameters In modeling scRNA-seq
data, we imagine that each cell c falls into one of K > 1 classes, which
we think of as subtypes or subpopulations of cells. For notation, zc = k
means that cell c is of subtype k, with the vector z = (zc) recording the
states of all sampled cells. Knowledge of this class structure prior to mea-
surement is not required, as it will be inferred as necessary from available
genomic data. We expect that cells arise from multiple experimental condi-
tions, such as by treatment-control status or some other factors measured
at the cell level, but we present our development for the special case of
two conditions. Notationally, y = (yc) records the experimental condition,
say yc = 1 or yc = 2. Let’s say condition j measures nj = ∑c 1[yc = j] cells,
and in total we have n = n1 + n2 cells in the analysis. The examples in
Section 3 involve hundreds to thousands of cells. Further let

tj
k = tj

k(y, z) = ∑
c

1[yc = j, zc = k](1)

denote the number of cells of subtype k in condition j and Xg,c denote
the normalized expression of gene g in cell c. This is one entry in a typ-
ically large genes-by-cells data matrix X. Thus, the data structure entails
an expression matrix X, a treatment label vector y, and a vector z of latent
subtype labels.

We treat subtype counts in the two conditions, t1 = (t1
1, t1

2, · · · , t1
K) and

t2 = (t2
1, t2

2, · · · , t2
K), as independent multinomial vectors, reflecting the

experimental design. Explicitly,

t1|y ∼ MultinomialK(n1, φ) and t2|y ∼ MultinomialK(n2, ψ)(2)

for probability vectors φ = (φ1, φ2, · · · , φK) and ψ = (ψ1, ψ2, · · · , ψK) that
characterize the populations of cells from which the n observed cells are
sampled. This follows from the more basic sampling model: P(zc = k|yc =
1) = φk and P(zc = k|yc = 2) = ψk.
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Our working hypothesis, referred to as the compositional model, is that
any differences in the distribution of expression Xg,c between yc = 1 and
yc = 2 (i.e., any condition effects) are attributable to differences between
the conditions in the underlying composition of cell types; i.e., owing to
φ 6= ψ. We suppose that cells of any given subtype k will present data ac-
cording to a distribution reflecting technical and biological variation spe-
cific to that class of cells, regardless of the condition yc of the cell. Some
care is needed in this, as an overly broad cell subtype (e.g., epithelial cells)
could have further subtypes that show differential response to some treat-
ment, for example, and so cellular condition (treatment) would then affect
the distribution of expression data within the subtype, which is contrary
to our working hypothesis. Were that the case, we could have refined the
subtype definition to allow a greater number of population classes K in
order to mitigate the problem of within-subtype heterogeneity. A risk in
this approach is that K could approach n, as if every cell were its own sub-
type. We find, however, that data sets often encountered do not display
this theoretical phenomenon when considering a broad class of within-
subtype expression distributions. We revisit the issue in Section 5, but for
now, we proceed assuming that cellular condition affects the composition
of subtypes but not the distribution of expression within a subtype.

Within the compositional model, let fg,k denote the sampling distribu-
tion of expression measurement Xg,c assuming that cell c is from subtype
k. Then for the two cellular conditions, and at some expression level x, the
marginal distributions over subtypes are finite mixtures:

f 1
g (x) =

K

∑
k=1

φk fg,k(x) and f 2
g (x) =

K

∑
k=1

ψk fg,k(x).

In other words, Xg,c|[yc = j] ∼ f j
g and Xg,c|[zc = k, yc = j] ∼ fg,k.

We say that gene g is differentially distributed, denoted DDg and indicated
by f 1

g 6= f 2
g , if f 1

g (x) 6= f 2
g (x) for some x, and otherwise it is equivalently

distributed (EDg). Motivated by findings from bulk RNA-seq data analy-
sis, we further set each fg,k to have a a negative-binomial form, with mean
µg,k and shape parameter σg, as in (Leng et al. (2013), Anders and Huber
(2010), Love, Huber and Anders (2014) and Chen et al. (2018)). This choice
is effective in our numerical experiments though it is not critical to the
modeling formulation. The use of mixtures per gene has proven useful in
related model-based approaches (e.g., Finak et al. (2015); McDavid et al.
(2014); Huang et al. (2018)).

We seek methodology to prioritize genes for evidence of DDg. Inter-
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estingly, even if we have evidence for condition effects on the subtype
frequencies, it does not follow that a given gene will have f 1

g 6= f 2
g ; that

depends on whether or not the subtypes show the right pattern of dif-
ferential expression at g, to use the standard terminology from bulk RNA-
seq. For example, if two subtypes have different frequencies between the
two conditions (φ1 6= ψ1 and φ2 6= ψ2) but the same aggregate frequency
(φ1 + φ2 = ψ1 + ψ2), and also if µg,1 = µg,2 then, other things being equal,
f 1
g = f 2

g even though φ 6= ψ. The fact is so central that we emphasize:

Key issue: A gene that does not distinguish two subtypes will also not
distinguish the cellular conditions if those subtypes appear in the same
aggregate frequency in the two conditions, regardless of changes in the
individual subtype frequencies.

We formalize this issue in order that our methodology has the neces-
sary functionality. To do so, first consider the parameter space Θ = {θ =
(φ, ψ, µ, σ)}, where φ = (φ1, φ2, · · · , φK) and ψ = (ψ1, ψ2, · · · , ψK) are as
before, where µ = {µg,k} holds all the subtype-and-gene-specific expected
values, and where σ = {σg} holds all the gene-specific negative-binomial
shape parameters. Critical to our construction are special subsets of Θ cor-
responding to partitions of the K cell subtypes. A single partition, π, is a
set of mutually exclusive and exhaustive blocks, b, where each block is a
subset of {1, 2, · · · , K}, and we write π = {b}. Of course, the set Π contain-
ing all partitions π of {1, 2, · · · , K} has cardinality that grows rapidly with
K. We carry along an example involving K = 7 cell types, and one three-
block partition taken from the set of 877 possible partitions of {1, 2, · · · , 7}
(Figure 2).

For any partition π = {b}, consider aggregate subtype frequencies

Φb = ∑
k∈b

φk and Ψb = ∑
k∈b

ψk,

and extend the notation, allowing vectors Φπ = {Φb : b ∈ π} and similarly
for Ψπ. Recall the partial ordering of partitions based on refinement, and
note that as long as π is not the most refined partition (every cell type is in
its own block), then the mapping from (φ, ψ) to (Φπ, Ψπ) is many-to-one.
Further, define sets

Aπ = {θ ∈ Θ : Φb = Ψb ∀b ∈ π}.(3)

and

Mg,π = {θ ∈ Θ : µg,k = µg,k′ ⇐⇒ k, k′ ∈ b, b ∈ π}.(4)
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Fig 2: Proportions of K = 7 cellular subtypes in two different conditions. Aggregated
proportions of subtypes 3 and 4, subtypes 2, 5, and 6, and subtypes 1, and 7 remain same
across conditions, while individual subtype frequencies change. Depending on the changes
in average expression among subtypes, these frequency changes may or may not induce
changes between two conditions in the marginal distribution of some gene’s expression.

Under Aπ there are constraints on cell subtype frequencies; under Mg,π
there is equivalence in the gene-level distribution of expression between
certain subtypes. These sets are precisely the structures needed to address
differential distribution DDg (and it complement, equivalent distribution,
EDg) at a given gene g, since:

Theorem 1. Let Cg,π = Aπ ∩Mg,π. For partitions π1 6= π2, Cg,π1 ∩ Cg,π2 = ∅.
Further, at any gene g, equivalent distribution is

EDg =
⋃

π∈Π

Cg,π.

With additional probability structure on the parameter space, we imme-
diately obtain from Theorem 1 a formula for local false discovery rates:

1− P(DDg|X, y) = P(EDg|X, y) = ∑
π∈Π

P
(

Aπ ∩Mg,π|X, y
)

.(5)

Local false discovery rates are important empirical Bayesian statistics in
large-scale testing (Efron (2007); Muralidharan (2010); Newton et al. (2004)).
For example, the conditional false discovery rate of a list of genes is the
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arithmetic mean of the associated local false discovery rates. The parti-
tion representation guides the construction of a prior distribution (Section
2.3) and a model-based method (Section 2.2) for scoring differential dis-
tribution. Setting the stage, Figure 3 shows the dependency structure of
the proposed compositional model and the partition-reliant prior specifi-
cation.

Fig 3: Directed acyclic graph structure of the compositional model and partition-reliant
prior. The plate on the right side indicates i.i.d. copies over cells c, conditionally on mixing
proportions and mixing components. Observed data are indicated in rectangles/squares,
and unobserved variables are in circles/ovals.

Key to computing the gene-specific local false discovery rate P(EDg|X, y)
is evaluating probabilities P

(
Aπ ∩Mg,π|X, y

)
. The dependence structure

(Figure 3) implies a useful reduction of this quantity, at least conditionally
upon subtype labels z = (zc). For each subtype partition π and gene g,

Theorem 2. P
(

Aπ ∩Mg,π|X, y, z
)
= P (Aπ|y, z) P

(
Mg,π|X, z

)
.

In what follows, we develop the modeling and computational elements
necessary to efficiently evaluate inference summaries (5) taking advantage
of Theorems 1 and 2. Roughly, the methodological idea is that subtype la-
bels z have relatively low uncertainty, and may be estimated from genome-
wide clustering of cells in the absence of condition information y (up to
an arbitrary label permutation). The modest uncertainty in z we handle
through a computationally efficient randomized clustering scheme. Theo-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/655795doi: bioRxiv preprint 

https://doi.org/10.1101/655795
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

rem 2 indicates that our computational task then separates into two parts
given z. On one hand, cell subtype frequencies combine with condition
labels to give P (Aπ|y, z). Then gene-level data locally drive the posterior
probabilities P

(
Mg,π|X, z

)
that measure differential expression between

subtypes. Essentially, the model provides a specific form of information
sharing between genes that leverages the compositional structure of single-
cell data in order to sharpen our assessments of between-condition expres-
sion changes.

Method structure and clustering To infer subtypes, we leverage the ex-
tensive research on how to cluster cells using scRNA-seq data: for ex-
ample, SC3 (Kiselev et al. (2017)), CIDR (Lin, Troup and Ho (2017)), and
ZIFA (Pierson and Yau (2015)). We propose distance-based clustering on
the full set of profiles in a way that is blind to the condition label vector y,
in order to have as many cells as possible to inform the subtype structure.
We investigated several clustering schemes in numerical experiments and
allow flexibility in this choice within the scDDboost software. Associat-
ing clusters with subtype labels ẑc estimates the actual subtypes zc, and
prepares us to use Theorems 1 and 2 in order to compute separate poste-
rior probabilities P(Aπ|y, ẑ) and P(Mg,π|X, ẑ) that are necessary for scor-
ing differential distribution. The first probability concerns patterns of cell
counts over subtypes in the two conditions, and has a convenient closed
form within the double-Dirichlet model (Section 2.3). The second probabil-
ity concerns patterns of changes in expected expression levels among sub-
types, and this is also conveniently computed for negative-binomial counts
using EBSeq (Leng et al. (2013)). Algorithm 1 summarizes how these ele-
ments combine to get the posterior probability of differential distribution
per gene, conditional on an estimate of the subtype labels.

We invoke K−medoids (Kaufman and Rousseeuw (1987)) as the default
clustering method in scDDboost, and customize the cell-cell distance by
integrating two measures. The first assembles gene-level information by
cluster-based-similarity partitioning (Strehl and Ghosh (2003)). Separately
at each gene, modal clustering (Dahl (2009) and Supplementary Material
Section 2.2.2) partitions the cells, and then we define dissimilarity between
cells as the Manhattan distance between gene-specific partition labels. A
second measure defines dissimilarity by one minus the Pearson correla-
tion between cells, which is computationally inexpensive, less sensitive to
outliers than Euclidean distance, and effective at detecting cellular clus-
ters in scRNA-seq (Kim et al. (2018)). The default clustering in scDDboost

combines these two measures by weighted average, with wC = σP
σC+σP

and
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Algorithm 1 scDDBoost-core

Input:

genes by cells expression data matrix X = (Xg,c)

cell condition labels y = (yc)

cell subtype labels (estimated) ẑ = (ẑc)

Output: posterior probabilities of differential distribution from estimated subtypes
1: procedure scDDBoost-core(X, y, ẑ)
2: number of cell subtypes K = length(unique(ẑ))
3: subtype differential expression: ∀g, π compute P(Mg,π |X, ẑ) using EBSeq

4: cell frequency changes: ∀π compute P(Aπ |y, ẑ) using Double Dirichlet model
5: posterior probability: ∀g, P(EDg|X, y, ẑ)← ∑

π
P(Mg,π |X, ẑ) P(Aπ |y, ẑ)

6: return ∀g, P(DDg|X, y, ẑ) = 1− P(EDg|X, y, ẑ)
7: end procedure

wP = 1− wC, where wC, σC, wP, σP are the weights and standard devia-
tions of cluster-based distance and Pearson-correlation distance, respec-
tively. The software allows other distances; in any case the final distance
matrix is denoted D =

(
di,j
)
.

Any clustering method entails classification errors, and so ẑc 6= zc for
some cells. To mitigate the effects of this uncertainty, scDDboost averages
output probabilities from scDDboost-core over randomized clusterings
ẑ∗. These are not uniformly random, but rather are generated by apply-
ing K−medoids to a randomized distance matrix D∗ =

(
di,j/wi,j

)
, where

wi,j are non-negative weights wi,j = (ei + ej), and where (ei) are inde-
pendent and identically Gamma distributed deviates with shape â/2 and
rate â, and where â is estimated from D. (Thus wi,j is Gamma(â, â) and
has unit mean.) The distribution of clusterings induced by this simple
computational scheme approximates a Bayesian posterior analysis, as we
argue in the Appendix, where we also present pseudo-code for the re-
sulting scDDboost Algorithm 2. Averaging over results from randomized
clusterings gives additional stability to the posterior probability statistics
(Supplementary Figure S10).

Computations become more intensive the larger is the number K of cell
subtypes. Version 1.0 of scDDboost is restricted to K ≤ 9; we consider
further computational strategies in Section 5. Inferentially, taking K to be
too large may inflate the false positive rate (Supplementary Figure S11).
The approach taken in scDDboost is to set K using the validity score (Ray
and Turi (2000)), which measures changes in within-cluster sum of squares
as we increase K. Our implementation, in Supplementary Material Section
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2.2.4, shows good operating characteristics in simulation.

P(Aπ|y, z) We introduce the Double Dirichlet Mixture (DDM), which
is the partition-reliant prior p(φ, ψ) indicated in Figure 3, in order to derive
an explicit formula for P(Aπ|y, z). We lose no generality here by defining
Aπ = {(φ, ψ) : Φb = Ψb ∀b ∈ π}, rather than as a subset of the full
parameter space as in (3). Each Aπ is closed and convex subset of the
product space holding all possible pairs of length-K probability vectors.

We propose a spike-slab-style mixture prior with the following form:

p(φ, ψ) = ∑
π∈Π

ωπ pπ(φ, ψ).(6)

Each mixture component pπ(φ, ψ) has support Aπ; the mixing proportions
ωπ are positive constants summing to one. To specify component pπ, no-
tice that on Aπ there is a 1-1 correspondence between pairs (φ, ψ) and
parameter states:

{(φ̃b, ψ̃b, Φb), ∀b ∈ π} ,(7)

where

φ̃b =
φb

Φb
, ψ̃b =

ψb

Ψb
, and Φb = ∑

k∈b
φk = ∑

k∈b
ψk = Ψb.

For example, φ̃b is a vector of conditional probabilities for each subtype
given that a cell from the first condition is one of the subtypes in b.

We introduce hyperparameters α1
k , α2

k > 0 for each subtype k, and set
βb = ∑k∈b

(
α1

k + α2
k

)
for any possible block b. Extending notation, let α

j
b be

the vector of α
j
k for k ∈ b, βπ be the vector of βb for b ∈ π, φb and ψb be

vectors of φk and ψk, respectively, for k ∈ b, and Φπ and Ψπ be the vectors
of Φb and Ψb for b ∈ π. The proposed double-Dirichlet component pπ is
determined in the transformed scale by assuming Ψπ = Φπ and further:

Φπ ∼ DirichetN(π)[βπ](8)

φ̃b ∼ DirichletN(b)[α
1
b] ∀b ∈ π

ψ̃b ∼ DirichletN(b)[α
2
b] ∀b ∈ π

where N(π) is the number of blocks in π and N(b) is the number of sub-
types in b, and where all random vectors in (8) are mutually independent.
Mixing over π as in (6), we write (φ, ψ) ∼ DDM

[
ω = (ωπ), α1 = (α1

k), α2 = (α2
k)
]

.
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We record some properties of the component distributions pπ:

Property 1: In pπ(φ, ψ), ψ and φ are dependent, unless π is the null parti-
tion in which all subtypes constitute a single block.

Property 2: With k ∈ b, marginal means are:

Eπ (φk) =
α1

k

∑k′∈b α1
k′

βb

∑b′∈π βb′
and Eπ (ψk) =

α2
k

∑k′∈b α2
k′

βb

∑b′∈π βb′
.

Recall from (1) the vectors t1 and t2 holding counts of cells in each sub-
type in each condition, computed from y and z. Relative to a block b ∈ π,
let tj

b = ∑k∈b tj
k, for cell conditions j = 1, 2, and, let tj

π be the vector of
these counts over b ∈ π. The following properties refer to marginal distri-
butions in which (φ, ψ) have been integrated out of the joint distribution
involving (2) and the component pπ.

Property 3: t1 and t2 are conditionally independent given y, t1
π and t2

π.

Property 4: For j = 1, 2,

pπ(tj|tj
π, y) = ∏

b∈π

{[
Γ(tj

b + 1)

∏k∈b Γ(tj
k + 1)

] [
Γ(∑k∈b α

j
k)

∏k∈b Γ(αj
k)

] [
∏k∈b Γ(αj

k + tj
k)

Γ(tj
b + ∑k∈b α

j
k))

]}

Property 5:

pπ(t1
π, t2

π|y) =
[

Γ(n1 + 1)Γ(n2 + 1)
∏b∈π Γ(t1

b + 1)Γ(t2
b + 1)

] [
Γ(∑b∈π βb)

∏b∈π Γ(βb)

] [
∏b∈π Γ(βb + t1

b + t2
b)

Γ(n1 + n2 + ∑b∈π βb)

]
.

Let’s look at some special cases to dissect this result.

Case 1. If π has a single block equal to the entire set of cell types
{1, 2, · · · , K}, then tj

b = nj for both j = 1, 2, and Property 5 reduces, cor-
rectly, to pπ(t1

π, t2
π|y) = 1. Further,

pπ(tj|tj
π, y) =

[
Γ(nj + 1)

Γ(nj + ∑K
k=1 α

j
k)

] [
Γ(∑K

k=1 α
j
k)

∏K
k=1 Γ(αj

k)

] [
K

∏
k=1

Γ(αj
k + tj

k)

Γ(tj
k + 1)

]
which is the well-known Dirichlet-multinomial predictive distribution for
counts tj (Wagner and Taudes (1986)). E.g, taking α

j
k = 1 for all types k we

get the uniform distribution

pπ(tj|tj
π, y) =

Γ(nj + 1)Γ(K)
Γ(nj + K)

.
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Case 2. At the opposite extreme, π has one block b for each class k, so
φ = ψ. Then pπ(tj|tj

π, y) = 1, and further, writing b = k,

pπ(t1
π, t2

π|y) =
[

Γ(n1 + 1)Γ(n2 + 1)

∏K
k=1 Γ(t1

k + 1)Γ(t2
k + 1)

] [
Γ(∑K

k=1 βk)

∏K
k=1 Γ(βk)

] [
∏K

k=1 Γ(βk + t1
k + t2

k)

Γ(n1 + n2 + βk)

]
.

which corresponds to Dirichlet-multinomial predictive distribution for counts
t1 + t2 since t1 and t2 are identical distributed given (φ, ψ) in this case.
These properties are useful in establishing:

Theorem 3. DDM is conjugate to multinomial sampling of t1 and t2:

(φ, ψ)|y, z ∼ DDM
[
ωpost = (ω

post
π ), α1 + t1, α2 + t2

]
where

ω
post
π ∝ pπ(t1|t1

π, y) pπ(t2|t2
π, y) pπ(t1

π, t2
π|y)ωπ.(9)

The target probability P(Aπ|y, z) is an integral of the posterior distribu-
tion in Theorem 3. To evaluate it, we need to contend with the fact that
sets {Aπ : π ∈ Π} are not disjoint. Relevant overlaps have to do with
partition refinement. Recall that a partition πr is a refinement of a parti-
tion πc if for any b ∈ πc there exists s ⊂ πr such that ∪

b′∈s
b′ = b. We say πc

coarsens πr when πr refines πc. Any partition both refines and coarsens it-
self, as a trivial case. Generally, refinements increase the number of blocks.
If subtype frequency vectors (φ, ψ) satisfy the constraints in Aπr then they
also satisfy the constraints of any πc that coarsens πr: i.e., Aπr ⊂ Aπc .
Refinements reduce the dimension of allowable parameter states. For the
double-Dirichlet component distributions Pπ, we find:

Property 6: For two partitions π̃ and π, Pπ̃ (Aπ|y, z) = 1[π̃ refines π ].

This supports the main finding of this section:

P(Aπ|y, z) = ∑
π̃∈Π

ω
post
π̃ 1[π̃ refines π].(10)

P(Mg,π|X, z) We leverage well-established modeling techniques for tran-
script analysis, including (Leng et al. (2013), Kendziorski et al. (2003),
and Jensen et al. (2009)), which characterize equivalent or differential ex-
pression in terms of shared or independently drawn mean effects. Let Xg,b
denote the subvector of expression values at gene g over cells c with zc = k
for which subtype k is part of block b of partition π. Conditioning on sub-
type labels z = (zc), we assume that under Mg,π:
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1. between blocks: subvectors {Xg,b : b ∈ π} are mutually independent,
2. within blocks: for cells mapping to block b, observations Xg,c are i.i.d.
3. mean effects: for each block b, there is a univariate mean, µg,b, shared

by cells mapping to that block. a priori these means are i.i.d. between
blocks.

These assumptions imply a useful factorization marginally to latent means,

P(Xg|Mg,π, z) = ∏
b∈π

f (Xg,b),(11)

where f is a customized density kernel. In our case we use EBseq from (Leng
et al. (2013)): the sampling distribution of Xg,c is negative binomial, and
f becomes a particular compound multivariate negative binomial formed
from integrating uncertainty in the block-specific means (see Supplemen-
tary Material Section 2.2.1). Through its gene-level mixing model, EBseq
also gives estimates of {P(Mg,π|z)}: the proportions of genes governed
by any of the different patterns π of equivalent/differential expression
among subtypes. With these estimates and (11) we compute by Bayes’s
rule:

P(Mg,π|X, z) ∝ P(Mg,π|z) ∏
b∈π

f (Xg,b).

The proportionality is resolved by calculating over all partitions π.

Numerical experiments

Synthetic data We used splatter (v. 1.2.0) to generate synthetic scRNA-
seq data for which the DD status of genes is known (Zappia, Phipson and
Oshlack (2017)), thereby allowing us to measure operating characteristics
of scDDboost. Our hypothetical two-condition comparison involved 17421
genes, 10% of which exhibited actual shifts in distribution between two
conditions. We entertained 12 different parameter settings encoding these
distributional shifts, varying the number of subtypes K, the subtype fre-
quency profiles (φ, ψ), as well as the splatter-specific parameters θ and
γ controlling location and scale characteristics of expression levels. These
settings cover a range of scenarios we might expect to see in practice. Two
replicate data sets were simulated under each parameter setting. Further
details are in Supplementary Material Section 3.1.

Figures 4 and 5 summarize the true positive rate and false discovery rate
of scDDboost compared to three other methodologies: MAST (v. 1.4.0), scDD
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(v. 1.2.0), and DESeq2 (v. 1.18.1). scDDboost exhibits very good operating
characteristics in this study, as it controls the FDR in all cases while also
delivering a relatively high rate of true positives in all cases.
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Fig 4: True positive rate (vertical) of four DD detection methods in 12 synthetic-data set-
tings (horizontal). Settings are labeled for K/θ/γ and ranked by scDDboost values. Each
method is targeting a 5% false discovery rate (FDR). The plot shows average rates over
replicate simulated data in each setting.
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Fig 5: False discovery rate (vertical) of methods in settings (horizontal, same order) from
Figure 4

Empirical study We applied scDDboost to a collection of previously
published data sets that are recorded at conquer (Soneson and Robin-
son (2017)). Though not knowing the truly DD genes, we can examine
how scDDboost output compares to output from several standard meth-
ods. We selected 12 data sets from conquer representing different species
and experimental settings and involving hundreds to thousands of cells.
Appendix Table A1 provides details. Figure 6 compares methods in terms
of the size of the reported list of DD genes at the 5% FDR target level. We
see a consistently high yield of scDDboost among the evaluated methods.
For reference, one of these data sets (GSE64016) happens to be the data
behind Figure 1, where we know from other information that some of the
uniquely identified genes are likely not to be false positives.
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Fig 6: Proportion of DD genes at 5% FDR threshold with respect to total number of genes
identified by each method. Ranked by scDDboost list size

To check that the increased discovery rate of scDDboost is not associated
with an increased rate of false calls, we applied it to a series of random
splits of single-condition data sets (Appendix Table A2). Figure 7 confirms
a very low call rate in cases where no changes in distribution are expected.
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Fig 7: False positive counts at 5% FDR threshold by several methods on 5 random splits of
9 single-condition data sets from Appendix Table A2
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We conjecture that scDDboost gains power through its novel approach
to borrowing strength across genes; i.e., that the genomic data are pro-
viding information about cell subtypes and mixing proportions, leaving
gene-level data to guide gene-specific mixture components. One way to
drill into this idea is to consider how many genes have similar expres-
sion characteristics to a given gene. By virtue of the EBseq analysis inside
scDDboost, we may assign each gene to a set of related genes that all
have the same highest-probability pattern of equality/inequality of means
across the subtypes. Say π̂g = argmaxπP(Mg,π|ẑ, X). In Figure 8, we show
that compared to DD genes commonly identified by multiple methods
(blue), the set sizes for genes uniquely identified by scDDboost (red) tend
to be larger. Essentially, the proposed methodology boosts weak DD evi-
dence when a gene’s pattern of differential expression among cell subtypes
matches a large number of other genes.

GSE52529 GSE71585 GSE75748

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.25

0.50

0.75

1.00

others

uni

Fig 8: Genes are grouped by their pattern of differential expression across subtypes as in-
ferred by the EBseq computation within scDDboost for three example datasets. Cumulative
distribution functions of the log-scale size statistic for all genes identified by scDDboost are
plotted; red is the subset uniquely identified by scDDboost; blue are those also identified
by the comparison methods (MAST, scDD, or DESeq2). Sets of similarly-patterned genes
tend to be larger (horizontal axis, log size) for genes uniquely identified by scDDboost
(red) compared to other DD genes (blue), at 5% FDR.

Bursting Transcriptional bursting is a fundamental property of genes,
wherein transcription is either negligible or attains a certain probability of
activation (Raj and van Oudenaarden (2008)). D3E (Delmans and Hemberg
(2016)) is a computationally intensive method for DE gene analysis rooted
in modeling the bursting process. It considers transcripts as in the station-
ary distribution from an experimentally validated stochastic process of
single-cell gene expression (Peccoud and Ycart (1995)). Three mechanistic
parameters (rate of promoter activation, rate of promoter inactivation, and
the conditional rate of transcription given an active promoter) characterize
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the model, which allow distributional changes between conditions with-
out changing the mean expression level. For genes identified as DD by
scDDboost in dataset GSE71585, either uniquely or in common with com-
parison methods, Figure 9 shows changes of these bursting parameters.
Interestingly, genes uniquely identified by scDDboost are associated with
more significant changes between estimated bursting parameters com-
pared to commonly identified genes. This finding and similar findings on
other data sets (not shown) provide some evidence that scDDboost is able
to detect biologically meaningful changes in the expression distribution.
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Fig 9: Absolute values of log fold changes of bursting parameters tend to be larger for
1758 genes uniquely identified by scDDboost (red) compare to other 2983 genes (blue) at
5% FDR

Time Complexity Run time complexity of scDDboost is dominated by
the cost of clustering cells and of running EBSeq to measure differences
between subtypes. Recall the notation that n for number of cells, G for

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/655795doi: bioRxiv preprint 

https://doi.org/10.1101/655795
http://creativecommons.org/licenses/by-nc-nd/4.0/


21

number of genes and K for number of subtypes. Our distance-based clus-
tering of n cells measuring G genes requires on the order of G × n2 op-
erations (see Supplementary Material Section 2.2.2). Further, EBSeq uses
summed counts within each subtype for each gene to compute its den-
sity kernel, and there are Bell(K) differential patterns to compute, where
Bell counts the partitions of K. Our implementation scDDboost efficiently
deals with large n under moderate K. We have imposed the computational
limit K ≤ 9 in scDDboost (v. 1.0). In a typical case involving 20000 genes
and 200 cells, using 50 of randomized distances, scDDboost is relatively
efficient for K ≤ 6 requiring less than 15 CPU minutes on, for example, a
quad-core 2.2 GHz Intel Core i7 with 16 Gb of RAM. The same data might
require 20 to 40 CPU hours when K = 9. In Section 5 we mention some
opportunities to improve this speed.

Asymptotics of the Double Dirichlet Mixture

Summary statistics P(Aπ|y, z), from Section 2.3, are amenable to a first-
order asymptotic analysis that provides further insight into DDM model
behavior. The fact that support sets Aπ for component distributions pπ(φ, ψ)
are not disjoint becomes an important issue. Consider distinct partitions
π1 and π2 of subtypes {1, 2, · · · , K}, and recall that N(π) counts the num-
ber of blocks in partition π. In case π2 refines π1, then N(π1) < N(π2),
and we also know that Aπ2 ⊂ Aπ1 , since refinement imposes additional
constraints on the pair (φ, ψ) of probability vectors. If the data-generating
state (φ, ψ) ∈ Aπ2 , one might ask how posterior probability mass tends
to be allocated among the other mixture components whose support sets
also contain this state. The question is addressed by the following:

Theorem 4. Let π1 and π2 denote two partitions for which N(π1) < N(π2)
and Aπ1 ∩ Aπ2 is non-empty. Let (φ, ψ) ∈ Aπ1 ∩ Aπ2 denote the data generat-
ing state for subtype labels z1, z2, · · · , zn given i.i.d. Bernoulli condition labels
y1, y2, · · · , yn, and recall the posterior mixing proportions ω

post
π from equation (9)

with hyper-parameters α
j
i ≥ 1 for i = 1, · · · , K, j = 1, 2. Then

ω
post
π1

ω
post
π2

−→a.s. 0 as n −→ ∞.

Essentially, mixing mass is transferred to components associated with
the most refined partition consistent with a given parameter state. To be
precise, let H(φ, ψ) = {π : (φ, ψ) ∈ Aπ} record all the partitions associated
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with one state. Typically, there is a most refined partition, π∗ = π∗(φ, ψ),
such that

Aπ∗ =
⋂

π∈H(φ,ψ)

Aπ.(12)

This always happens when K ≤ 3. In Supplementary Material Section 4
we characterize the exceptional set of states where (12) does not hold.
Notably, if (12) does hold for state (φ, ψ), then for any π ∈ H(φ, ψ), using
Theorem 4 and (10), we have

P(Aπ|y1, · · · , yn; z1, · · · zn) −→a.s. 1 as n −→ ∞.

This provides conditions under which we expect good performance for
large numbers of cells.

Discussion

We have presented scDDboost, a tool for detecting differentially dis-
tributed genes from scRNA-seq data, where transcripts are modeled as a
mixture of cellular subtypes. The methodology links established model-
based techniques with novel empirical Bayesian modeling and computa-
tional elements to provide a powerful detection method showing compar-
atively good operating characteristics in simulation, empirical, and asymp-
totic studies.

In the software and numerical experiments we made specific choices,
such as to use mixtures of negative binomial components per gene, and to
use K-medoids clustering on particular cell-cell distances. These choices
have evident advantages, but the model structure and theory developed
in Section 2 carry through for other cases. Future experiments could study
other formulations within the same schema; for example there may be cell-
cell distances that better capture the intrinsic dimensionality of expression
programs, including, perhaps distances based on diffusions (Haghverdi,
Buettner and Theis (2015)) or the longest-leg path distance (Little, Mag-
gioni and Murphy (2017)). Future experiments could also further assess
operating characteristics when the number of cells is very large and the
number of reads is relatively small, as may arise with unique molecular
identifiers (Chen et al. (2018)). Further, assuming a compositional struc-
ture to drive model-based computations may not be restrictive, since it
allows great flexibility in the form of each gene/condition-specific expres-
sion distribution (as coded, they are finite mixtures of negative binomials).
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EBSeq currently presents a computational bottleneck for scDDboost, since
it searches all partitions of K and encodes a hyper-parameter estimation
algorithm that scales poorly with K. Several approximations present them-
selves that may redress the problem, since, in the mixture model context,
only patterns π corresponding to relatively probable expression-change
patterns over subtypes have a big impact on the final posterior inference.
Even resolving this bottleneck there are advantages to having K small com-
pared to n. Numerical experiments (see Supplement) show increased false
discoveries when K is over-estimated. But accurate estimation with large
K would not be expected to provide much improved power, since that
depends on accurate estimation of subtypes and their frequencies which
relies on K being relatively small compared to n.
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Appendix

Proof of Theorem 1 If θ ∈ ⋃π∈Π
[
Aπ ∩Mg,π

]
, then there exists a partition

π for which θ ∈ Aπ and θ ∈ Mg,π. By construction

f 1
g (x) =

K

∑
k=1

φk fg,k(x) = ∑
b∈π

∑
k∈b

φk fg,k(x) = ∑
b∈π

Φb fg,k∗(b)(x),

where k∗(b) indexes any component in b, since all components in that
block have the same component distribution owing to constraint Mg,π.
Continuing, using the constraint θ ∈ Aπ,

f 1
g (x) = ∑

b∈π

Ψb fg,k∗(b)(x) = f 2
g (x) ∀x.

That is, θ ∈ EDg.

If θ ∈ EDg, then f 1
g (x) = f 2

g (x) for all x. Noting that both are mixtures
over the same set of components { fg,k}, let {hg,l : l = 1, 2, · · · , L} be the
set of distinct components over this set, and so

f 1
g (x) =

k

∑
k=1

φk fg,k(x) =
L

∑
l=1

cg,l(φ)hg,l(x) =
L

∑
l=1

cg,l(ψ)hg,l(x) = f 2
g (x)

where

cg,l(φ) =
K

∑
k=1

φk1[ fg,k = hg,l ] cg,l(ψ) =
K

∑
k=1

ψk1[ fg,k = hg,l ].(13)

Finite mixtures of distinct negative binomial components are identifiable
(Proposition 5 from Yakowitz and Spragins (1968)), and so the equality of
f 1
g and f 2

g implies cg,l(φ) = cg,l(ψ) for all l = 1, 2, · · · , L. Identifying the
partition blocks bl = {k : fg,k = hg,l}, and the partition π̃ = {bl}, we find
θ ∈ Aπ̃ ∩ Mg,π̃. The accumulated probabilities in (13) correspond to Φπ̃

and Ψπ̃, which are equal on Aπ̃.

Randomizing distances for approximate posterior inference One way to frame
the subtype problem is to suppose that subtype labels z = (zi) satisfy
z = f (∆), where ∆ =

(
δi,j
)

is a n × n matrix holding true, unobservable
distances, such as δi,j between cells i and j, and that f is some assignment
function, like the one induced by the K−medoids algorithm. Then pos-
terior uncertainty in z would follow directly from posterior uncertainty
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in ∆. On one hand, we could proceed via formal Bayesian analysis, say
under a simple conjugate prior in which 1/δi,j ∼ Gamma(a0, d0), for hy-
perparameters a0 and d0, and in which the observed distance di,j|δi,j ∼
Gamma(a1, a1/δi,j). This would assure that δi,j is the expectation of di,j,
with shape parameter a1 affecting variation of measured distances about
their expected values. Not accounting for any constraints imposed by both
D and ∆ being distance matrices, we would have the posterior distribution
1/δi,j|D ∼ Gamma(a0 + a1, d0 + a1di,j). For any threshold c > 0, we would
find

P
(
δi,j ≤ c|D

)
= P

(
U ≥

d0 + a1di,j

c(a0 + a1)

)
(14)

where U ∼Gamma(a0 + a1, a0 + a1)

Alternatively, we could form randomized distances d∗i,j = di,j/wi,j where
wi,j is the analyst-supplied random weight distributed as Gamma(â, â) as
in Section 2.2. Notice that

P(d∗i,j ≤ c|D) = P(wi,j > di,j/c|D)

which is also an upper tail probability for a unit-mean Gamma deviate
with shape and rate equal to â. Comparing to (14), by setting â to equal
a0 + a1, and if a0 and d0 are relatively small, we find

P(d∗i,j ≤ c|D) ≈ P(δi,j ≤ c|D).

In other words, the randomized distance procedure is providing approxi-
mate posterior draws of the underlying distance matrix. In spite of limita-
tions of this procedure for full Bayesian inference, it provides an elemen-
tary scheme to account for uncertainty in subtype allocations. Numeri-
cal experiments in Supplementary Material make comparisons to a full,
Dirichlet-process-based, posterior analysis.
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Algorithm 2 scDDboost

Input:

genes by cells expression data matrix X = (Xg,c)

cell condition labels y = (yc)

number of cell subtypes K

number of randomized clusterings nr

Output: posterior probabilities of differential distribution
procedure scDDboost(X, y, K, nr)

2: distance matrix: D = dist(X)← pairwise distances between cells (columns of X)
hyper-parameters (a0, a1, d0)← hyper(D). Set â = a0 + a1.

4: repeat
Gamma noise vector: e, with components ∼ Gamma(â/2, â)

6: randomized distance matrix: D∗ ← D/(e1T + 1eT)
ẑ∗ ← K−medoids(D∗)

8: P∗ ← scDDboost-core(X, y, ẑ∗)
until nr randomized distance matrices

10: return ∀genes g, P(DDg|X, y) = 1
nr

∑D∗ P∗g
end procedure

Pseudo-code

Empirical datasets

Data set Conditions # cells Organism Ref

GSE94383 0 min unstim vs 75min stim 186,145 human Lane et al. (2017)
GSE48968-GPL13112 BMDC (2h LPS stimulation) vs 6h LPS 96,96 mouse Shalek et al. (2014)
GSE52529 T0 vs T72 69,74 human Trapnell et al. (2014)
GSE74596 NKT1 vs NTK2 46,68 mouse Engel et al. (2016)
EMTAB2805 G1 vs G2M 95,96 mouse Buettner et al. (2015)
GSE71585-GPL13112 Gad2tdTpositive vs Cux2tdTnegative 80,140 mouse Tasic et al. (2016)
GSE64016 G1 vs G2 91,76 human Leng et al. (2015)
GSE79102 patient1 vs patient2 51, 89 human Kiselev et al. (2017)
GSE45719 16-cell stage blastomere vs mid blastocyst cell 50, 60 mouse Deng et al. (2014)
GSE63818 Primordial Germ Cells, develop- mental stage: 7 week

gestation vs Somatic Cells, developmental stage: 7
week gestation

40,26 mouse Guo et al. (2015)

GSE75748 DEC vs EC 64, 64 human Chu et al. (2016)
GSE84465 neoplastic cells vs non-neoplastic cells 1000, 1000 human Darmanis et al.

(2017)

Appendix Table A1
Data sets used for the empirical study of scDDboost
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Data set Condition # cells

GSE63818null 7 week gestation 40
GSE75748null DEC 64
GSE94383null T0 186
GSE48968-GPL13112null BMDC (2h LPS stimulation) 96
GSE74596null NKT1 46
EMTAB2805null G1 96
GSE71585-GPL13112null Gad2tdTpositive 80
GSE64016null G1 91
GSE79102null patient1 51

Appendix Table A2
Single-condition data sets used in the random-splitting experiment.
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