
 

1 
 

The human gut virome database 1 

Ann C. Gregory1,*, Olivier Zablocki1,*, Allison Howell1, Benjamin Bolduc1 & Matthew B. Sullivan1,2,# 2 

 3 

1Department of Microbiology, Ohio State University, Columbus, OH, United States 4 

2Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, 5 

United States 6 

# Correspondence to: Matthew Sullivan, sullivan.948@osu.edu  7 

* These authors contributed equally 8 

 9 

ABSTRACT  10 

The gut microbiome profoundly impacts human health and disease, but viruses that infect these microbes 11 

are likely also important. Problematically, viral sequences are often missed due to insufficient reference 12 

viral genomes. Here we (i) built a human gut virome database, GVD, from 648 viral particle 13 

metagenomes or microbial metagenomes from 572 individuals previously searched for viruses, (ii) 14 

assessed its effectiveness, and (iii) conducted meta-analyses. GVD contains 13,203 unique viral 15 

populations (approximately species-level taxa) organized into 702 novel genera, which roughly doubles 16 

known phage genera and improves viral detection rates over NCBI viral RefSeq nearly 60-fold. Applying 17 

GVD, we assessed and rejected the idea of a ‘core’ gut virome in healthy individuals, and found through 18 

meta-analyses that technical artifacts are more impactful than any ‘treatment’ effect across the entire 19 

meta-study dataset. Together, this foundational resource and these findings will help human microbiome 20 

researchers better identify viral roles in health and disease.  21 

Main text 22 

The human gut microbiome is now thought to play an integral role in health and disease 1–4. 23 

Persistent alterations in the structure, diversity and function of gut microbial communities—dysbiosis— 24 

are increasingly recognized as key contributors in the establishment and maintenance of a growing 25 

number of disease states 5–7, including obesity 8 and cancer 9. Gut dysbiosis can develop from complex 26 
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interplays between host, cognate microbiota and external environmental factors 10,11. Within the gut 27 

microbial consortium, the bacteriome has been the most extensively studied, where significant shifts in 28 

population dynamics have been observed between healthy and diseased individuals 12. However, 29 

emerging views 10,13,14 suggest that the gut virome plays an important role in homeostatic regulation and 30 

disease progression through multiple interaction paths with the co-occurring bacteriome, and even 31 

directly with human immune system components 15.  32 

The first step in studying viruses in complex communities is to “see” them. Problematically, 33 

identifying viral sequences in large datasets is notoriously challenging. Because viruses lack a universal 34 

viral marker 16, as opposed to bacterial 16S rRNA for example, researchers often resort to sequence 35 

homology searches against reference databases (e.g. NCBI viral RefSeq). Such searches are variably 36 

successful with anywhere from 14% to 87% of the observed gut viral genomes having detectable 37 

similarity to viruses in such databases 10. This large range stems from several factors that are not 38 

mutually-exclusive including the following: (i) broad under-representation of viral genome space in 39 

databases, (ii) non-standardized database usage per study, (iii) overrepresentation of certain virus groups 40 

due to sample preparation and cultured host availability, and (iv) natural sample variation. In addition, 41 

although viral reference datasets are being generated at unprecedented rates 17, these new data are rarely 42 

incorporated for cross-comparisons, which inflates virus novelty in new datasets and/or leaves many virus 43 

sequences undetected. Therefore, given the rapid accrual of so many studies, there is a need to aggregate 44 

their findings into a central gut-specific database to improve gut virome inference capabilities.  45 

Here we collected and curated 648 gut metagenomes from 21 datasets (i.e., any metagenomic 46 

dataset that looked at gut viruses published before 2018), consistently processed them to map known and 47 

unknown viral populations, and used this in multiple meta-analyses to assess improvement and reveal 48 

new biology. The resulting Gut Virome Database (GVD) was born by (i) collecting 648 gut metagenomes 49 

from 572 individuals, (ii) extensive metadata curation through literature mining and, as needed, direct 50 

communication with the original researchers, and (iii) re-analysis of the virome data to establish 51 

consistent processing and extensive virus identification. The value of GVD was assessed for performance 52 
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against the best currently available databases (NCBI viral RefSeq and IMG/VR18), and then used to re-53 

evaluate global diversity patterns and the relationship between gut virome diversity and diet.  54 

  55 

RESULTS AND DISCUSSION 56 

 57 

GVD contains 13,204 viral populations, dominated by phages 58 

To build a collection of the commensal human gut virome, 648 metagenomic samples from 572 59 

individuals were processed from all datasets publicly available as of December 2017 (n=19), along with 2 60 

unpublished datasets where access was granted prior to publication. These studies represented a total of 61 

1.28 Tbp of sequence data derived from a spectrum of gut virome study areas including: (i) healthy gut 62 

viromes of infants 19,20  and adults 21–26, as well as individuals experiencing (ii) fecal matter transplant, or 63 

FMT 27–31, (iii) inflammatory bowel disease, or IBD 32,33, (iv) HIV infection 34, (v) Type I diabetes 35,36, 64 

(vi) malnutrition 37, or (vii) chronic fatigue syndrome 38 (see Supplementary Table 1). Datasets had a 65 

worldwide distribution, though most originated from the United States (48.4%; Fig. 1a). All reads were 66 

processed consistently, assembled into contigs and viral-like sequence were identified using three 67 

independent methods and validated by cross-comparisons between methods (Fig. 1b, see Methods). To 68 

avoid duplicate viral fragments/partial virus genomes across the datasets, contigs were de-replicated by 69 

clustering sequences according to percentage of average nucleotide identity (ANI) and sequence length. 70 

Multiple reports 17,39–43 have revealed that > 95% ANI was a suitable threshold for defining a set of 71 

closely-related discrete ‘viral populations’, with follow-on studies suggesting that this cut-off establishes 72 

populations that are largely concordant with a biologically relevant viral species definition39,41,44 . Using 73 

this clustering strategy, we identified highly variable numbers of unique viral populations per study 74 

(range: 0 - 3596; mean = 670) (Supplementary Fig. 1a). GVD comprises 13,203 viral populations (N50 75 

= 34,220 bp ; L50 = 2,066 bp). For context, NCBI’s viral RefSeq v88 (released May 2018) database holds 76 

8,013 viruses of eukaryotes, bacteria and archaea from all environments, combined.  Moreover, if only 77 

comparing phage genomes to the same database, GVD contains 7 times more phages compared to the 78 
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entire set of cultured phage isolates in viral RefSeq to date. Thus, GVD greatly augments the repertoire of 79 

known viruses in the human gut. 80 

Taxonomically, 96.1% of GVD viral populations are bacterial viruses (i.e., phages), with a 81 

minority of GVD viral populations more likely to represent eukaryotic viruses (3.8%) and archaeal 82 

viruses (0.1%) (Fig. 2a). Though in the minority, the 505 eukaryotic viruses were taxonomically diverse 83 

(14 families), dominated by ssDNA families Anelloviridae (72%), Genomoviridae (10%) and 84 

Circoviridae (8%). All, with the exception of Genomoviruses, have been reported previously in the 85 

datasets underlying GVD 34. Among the phages, 82% did not have ICTV classification, with the 86 

remaining fraction comprised of dsDNA tailed phage families (Siphoviridae, Myoviridae and 87 

Podoviridae), Microviridae and Inoviridae (see Supplementary Table 2). Twelve unknown archaeal 88 

viral populations were detected, with no close genome/gene homology to any of the classified archaeal 89 

viruses. The high number of unclassified phages likely results from underrepresentation of gut phages in 90 

the database, coupled to unresolved and/or missing taxonomic assignments for ~ 60% of reference phage 91 

genomes in RefSeq, with the currently classified fraction organized into ~250 genera 45. To fill this phage 92 

and archaeal virus taxonomic classification gap, we used a genome-based, gene-sharing network strategy 93 

46,47 that de novo predicts genus-level groupings (‘viral clusters’ or ‘VCs’) from viral population data. A 94 

network was computed from 6,373 GVD phage genomes (only those ≥10 kb in length; 48% of GVD), 95 

combined with 2,304 curated reference phage genomes from NCBI Viral RefSeq (version 88). The 96 

resulting gene-sharing network (Fig. 2b) revealed 957 VCs, 702 of which were novel and exclusively 97 

composed of GVD genomes (3,220 viral genomes or ~51% of GVD genomes). This would roughly 98 

double the current number of ICTV-recognized phage genera. Though not explored here, as our goals 99 

focused on taxonomic classification, the shared protein content within and between VCs calculated in our 100 

network analyses could be used to guide qPCR assays for NGS validation 48 and/or tracking of viruses at 101 

either the viral population- or genera- level under changing conditions 35.   102 

Next, we sought to link phage populations to their hosts using in silico strategies (see Methods). 103 

The most common identifiable phage hosts (Fig. 2c) in GVD belonged the bacterial phylum Firmicutes 104 
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(38%), about 2-fold more than the next most abundantly identified host phyla (Bacteroidetes and 105 

Proteobacteria; see Supplementary Table 2). Though Firmicutes and Bacteroides are the most prominent 106 

bacterial phyla in the human gastrointestinal tract 49, Firmicutes typically outnumber Bacteroidetes in 107 

unhealthy individuals with metabolic and digestive disorders 50–52. GVD metagenomes originated from 108 

~16% healthy individuals and ~84% unhealthy individuals, many of which have metabolic and digestive 109 

disorders. Thus, it is perhaps not surprising that most of the annotated viral populations were linked to the 110 

phylum Firmicutes.   111 

 112 

GVD significantly improves virus detection in all gut datasets 113 

We then quantitatively evaluated virus identification sensitivity (through read mapping) between 114 

multiple databases by comparing the number of identified viral populations in each study detected by 115 

GVD, viral RefSeq v88, IMG/VR 1.1 (2018 release) and the individual virome datasets (‘IV’) from each 116 

study (Fig. 3). For the latter, IV reads were mapped against viral populations (predicted in this study) 117 

derived exclusively from its matching IV. In all datasets, GVD surpassed viral RefSeq (mean increase: 118 

59-fold ± 95-fold) and IVs (mean increase: 3.2-fold ± 6.6-fold).  In 5 of 18 studies (28%), GVD 119 

outperformed IMG/VR (mean increase: 1.1-fold ± 2-fold), with the remaining studies finding no 120 

significant difference between or too low of a sample size to compare GVD and IMG/VR. After GVD, 121 

IMG/VR was the next best performing database for viral detection in the gut, as our tests showed an 122 

average of 49-fold (± 87-fold) increase over viral RefSeq. IMG/VR was expected to surpass viral RefSeq, 123 

as it aggregates both cultivated reference virus genomes, >12,000 prophages and >700,000 uncultivated 124 

virus genomes/fragments from many environments, including multiple human body sites53. Moreover, 125 

given the high performance of IMG/VR in our tests, we wondered about the extent of viral population 126 

overlap with GVD (Fig. 3b). There were 1,730 viral populations shared between the two databases, but 127 

still each database is overwhelmingly unique (82% and 69% unique to GVD and IMG/VR, respectively). 128 

This is because IMG/VR includes human gut studies that did not explore the viral fraction as well.  129 

Overall, the significant increase in virus detection by GVD over other databases (two-tailed Mann-130 
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Whitney U-tests; p-value < 0.05) highlights the low representation of gut viruses recorded in RefSeq and 131 

thus demonstrates the value of GVD for sequence-based virus identification in human gut microbiome 132 

datasets. Because the datasets used to compile GVD were originally analyzed most often (55% of the 133 

studies) using viral RefSeq as the primary source to identify viruses (Supplementary Table 1), we 134 

wondered whether significant fractions of viruses could have been missed, and whether a possibly 135 

reduced viral “signal” would influence previous conclusions.  136 

 137 

MDA amplification skews diversity and prohibits quantitative analysis of gut viromes  138 

To evaluate this possible reduced viral “signal”, we first examined the role of methodological 139 

approaches in influencing inferences about ssDNA viruses. This is because we noticed that the bulk of 140 

ssDNA eukaryotic viruses (Anelloviruses, Circoviruses, Genomoviruses, Geminiviruses) and phages 141 

(Microviruses) originated from only 4 of the 21 studies gathered in this work (Fig. 4 a,b). These studies 142 

evaluated 2 infant gut viromes 19,37 and 2 adult inflammatory bowel disease viromes 31,32, and they 143 

reported relative abundance shifts of ssDNA and dsDNA phages within these viromes. From this 144 

observation, these studies concluded that such shifts could discriminate between healthy and disease 145 

states associated with virome development in early life. 146 

However, the abundance of ssDNA viruses can also be enriched from methodologies used in 147 

making the viromes, even if all samples are processed consistently. Specifically, early virome studies 148 

where limiting viral nucleic acids were obtained, often used whole genome amplification kits that 149 

leverage a DNA polymerase from the phi29 ssDNA virus to obtain many-fold increases in DNA via 150 

multiple displacement amplification or MDA 54. Though attractive at first, MDA is now known to have 151 

stochastic biases (e.g., 100s –10,000s-fold biases in coverage, 55,56), which result from randomized initial 152 

template interactions and can induce chimera formation and uneven amplification of linear genomic 153 

sections (whether ssDNA or dsDNA templates), as well as systematic biases resulting from preferential 154 

amplification of small, circular and ssDNA genomes 57–61. Taken together, MDA-associated artifacts skew 155 

the taxonomic representation of a community in non-repeatable ways and preclude quantitative analysis 156 
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of viromes 57. Although non-quantitative, MDA-amplified viromes do still have value enriching for 157 

ssDNA viruses, as well as estimating presence of viruses.  158 

Consistent with the idea that these ssDNA viruses are methodologically enriched in the MDA 159 

libraries, we found that non-MDA amplified gut viromes contained significantly less ssDNA viruses than 160 

MDA amplified gut viromes (range: 0% - 4% versus 0-42%; Mann-Whitney U-test; p-value = 0.0083), 161 

though sample size was quite low.  Further, while we see a strong linear relationship (R2 = 0.86) between 162 

sequencing depth and the number of viral populations sequenced in non-MDA viromes, this relationship 163 

is weak in MDA viromes (R2 = 0.39), suggesting that MDA can skew the number of assembled viral 164 

contigs in datasets (Supplementary Fig. 1b). Critically, 14 of the 21 studies gathered in this work 165 

employed MDA, which calls into question the quantitative nature of these datasets. Fortunately, viral 166 

nucleic acid extraction from feces often yield sufficient quantities for high throughput sequencing 26, and 167 

in cases where they do not there are now several viable alternative methods to more quantitatively 168 

establish viromes with as little as 1pg of DNA 61,62. Problematically, current established gut virome 169 

protocols recommend an MDA step 48,63. If a researcher’s goal is to provide quantitative datasets, then we 170 

strongly advocate against this recommendation and instead suggest that alternative methods61,62 be used to 171 

generate gut viromes. 172 

 173 

Human gut virome study conclusions are more impacted by methodology than disease state 174 

Given a systematically processed GVD, we next sought to determine whether global clustering patterns 175 

would emerge between study themes between all dataset used to build GVD. To this end, viral 176 

populations identified in this study were matched back to their respective datasets, and used in a co-177 

occurrence network analysis (see Methods) to assess co-variation at two levels: between study datasets 178 

(Fig. 4c), and between viromes across all datasets (Fig. 4d). Between datasets, the fraction of shared viral 179 

populations was low (mean: 3% ±3%; Fig. 4c), except for 6 datasets that clustered together (hierarchical 180 

clustering bootstrap = 100%; Fig. 4c) and had a higher level of shared viral populations (>4-fold 181 

increase). Presumably, these elevated similarities across the 6 datasets may be due to deeper sequencing 182 
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(Fig. 4d, top panel) that allowed deeper sequencing into the rare tail of viral populations among samples. 183 

A similar trend was observed when looking at the level of individuals within each study (Fig. 4d), where 184 

the co-occurrence network revealed close clustering between individuals derived from the same study, 185 

irrespective of geographical origin, health status and/or diet. This per study clustering implies that, taken 186 

together, these studies are not comparable likely due inconsistent sampling and extraction methodologies. 187 

We then investigated the prevalence of gut viral populations amongst all samples, so as to establish 188 

whether any viral populations were detected in all samples (i.e., a ‘core’ gut virome22). On average, 138± 189 

170 (average ± SD; range: 0 to 849) viral populations were detected per sample, but not one viral 190 

population was found across all samples. We then explored deeper to detect whether subsets of the 191 

samples would reveal shared viral populations. We found that only 28 viral populations occurred in over 192 

20% of the GVD samples. Most viral populations were detected in very few samples.  In fact, >40% of 193 

the viral populations occurred in <0.5% of the samples and 98% of the viral populations occurred in 194 

<0.1% of the samples in GVD (Fig. 5 a, b and Supplementary Table 3). Further, we specifically looked 195 

at the prevalence of crAssphages, a well-recognized, multi-genera group of phages known to be 196 

widespread in gut viromes64 (Fig.5 b, c). While crAssphages are ubiquitous across the GVD samples, 197 

there was not one crAssphage viral population found universally, with the most widespread crAssphage 198 

population occurring in only 38% of samples. Importantly, when we looked at all healthy samples and 199 

healthy western samples specifically, still no shared viral populations were identified in all samples. 200 

(Supplementary Fig. 2a, b). Assuming samples were sufficiently sequenced,  this may be indicative that 201 

individuals carry a unique ‘gut virome fingerprint’, even between twins, which is perhaps not surprising 202 

given recent suggestions of a similar ‘fingerprint’ for gut microbes (the ‘personal’ microbial microbiomes 203 

65). This apparent lack of core gut virome among individuals contrasts with a recent report 22, in which 204 

overlapping patterns of phage genomes between 2 unrelated healthy individuals, as well as within a re-205 

analyzed larger cohort 66 revealed three levels of sharing patterns: (i) core (phage found in >50% of 206 

samples, (ii) common (phage found in >20-50% of samples), and (iii) unique (phage found in <20% of 207 

samples). Our analyses showed no viral populations shared above >50% of samples, thus bringing into 208 
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question the presence of a ‘core’ virome as previously defined22, as well as a very limited ‘common’ 209 

virome (20-50% sharing across samples), in which we observed either 1% (all healthy; n=132) or 0.1% 210 

(all healthy Westerners; n=18) of GVD viral populations, similar to the 3% previously reported22 (see 211 

Supplementary Table 4). Likely, this discrepancy with our results could be attributed to how viruses 212 

were identified through read mapping. In the initial study reporting a core virome22, a virus was 213 

considered present if a single read mapped to a genome, a very permissive cut-off which does not take 214 

into account shared homologous regions between distinct viral populations.  In this study, we considered 215 

a virus present if reads mapped 70% of the genome length (if genome is <5kb) or reads mapped at least 216 

5kb of the genome (for genome >5kb in length) (see Methods). While our cut-off is more conservative, it 217 

better ensures that we are detecting the same viral population.  Nonetheless, the idea of a core virome 218 

might still be an open question.  219 

 220 

Re-evaluation of a previous study: the virome across different geographic regions and lifestyles 221 

Due to the high level of sample clustering per study (Fig. 4c), we were unable to conduct cross-222 

study analyses. Instead, we sought to assess if the virome community patterns between populations of 223 

varying lifestyles (industrialized versus semi-industrialized versus hunter-gatherer) would vary between 224 

the initial study 26 or GVD-based, to test whether there were geographic biases around GVD viral 225 

populations, and how well sampled are the different geographic regions. This initial study encompassed a 226 

globally-distributed dataset (USA, Italy, Tanzania and two Peruvian populations: Tunapuco and Matses;  227 

Fig. 6a), and explored the impact of geography and diet on eukaryotic gut viruses (but did not include 228 

phages) and found that the hunter-gatherers (Hadza in Tanzania and the Matses in Peru) had the highest 229 

eukaryotic viral richness 26. 230 

In this re-analysis, however, we included phages in addition to eukaryotic viruses, and focused on 231 

how the virome diversity varied along the dataset. We first evaluated whether per-region GVD-mediated 232 

detection of viruses would incur biases, potentially stemming from underrepresented viral populations 233 

from less-sampled geographical regions. This did not appear to be the case, as significant increases in 234 
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virus detection were observed across 4 out of the 5 regions sampled (Fig. 6b).  We next calculated 235 

diversity indices (Fig. 6c and Supplementary Fig. 3) for each regional dataset, and looked at the number 236 

of viral populations mapped with GVD. Overall, we reached a similar conclusion to the initial study (even 237 

when considering phages), in which the hunter-gatherers (Peru Matses) generally contained higher viral 238 

richness (Fig. 6c - left) and biodiversity (Shannon’s H, Fig. 6c - middle), but not higher evenness 239 

(Peilou’s J, Fig. 6c -right). Collector’s curves revealed that we have not saturated the human gut viral 240 

diversity among individuals globally (Supplementary Fig. 4) or even among just among American 241 

samples (Supplementary Fig. 2, inset). Thus, it appears much more viral diversity remains to be 242 

discovered across all geographic regions. 243 

 We next wondered whether the addition of phage in our analysis would reflect on overall viral 244 

community similarities by using Bray-Curtis distances between individuals across these geographic and 245 

lifestyle gradients (Fig. 6d). While unequal database representation can have an impact on alpha-246 

diversity, beta-diversity is often less impacted 67. Principal coordinate analyses (PCoA) of Bray-Curtis 247 

distances derived from using the individual Rampelli et al., 2017 virome database (Fig. 6d, left panel) and 248 

GVD (Fig. 6d, right panel) revealed no significant differences (Mantel’s test; R = 0.95, p = 0.001). 249 

However, analysis of the GVD-referenced PCoA revealed individuals with the same lifestyle and from 250 

the same region clustered together (PERMANOVA; p ≤�0.001) and provided better resolution of the 251 

clustering in comparison to the IV-referenced PCoA. However, lifestyle alone may not account for the 252 

observed clustering patterns. The viromes of the Hadza in Tanzania and semi-industrialized, agrarian 253 

Tunapuco population in Peru strongly overlapped (hierarchical clustering bootstrap = 100%; Fig. 6d), 254 

most likely driven by their diets rich in root vegetables68–70. Nonetheless, when we look at differences 255 

between dominant viral populations (found in >50% individuals) across these geographic and lifestyle 256 

gradients, we see that there are key viruses missing from Western, industrialized gut viromes (Fig. 6e), 257 

specifically viruses that infect the genus Prevotella spp. This parallels the bacterial analyses that show 258 

that Prevotella spp. are enriched in non-Western gut microbiomes and many species are missing from 259 
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Western, industrial gut microbiomes 69–71. Overall, this suggests that lifestyle and diet has an impact not 260 

only on the bacterial community, but also on the viral community in the gut. 261 

CONCLUSIONS 262 

The lack of a curated database for the detection of viral sequences in the human gut has been 263 

identified as the most critical shortcoming of applying metagenomic approaches to studying the human 264 

gut virome 72. Although GVD is geared towards filling this gap and performs well (increasing viral 265 

detection 59-fold over the most commonly used database, NCBI viral RefSeq), there are limitations. First, 266 

the geographic and ethnic representation across the dataset is not very broad. Meta-analyses will benefit 267 

from more broadly representative datasets. Second, GVD was built using all datasets available by the end 268 

of 2017. Since then, as of May 2019, there are 11 additional datasets that study the gut virome, 8 of which 269 

use viral particle-enriched metagenomes (Supplementary Table 5). Further, there are many more human 270 

gut microbial metagenomic datasets and these could be a rich source for virus reference genomes as found 271 

for soils73  and the large-scale Earth Virome study74. To maintain significance as a resource, we will 272 

update GVD annually by extracting the viral signal from such gut-related datasets, as well as monitoring 273 

IMG/VR for gut-related viruses that should be integrated. Third, GVD is accessible through direct 274 

download as a single fasta file containing all GVD viral populations (see link in the ‘Data availability’ 275 

statement below), and is likely best paired with IMG/VR to maximize viral signal recovery. Future GVD 276 

updates and development will be required to improve the user experience for those not comfortable at 277 

command-line interfaces, but these are likely best integrated with large-scale standardizing efforts like the 278 

National Microbiome Initiative.  279 

Given the relatively minimal value added via non-quantitative MDA-based approaches and the 280 

availability now of low-input quantitative approaches pioneered studying ocean viruses 61,75 suggest that 281 

gut virome studies should move away from the former towards the latter. GVD, combined with the means 282 

to classify uncultivated virus genomes47, are prime starting requirements for enabling ecosystem-wide 283 

examinations76 of the dynamics and impacts of the virome within the human gut. Other environmental 284 

advances also invite such studies to include assessing the role of micro- and macro-diversity on virus 285 
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persistance41, and metabolic reprogramming via virus-encoded auxiliary metabolic genes73,76. These 286 

combined efforts are critical to enable studies of the human gut virome to advance from ‘stamp 287 

collecting’ diversity studies towards the kinds of comprehensive efforts needed to incorporate viruses into 288 

mechanistic, predictive models. Such efforts, with future viral mapping outside the gut to parallel efforts 289 

for the ‘non-gut’ human microbiome 77, should help transform personalized medicine and lead to a better 290 

understanding of human ecosystems.   291 

  292 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/655910doi: bioRxiv preprint 

https://doi.org/10.1101/655910
http://creativecommons.org/licenses/by-nd/4.0/


 

13 
 

FIGURE LEGENDS: 293 
 294 
Figure 1. Overview of studies and meta-analyses comprising the Gut Viral Database (GVD). (a) 295 
Global heatmap of the world showing the number of individual’s gut viromes coming from different 296 
countries within the GVD. Importantly, individual’s viromes coming from the Cameroon were pooled 297 
based on their location, age, and contact with bats. The pools were counted as a single individual’s virome 298 
for our analyses. (b) Pipeline for the selection and processing of human gut virome datasets (see 299 
Methods). Datasets were processed individually and, within each dataset, viromes were pooled by 300 
individual, except for fecal microbiota transfer (FMT) studies and data that was given to us prior to 301 
publication (Yinda et al., 2019; Neto et al. (unpublished)). Reads were filtered for quality and trimmed 302 
and reads that mapped to Φx174 and the human genome were removed. The remaining reads were 303 
assembled into scaffolds, filtered for lengths ≥1.5kb, and run through tools that collectively utilize 304 
homology to viral reference databases, probabilistic models on viral genomic features, and viral k-mer 305 
signatures to identify viral contigs. Viral contigs were then deduplicated to get a total of 13,203 viral 306 
populations.  307 
 308 
Figure 2. The Gut Viral Database (GVD). (a) Pie charts showing the number of bacteriophages, 309 
eukaryotic viruses, and archaeal viruses in the GVD (center) and their familial taxonomic composition by 310 
the bacteriophages (left) and the eukaryotic viruses (right). (b) Gene-sharing taxonomic network of the 311 
GVD, including viral RefSeq viruses v88. RefSeq viruses are highlighted in red. Every node represent a 312 
virus genome, while connecting edges identify significant gene-sharing between genomes, which form the 313 
basis for their clustering in genus-level taxonomy. (c) Bar chart showing the number of bacterial host 314 
phyla of the GVD bacteriophages, with an inset providing resolution for the low frequency bacteria host 315 
phyla. Putative host phyla per each bacteriophage population are in Supplementary Table 3  316 
  317 
Figure 3. GVD as a reference database increases viral population detection. (a) Boxplots showing 318 
median and quartiles of the number of viral populations detected per study using the IV, Viral Refseq 319 
v88, JGI IMG/VR, or GVD databases. Studies where the reads were given to us prior to publication are 320 
excluded from this analysis (Yinda et al., 2019; Neto et al. (unpublished)). (b) Venn diagram showing the 321 
number of viral populations unique and shared between the different databases. Importantly, we only 322 
compared dereplicated viral populations from IMG/VR that came directly from human gut samples or had 323 
reads mapping to them from GVD gut samples.  324 
 325 
Figure 4. Individual Viromes (IV) Study Databases and Cross-Study Comparisons. (a) Barplot 326 
showing the proportion of those viruses that are bacteriophages, archaeal viruses, or eukaryotic viruses.  327 
The total number of assembled viral contigs and viral populations per study are available in 328 
Supplementary Fig. 1a. (b) Barplot showing the proportion of those viruses that are dsDNA, ssDNA, or 329 
RNA viruses. Studies where multiple displacement amplification (MDA) was used show a higher 330 
prevalence of ssDNA viruses. No viral contigs ≥1.5kb were assembled from the Reyes et al. 2010 study. 331 
(c) Hierarchically clustered heatmap showing the number of viral populations shared within and between 332 
studies. The barplot on top of the heatmap shows the total number of sequenced base pairs following 333 
quality control within each study. (d) Viral population co-occurrence network per individual within each 334 
study shows that individuals within a study cluster together regardless of health status. The squares 335 
represent the healthy individuals within each study. 336 
 337 
Figure 5. There are no core viral populations across GVD samples.  (a) Histogram showing the 338 
number of viral populations present in different percentages of GVD samples. The vast majority of viral 339 
populations are found in <10% of the individuals. (b) Hive plot showing the percentage of GVD sample 340 
each viral population is detected within. The dots on the x-axis represent each GVD viral population in 341 
ascending order of the percentage of GVD samples that they are found within. The y-axis is the 342 
percentage of GVD samples that each viral population is detected within. CrAssphage viral populations 343 
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are highlighted in red. (c) Heatmap showing the presence or absence of each crAssphage viral population 344 
across the different GVD samples. 345 
 346 
Figure 6. Diet and geography widely influence gut virome. (a) World map showing the geographical 347 
distribution of the Rampelli et al., 2017 dataset. (b) Boxplots showing median and quartiles of the number 348 
of viral populations detected using the GVD database and the Rampelli et al., 2017 viral database alone 349 
(IV) within each geographic group. (c) Boxplots showing median and quartiles of the α-diversity metrics 350 
– richness, Shannon’s H and Peilou’s J – across the different geographic groups using the GVD database 351 
(see Fig. S3 for α-diversity metrics using the IV database). (d) Principal coordinate analysis (PCoA) of a 352 
Bray-Curtis dissimilarity matrix calculated from mapping the Rampelli et al., 2017 dataset against the IV 353 
(left) and GVD (right) databases. Analyses show that the viromes significantly (Permanova p < 0.05) 354 
structure into based on the geographic groups, with mapping to the GVD showing revealing much 355 
stronger clustering based on geography. Ellipses in the PCoA plot are drawn around the centroids of each 356 
group at a 95% confidence interval. The dashed lines connecting the different points reveal the 357 
connections determined by hierarchically clustering between the different samples. (e) Heatmap of the 358 
abundances of the viral populations found across >50% of individuals within the study. Individuals on a 359 
Western diet (from the USA and Italy) lack phages that infect Bacteroidetes, specifically those that infect 360 
Prevotella sp. All pairwise comparisons were performed using a two-tailed Mann-Whitney U-tests. 361 
 362 
Supplementary Figure 1. Number of assembled viral contigs and populations. (a) Barplot showing 363 
the number of assembled viral contigs versus the number of deduplicated viral populations per study. (b) 364 
Scatterplots with linear regressions showing the impact of increased sequencing on the number of 365 
assembled contigs per study divided by studies that did not have multiple displacement amplification 366 
(MDA; top) and those that did have MDA (bottom). 367 

Supplementary Figure 2. There are no core viral populations across healthy samples and across 368 
healthy western samples. Hive plots showing the percentage of GVD samples each viral population is 369 
detected within across (A) all healthy individuals and (B) across only healthy western adults. The dots on 370 
the x-axis represent each GVD viral population in ascending order of the percentage of GVD samples that 371 
they are found within. The y-axis is the percentage of GVD samples that each viral population is detected 372 
within.  373 
 374 
Supplementary Figure 3. Boxplots showing median and quartiles of the α-diversity metrics – richness, 375 
Shannon’s H and Peilou’s J – across the different geographic groups in the Rampelli et al. 2017 study 376 
using the IV and GVD databases. 377 
 378 
Supplementary Figure 4. The number of gut viral populations will still increase with more samples 379 
added to GVD. Collector’s curve for gut viral populations in the GVD. (inset) Collector’s curve for just 380 
the viromes from samples from the USA. 381 
 382 
 383 
Supplementary Table 1. Origin of datasets and associated metadata used to create the gut virome 384 
database. 385 
 386 
Supplementary Table 2. Gut Viral Database contigs family-level taxonomy and putative hosts. 387 
 388 
Supplementary Table 3. Distributions of viral populations across GVD samples. 389 
 390 
Supplementary Table 4. Core, common, low-overlap, and unique GVD viral populations 391 
 392 
Supplementary Table 5. Human gut virome studies since the end of 2017 393 
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METHODS 394 

Experimental Model and Subject Details. Gut virome database (GVD) studies were selected by doing a 395 
thorough and manually curated search of the Web of Science Core Collection of Thomson Reuters for 396 
studies looking at viruses in the gut published prior to 2018. All studies that used next-generation 397 
sequencing and looked for viruses within the gut microbiome were selected to be part of GVD (see full 398 
list of studies in Supplementary Table 1). Additionally, we were given access to the reads of two studies 399 
that were unpublished at the time. One of the studies, however, is now published (Yinda et al., 2019).  400 
 401 
Viral contig assembly, identification, and dereplication. Previously published GVD reads were 402 
downloaded from their respective hosting databases (e.g. SRA, iVirus, or MG-RAST). Prior work 403 
revealed that an individual’s gut virome is stable across time (Minot et al., 2013), so reads were pooled 404 
per individual regardless of the number of time points, with a few exceptions (Fig. 1). These exceptions 405 
included studies with fecal microbiota transfers and studies whose reads were given to us prior to 406 
publication. For fecal microbiota transfers, all time points per individual were kept separate and processed 407 
independently. Read sets from two studies were given to us prior to publication (Yinda et al., 2019; Neto 408 
et al., unpublished). For the Yinda et al., 2019 study, individual’s reads were pooled based on their 409 
location, age, and contact with bats. The pools were counted as a single individual’s virome for our 410 
analyses. For the Nadia et al., (unpublished), all reads from all individuals were pooled together. A global 411 
map showing the number of individuals (or pooled read sets) originating from each country was created 412 
using the R packages ‘rworldmap.’ In total, there were 648 GVD samples from 572 individuals. 413 

Pooled reads were then assembled using metaSPAdes 3.11.1 78. Following assembly, contigs 414 
≥1.5kb were piped through VirSorter 79 and VirFinder 80 and those that mapped to the human, cat or dog 415 
genomes were removed. For viral-enriched metagenomes (i.e. viromes), contigs ≥5kb or ≥1.5kb and 416 
circular that were sorted as VirSorter categories 1-6 and/or VirFinder score ≥0.7 and p <0.05 were pulled 417 
for further investigation. Of these contigs, those sorted as VirSorter categories 1 and 2, VirFinder score 418 
≥0.9 and p <0.05 or were identified as viral by both VirSorter (categories 1-6) and VirFinder (score ≥0.7 419 
and p <0.05) were classified as viral. The remaining contigs were run through CAT 81 and those with 420 
<40% (based on an average gene size of 1000) of the genome classified as bacterial, archaeal, or 421 
eukaryotic were considered viral. For the microbial metagenomes, we took a more conservative approach 422 
with only contigs ≥5kb or ≥1.5kb and circular that were sorted as VirSorter categories 1-2 and VirFinder 423 
score ≥0.6 and p <0.05 were considered viral. Across the both the viral-enriched and microbial 424 
metagenomes, contigs ≥5kb or ≥1.5kb and circular that were classified as eukaryotic viral contigs by 425 
CAT were also considered viral. In total, 29,345 viral contigs were identified.  426 

Viral contigs that were from known ssDNA or RNA viral families using CAT were grouped into 427 
populations if they shared ≥95% nucleotide identity across ≥100% of the genome. Because there are no 428 
benchmarked metagenomic population boundaries for ssDNA and RNA viral families, we chose to not 429 
use stringent dereplication. All other contigs were considered double-stranded DNA and were grouped 430 
into populations if they shared ≥95% nucleotide identity across ≥70% of the genome (sensu 82) using 431 
nucmer 83. All the viral contigs that were assembled were dereplicated per study to create the individual 432 
virome (IV) databases and across all of GVD (see Supplementary Fig. 1). For GVD, this resulted in 433 
13,203 total viral populations found in GVD (see Supplementary Table 3 for VirSorter, VirFinder, and 434 
CAT results), of which 6,373 were ≥10kb in length.  435 
  436 
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Core Viral Population Analyses. To explore if there were any core viral populations, the abundance 437 
table was turned into a binary presence-absence matrix. The number of GVD samples that each viral 438 
population was detected within was then calculated using R and divided by the total number (648) to get 439 
the percentage of samples. Each viral population’s percentage was plotted in hive plot using 440 
‘geom_curve’ in ggplot2 84. This process was repeated on subsets of the matrix including all healthy 441 
individuals and only the healthy western adults. The number of viral populations that were present across 442 
different percentages were calculated using R and their distributions plotted using ‘geom_histogram’ in 443 
ggplot2 84.  CrAssphage viral populations in GVD were identified using CAT results and by dereplicating 444 
GVD viral populations with the crAssphage genomes identified in Guerin et al.64 and seeing which GVD 445 
genomes cluster.  In total, there were 95 unique crAssphage populations. The binary presence-absence 446 
data for the crAssphage populations were plotted using pheatmap in R. 447 
 448 
Viral taxonomy. For each viral population, ORFs were called using Prodigal 85 and the resulting protein 449 
sequences were used as input for vConTACT2 47 and for BLASTp. Double-stranded DNA viral 450 
populations represented by contigs >10kb were clustered with Viral RefSeq release 88 viral genomes 451 
using vConTACT2. Those that clustered with a virus from RefSeq based on amino acid homology based 452 
on DIAMOND 86 alignments were able to be assigned to a known viral taxonomic genera. For viral 453 
dsDNA populations that could not be assigned taxonomy or were <10kb, family level taxonomy was 454 
assigned using a majority-rules approach, where if >50% of a genome’s proteins were assigned to the 455 
same viral family using a blastp bitscore ≥50 with a Viral RefSeq virus, it was considered part of that 456 
viral family (see Supplementary Table 3 for family-level taxonomy). For ssDNA and RNA viruses, 457 
CAT was used to assign the viral family (see Supplementary Table 3 for family-level taxonomy). 458 

  459 
Viral Host Prediction. Bacteriophage hosts were predicted using a variety of bioinformatic methods 460 
including: (i) CRISPR-spacer matches, (ii) prophage blasts, (iii) tRNA genes matches, and (iv) WiSH 461 
matches 87 against Bacterial Refseq v88. CRISPR spacers were predicted using MinCED 462 
(https://github.com/ctSkennerton/minced) and the CRISPR Recognition Tool (CRT88) and a BLASTn (-463 
task blastn-short -word_size 5) was used to assess matches between the CRISPR spacers and viral 464 
populations in GVD. Those with 1 mismatch were considered a match. For prophage blasts, a blastn of 465 
the viral population against Bacterial RefSeq was performed. A bacterial genome with  ≥2500bp regions 466 
of their genome matching at 95%ID with a viral population genome were considered putative hosts of that 467 
viral population (see 76). Viral tRNA genes and Bacterial RefSeq tRNA genes were predicted using 468 
tRNA-scan 89 and then a blastn was performed between the viral and bacterial tRNA genes. Bacterial 469 
tRNA genes that matched viral tRNA genes at 95% ID across 100% of the length were considered 470 
putative bacterial hosts.  Lastly, WIsH was used to predict hosts according to default settings 87. Priority 471 
host assignment was given to CRISPR, then prophage, WIsH and tRNA results. Viruses with putative 472 
archaeal hosts were predicted using MarVD 90. Viruses with predicted eukaryotic hosts were assigned 473 
based on their assigned taxonomic viral family.   474 

   475 
Detecting viral populations and calculating their raw abundances. To calculate the raw abundances of 476 
the different viral populations in each sample, reads from each GVD pooled read set were first non-477 
deterministically mapped to all GVD viral population genomes using bowtie2. Further, reads from each 478 
GVD pooled read set per study were mapped to their respective IV databases. BamM 479 
(https://github.com/ecogenomics/BamM) was used to remove reads that mapped at <95% nucleotide 480 
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identity to the contigs, bedtools genomecov 91 was used to determine how many positions across each 481 
genome were covered by reads, and custom Perl scripts were used to further filter out contigs without 482 
enough coverage across the length of the contig. All contigs ≤5kb in length with >70% of the contig 483 
covered were considered detected in the sample. Contigs >5kb in length with ≥5kb in length covered were 484 
also considered detected in the sample92.  BamM was used to calculate the average read depth (‘tpmean’ -485 
minus the top and bottom 10% depths) across each detected contig. For the alpha-diversity calculations, 486 
the average read depth was used as a proxy for abundance and normalized by total read number per 487 
metagenome to allow for sample-to-sample comparison. However, because most of the studies in GVD 488 
involved MDA, which can skew abundances, we chose to use only a presence-absence statistic (richness) 489 
for most of our α-diversity calculations. Collector’s curves and the whole GVD and across only American 490 
samples were calculated using the function ‘specaccum’ in the R ‘vegan’ package 93.    491 
  492 
Comparisons to IMG/VR, Viral RefSeq v88, and IV databases.  The IMG/VR (1.1.2018 release) 493 
included all viral contigs assembled from different datasets. All of the viral contigs in GVD, Viral Refseq 494 
v88, and IV databases are dereplicated at the population level. In order to make IMG/VR comparable to 495 
GVD, Viral Refseq and IV databases, we needed to dereplicate the IMG/VR database. IMG/VR (1.1.2018 496 
release) is composed of 715,672 contigs. Because dereplication is extremely computationally intensive, 497 
we decided to only focus on dereplicating viral contigs that originated from the human gut and had at 498 
least 1 read from a GVD metagenome map. These IMG/VR viral contigs were then dereplicated using the 499 
same methodology as previously described in the methods section. In total, 29,378 IMG/VR viral contigs 500 
were dereplicated into 6,652 viral populations. GVD pooled read sets were mapped to this IMG/VR 501 
human gut viral population database, Viral RefSeq v88, and the IV databases for each individual study in 502 
GVD. The raw abundances of the different IMG/VR and Viral RefSeq viral populations in each sample 503 
were calculated the same way as described in the previous section. The total number of viral populations 504 
detected per sample per study using the different databases were then plotted and comparative statistics 505 
using the ‘ggboxplot’ function from the ‘ggpubr’ package in R. 506 

All of the viral populations from GVD, the dereplicated IMG/VR gut-specific dataset, and Viral 507 
Refseq were then dereplicated to see how many viral populations overlapped between databases.  The 508 
results were then plotted using the ‘VennDiagram’ package in R.  Importantly, in the dereplication 509 
process, some of the original viral populations in each database may be dereplicated down due to the 510 
presence of a longer viral contig from the same population that links the two together into the same 511 
population. Across the databases, 329, 177, and 459 viral populations were dereplicated in GVD, 512 
IMG/VR, and Viral Refseq, respectively. This is why the total number of populations displayed in the 513 
Venn diagram does not add up to the total number of viral populations in each database. 514 
 515 
Clustering studies based on shared viral populations. To test how studies clustered together, the viral 516 
population presence-absence data from individuals (or pooled read sets) within a study were merged. In 517 
Study 1, individual A had viral population 1, 2, 4, 5 and individual B had viral population 3, then Study 1 518 
had viral populations 1, 2, 3, 4, and 5. The different studies were then assessed for the number of shared 519 
viral populations that were present in both studies. These values were then displayed and hierarchically 520 
clustered using the R ‘pheatmap’ package and the stability of the hierarchical clusters were assess using 521 
the R ‘pvclust’ package. The number of shared viral populations between individuals (or pooled read sets 522 
within a sample) were clustered using the R ‘SPIEC-EASI’ package 94 using the Meinshausen and 523 
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Bühlmann (MB) method to infer associations between samples based on the shared number of viral 524 
populations. The network was plotted using the R ‘igraph’ package.  525 
 526 
Alpha- and Beta-Diversity calculations. The α- (Richness, Shannon’s H, and Peilous’ J) and β- (Bray-527 
Curtis dissimilarity) diversity statistics were performed using VEGAN 93 in R. For all studies, except for 528 
Rampelli et al. 26, only richness was calculated for both abundances based on read mapping to IMG/VR, 529 
Viral Refseq, the IV databases and GVD. Comparisons were plotted using ‘ggboxplot’ function in the R 530 
‘ggpubr’ package. The Rampelli et al. 26 did not use MDA, so we went ahead with scaling the raw 531 
abundances based on the number of quality controlled base pairs sequenced to normalize the data. All α-532 
diversity statistics were calculated and β-diversity was used to look at community structure using both the 533 
IV and GVD databases. Principal Coordinate analysis (function capscale of VEGAN package with no 534 
constraints applied) was used as the ordination method to plot the Bray-Curtis dissimilarity matrices 535 
(function vegdist; method “bray”) after a cube root transformation (function nthroot; n = 3).  To 536 
determine if the Rampelli et al. samples clustered by geographic region, a permanova test (function 537 
“adonis’’) and the 95% confidence interval were plotted using function “ordiellipse.” Further, the samples 538 
were hierarchically clustered and plotted within the PCoA.  To specifically look at abundance differences 539 
in the most abundant viral populations in the Rampelli et al. 26 study, viral populations that were present 540 
in 50% study individuals and their hosts information were plotted using the R ‘pheatmap’ package. 541 
 542 
Code availability. Scripts used in this manuscript are available on the Sullivan laboratory bitbucket under 543 

Gut_Virome_Database. 544 

 545 

Data availability. All raw reads are available through SRA, iVirus, or MG-RAST using the identifiers 546 

listed in Supplementary Table 1. GVD viral populations can be downloaded directly from iVirus 547 

through the following link: https://de.cyverse.org/dl/d/E83EFBFF-2A23-4794-8819-548 

ADD34160D018/FINAL_Gut_Viral_Database_GVD_1.7.2018.fna 549 
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