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Abstract 1 

Predicting structure-dependent functionalities of biomolecules is crucial for accelerating 2 

a wide variety of applications in drug-screening, biosensing, disease-diagnosis, and 3 

therapy. Although the commonly used structural “fingerprints” work for biomolecules in 4 

traditional informatics implementations, they remain impractical in a wide range of 5 

machine learning approaches where the model is restricted to make data-driven 6 

decisions. Although peptides, proteins, and oligonucleotides have sequence-related 7 

propensities, representing them as sequences of letters, e.g., in bioinformatics studies, 8 

causes a loss of most of their structure-related functionalities. Biomolecules lacking 9 

sequence, such as polysaccharides, lipids, and their peptide conjugates, cannot be 10 

screened with models using the letter-based fingerprints. Here we introduce a new 11 

fingerprint derived from valence shell electron pair repulsion structures for small peptides 12 

that enables construction of structural feature-maps for a given biomolecule, regardless 13 

of the sequence or conformation. The feature-map introduced here uses a simple 14 

encoding derived from the molecular graph - atoms, bonds, distances, bond angles, etc., 15 

that make up each of the amino acids in the sequence, allowing a Residual Neural 16 

network model to take greater advantage of information in molecular structure. We make 17 

use of the short peptides binding to Major-Histocompatibility-Class-I protein alleles that 18 

are encoded in terms of their extended structures to predict allele-specific binding-19 

affinities of test-peptides. Predictions are consistent, without appreciable loss in accuracy 20 

between models for different length sequences, marking an improvement over the current 21 

models. Biological processes are heterogeneous interactions, which justifies encoding all 22 

biomolecules universally in terms of structures and relating them to their functionality. The 23 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/656033doi: bioRxiv preprint 

https://doi.org/10.1101/656033


capabilities facilitated by the model expands the paradigm in establishing structure-24 

function correlations among small molecules, short and longer sequences including large 25 

biomolecules, and genetic conjugates that may include polypeptides, polynucleotides, 26 

RNAs, lipids, peptidoglycans, peptido-lipids, and other biomolecules that could be 27 

implemented in a wide range of medical and nanobiotechnological applications in the 28 

future. 29 

Introduction 30 

Cheminformatics tools have been used to predict solubility, binding-affinity to 31 

receptors, toxicity, and other properties of small-molecules, which, for example, include 32 

Extended-Connectivity-Fingerprints (ECFP’s) [1], Reduced-Graph representations [2], 33 

Simplified-Molecular-Input-Line-Entry-System (SMILES) [3], SMILES-Arbitrary-Target-34 

Specification (SMARTS),[4] and International-Chemical-Identifier (InCHI) string analysis 35 

tools [5], Autoencoder implementations [6], Coulomb-matrices [7], Symmetry functions [8] 36 

and Graph-Convolutions [9,10]. Success of such tools have stimulated their 37 

implementation in bioinformatics. Graph-Convolution-Networks (GCN), where each 38 

amino-acid (AA) unit is considered as a node, has been used successfully on 39 

polypeptides as a classification tool in prediction of the protein-ligand interface [11]. Tools 40 

such as PotentialNet [12] that learn AA-connectivity of ligand binding sites have also been 41 

successfully implemented. The focus of such tools, however, has been on the small ligand 42 

and not the large biomolecular receptors. Additionally, a comprehensive structural 43 

feature-map is unavailable for proteins and peptides as neither the molecular structures 44 

nor their conformations are taken into consideration in the current GCNs. GCNs consider 45 

atom or AA connectivity for predicting properties of small-molecules. However, 46 
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conformable biomolecules have connectivity beyond covalent bonds (such as hydrogen 47 

bonds) that are susceptible to changes based on the environmental and operational 48 

conditions. Tools directly employing three-dimensional coordinates as inputs to Neural 49 

Networks (NN) for small-molecule screening with integrated visualization-techniques 50 

have been developed [13]. However, the applications to biomacromolecules have been 51 

computationally intensive and currently impractical. 52 

Traditional bioinformatics tools do not deal with small-molecules and are mostly 53 

concerned with AA sequences in proteins or oligonucleotide sequences in RNA and DNA. 54 

Letter-based representations are ubiquitous in addressing complicated functions owing 55 

to their simplicity, applicability, and accuracy in finding aligned domains in a sequence 56 

[14-17] or within a larger structure [18-20]. Several Machine Learning (ML) models to 57 

predict functionality using deep-learning, NNs, feature representation, and pattern 58 

analyses such as DeepMHC and NetMHCpan among others [21-23], have been 59 

developed by using the data in the Immuno-Epitope Database (IEDB) Analysis resource 60 

[24]. This database contains Major-Histocompatibility-Class-I, II (MHC-I, MHC-II) peptide-61 

to-allele binding-affinity data for several species. In a recently developed Convolutional 62 

Neural Network (CNN), called DeepSeqPan [25], the authors recognize the importance 63 

of structural information in improving prediction accuracy and recommend their model as 64 

a supplement to other cumbersome models built with structural-alignment methods.  65 

The traditional methodologies work only on letter-based AA or oligonucleotide 66 

labels and their derivations. The underlying physical-meaning, especially molecular 67 

structure or conformation is not apparent to the machine agent upon implementing ML 68 

algorithms. There is a loss of generalizability to include the molecules which do not have 69 
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an obviously intrinsic sequence. Tools that work for or incorporate lipids, carbohydrates, 70 

and other biomacromolecules in their structures are exceedingly rare. Biological 71 

processes, however, are seldom isolated for a specific type of molecule, and commonly 72 

incorporate a wide range of biomolecules. Consequently, there is an imperative need for 73 

a method capable of encoding diverse biomolecules in a universal and meaningful 74 

manner (Fig 1) to study the interfacial phenomena at the molecular level. These 75 

processes may involve all biological systems, e.g., peptide and lipid or peptidoglycan [26], 76 

and biology/solid soft interfaces relevant to technological and nanomedicine applications 77 

[27].  78 

Fig 1. Schematics show the differences between the letter-based and structure-based 79 

representation of biomolecules for ML studies in functionality prediction. The central 80 

column is the index while the middle column shows the letter-based representation and the 81 

rightmost column shows the structure-based representation. 82 
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Implementations of such ML tools could broaden the paradigm of drug-design, 83 

combating antibiotic resistance, restorative dentistry [28], disease-diagnostics, 84 

biocompatible-coatings, lab-on-chip technologies, and biosensors [29]. In this work, we 85 

demonstrate a comprehensive feature-map for peptides that can be generalizable to other 86 

biomolecules. The immediate goals of the current work have been, (a) To take any AA 87 

sequence and convert it to a VSEPR structure-based representation via a reversible 88 

transformation; (b) To decide on an NN model that takes neighborhood information and 89 

performs consistently well across different length sequences, and (c) To benchmark the 90 

model with respect to the model used in DeepMHC. The long-term goal is to establish 91 

groundwork for future research in developing an accurate, interpretable and generalizable 92 

feature-map that incorporates conformations and multiple biomolecules to study complex 93 

phenomena. 94 

The binding-affinity obtained from the current study displays higher prediction 95 

accuracy for 10-AA long peptides than the one-hot encoded shallow CNN model from 96 

DeepMHC [23], while the reverse is true for 9-AA long peptides. 5-fold Cross-Validation 97 

(CV) remains consistent across 9-AA and 10-AA long sequences, a significant 98 

improvement compared to DeepMHC where there is an appreciable drop in predictive 99 

power between 9-AA and 10-AA sequences. Since the VSEPR implementation consists 100 

of a larger feature map in conjunction with a deep residual neural network (ResNet), there 101 

is some overfitting and a loss of interpretability. It is noted that including angles in a GCN 102 

would be more interpretable. Indeed, such a model is aimed as one of the next steps to 103 

be taken towards generation of precise and pan-specific predictive tools, generalizable to 104 

other biomolecules of interest in medical and technological applications. 105 
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Materials and Methods. 106 

Data Cleaning and Preparation 107 

Data compiled in 2013 from IEDB (www.iedb.org) Analysis Resource [24] are 108 

downloaded and cleaned. The binding affinities are measured in terms of Inhibitor 109 

Concentration IC50 required to reduce binding by half [30]. The values are converted to -110 

ln(IC50), as a normalization step. According to extant standards, any sequence with an 111 

IC50 less than or equal to 500 is labeled as a binder and the others labeled as non-binder 112 

for binary classification. The dataset is then interfaced with a Python script to extract 113 

peptide sequences with transformed binding-affinity values to any allele of interest from 114 

any species within the dataset. All human alleles with at least 1,000 different 115 

corresponding epitope sequences are used in this study. 20% of the sequences are 116 

frozen out of the dataset for testing the model. Remaining 80% of sequences for each 117 

allele are used as a training set. The peptides in each set are then converted into their 118 

VSEPR encoded fingerprints as described below. 119 

VSEPR extended structure feature-map 120 

As a first attempt, Bioluminate [31] is used to obtain the protein data bank (PDB) 121 

files for each of the naturally occurring AA. These PDB files contain information for each 122 

atom, including the data of atom type (in terms of atomic number) and cartesian 123 

coordinates of the given atom in space. The ProDy [32] library in python is used to 124 

traverse through the PDB files. Iterating through each of the neighbors of an atom, the 125 

bond type of each neighbor bonded to the central atom (CA) is obtained, based on prior 126 

knowledge of the AA structures. Euclidean distances are calculated to determine 127 
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corresponding bond lengths. The number of lone pairs on any given CA is inferred based 128 

on the number of bonds and the bond-types that the given atom has, and its electronic 129 

structure. To calculate the angles made by pairs of Bonded-Atoms subtended at the CA, 130 

angle formula is used, and it is repeated parallelly for all CA and all combinations of 131 

Bonded-Atoms pairs per CA. Fig 2 shows the schematic of such a feature-map for Serine 132 

in an example peptide sequence. 133 

Fig 2. Schematic of Valence Shell Electron Pair Repulsion structural feature-map for 134 

bioinformatics studies. Green: N-terminus/Connection from previous Amino-Acid, Orange: 135 

Alpha-Carbon, Dark-Blue: Functional groups in side-chain, and Light-Blue: Connection to next 136 

Amino-Acid/C-terminus. Each such node contains 5 channels of information: Central Atom (CA) 137 

with associated Lone Pairs (LP), Bond lengths (BL), Bonded Atoms (BAt), Bond Types (BT) and 138 

Bond Angles (Bα). 139 
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The information for a given CA is appended to all successive non-hydrogen CA’s 140 

starting from the N-terminus of the peptide and ending at the C-terminus. Each type of 141 

parameter obtained from the VSEPR extended structure, is input as a separate channel 142 

of data to the neural network for training without overlap. The tenths place-value of the 143 

atomic number of the CA is the index of the residue location and the hundredths place-144 

value is the location within the residue. For example, the α-Carbon in the 1st AA at the N-145 

terminus is given a value 6.01, whereas the carbon at the center of the planar carboxyl 146 

group bonded to the amine group of the 2nd AA, is given a value of 6.00 (See S1 Appendix 147 

for more details). 148 

The symbolic-connectivity reduces dimensionality but increases information 149 

bandwidth. It means that there are now two non-linear data bands in terms of power of 150 

10. One band is 10-2 and the other is 10-1 in this case. Since the bands do not overlap, 151 

owing to the channel-splitting, machine learning methods also work as long as there are 152 

enough hidden layers to fit the respective non linearity levels. This is a way of multiplexing 153 

three separate inputs into one. Future implementations will eliminate this input through 154 

analytical transformation that only affects linear part of dominating input parameters. 155 

Binary vectorization of the encoding will also be attempted since power of two is more 156 

flexible instead of power of 10, in management of information bandwidth. Nevertheless, 157 

incorporating conformations as well as using adjacency matrices in a GCN is the clear 158 

next step towards making VSEPR methodology more impactful. 159 

Neural Network Architecture 160 

Since behavior of molecular components of peptides depends on their 161 

neighborhood, Residual Neural Network (ResNet) was chosen to incorporate such 162 
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information. The schematic of the process is shown in Fig 3. Such a Neural Network 163 

architecture comprises of a convolution block called the Residual Convolutional Unit 164 

(RCU) which performs a set of convolutions on the channels and a Fully Connected (FC) 165 

block. The RCU is implemented in terms of an Efficient Spatial Pyramid (ESP) [33]. ESP 166 

in the RCU allows for an improved gradient flow for training the network and essentially 167 

makes each atom ‘see’ its neighbors. 168 

Fig 3. Schematic of the Training and Validation with the ResNet Architecture . In the 169 

convolution block, convolution proceeds on all atomic nodes simultaneously, with each 170 

successive layer seeing effects from more neighbors. Features thus extracted are sent through a 171 

fully connected network for prediction. The prediction can be carried out on any function that can 172 

be represented in terms of a numerical value. Here we predict the -ln(IC50) binding affinity. 173 

The outputs of the ESP enhanced RCU block are then passed into the FC block, 174 

with a Rectified-Linear-Unit activation on all the layers and SoftMax on the last. Mean-175 

Squared-Error is the loss function to be minimized to output the binding affinity of the 176 
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peptide to the corresponding MHC-I allele. Batch Normalization is performed after every 177 

layer in the network. Randomly initialized weights are then learned in a supervised 178 

learning protocol and hyperparameters are tuned following a training process as 179 

described below. 180 

Training, Validation and Testing. 181 

Sequences for each allele in the training-set are divided into five equal parts 182 

randomly selected, to set the stage for a 5-fold cross-validation as a control against 183 

sampling bias. Four out of five such parts are used to train the model and the fifth one is 184 

used for testing. Then the model rotates through another set of four such parts as training 185 

and fifth one as test set. In each such model training round, per allele, each of the feature-186 

maps are split into 5 channels per input sequence. They are sent in simultaneously in 187 

mini-batches of 20 peptides at a time into the ResNet described above, for 5000 epochs. 188 

The PyTorch [34] deep-learning library is used for training. The model is labeled 189 

‘converged’, if validation loss (10% of the training data is used for validation) did not 190 

reduce by more than 1% for 100 subsequent epochs.  191 

After the training is completed, hyperparameters are tuned to maximize the 5-fold 192 

cross validation resulting in a learning rate of 5e-4. The process is repeated three times 193 

to ensure that the cross-validations observed are consistent and not affected by choice 194 

of training samples. A similar procedure is followed to train a regular Convolutional neural 195 

Network with one-hot encoded peptide sequences as in DeepMHC for one-to-one 196 

comparison and evaluation. Meanwhile, the 20% of data frozen before training is then 197 

used as a blind test set for evaluating model performance.  198 

 199 
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Results and Discussions 200 

We compare the allele-specific VSEPRnet model with the state-of-the-art CNN model, 201 

DeepMHC that works with letter-based fingerprints. The 5-fold CV results as obtained by 202 

the reproduced DeepMHC model versus the current VSEPRnet model is shown in Fig 4A 203 

and 4B for 9-AA and 10-AA long sequences respectively. Results show a consistent 204 

response across sequence lengths in the VSEPRnet case in contrast to DeepMHC, 205 

where there is a fall in prediction accuracy for 10-AA sequences (refer S1 Fig). In the 206 

case of DeepMHC, the average 5-fold CV (Fig 4C) across all alleles studied is 0.87 for 9-207 

AA sequences, with a standard-deviation of 0.03. For 10-AA sequences it is 0.65 with a 208 

standard deviation of 0.11. For VSEPRnet, the average 5-fold CV for 9-AA long peptides 209 

is 0.74 with a standard deviation of 0.06. While for 10-AA long peptides it is 0.69 with a 210 

standard-deviation of 0.03. Taking available data and overfitting into consideration, 211 

VSEPRnet therefore has a consistency in predictability over sequence lengths. One of 212 

the reasons for a marked fall in cross validation for 10-length sequences, as outlined in 213 

DeepMHC, is a dependency of the model on distal effects which dominate as lengths 214 

increase. We note that because feature-maps and neural-network architectures usually 215 

go hand-in-hand, further investigation is mandated to isolate the cause of the flattening 216 

response observed in the case of VSEPRnet. However, due to the nature of the ESP 217 

convolution block in the ResNet architecture, distal effects in the convolution may not 218 

dominate. Moreover, the distinction in input sizes between 9-AA and 10-AA peptides is 219 

based on physical rather than sequence length.  220 

Since the VSEPR feature-map contains more information than the one hot 221 

encoding, the data required to avoid over-fitting becomes higher. Thus, the lack of 222 
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requisite data-density lowers the average 5-fold CV from 0.87 (DeepMHC) to 0.74 223 

(VSEPRnet) for the 9-AA long peptides. As discussed previously, there is a role-reversal 224 

for the 10-AA case because there is a pronounced distal-effect in the DeepMHC 225 

implementation whereas it is negligible for the VSEPRnet implementation (see S2 226 

Appendix for more details). The overall performance of VSEPRnet in terms of 5-fold CV 227 

is contingent mostly on the available data-points to train on. Future work could be directed 228 

to implement the model on datasets with higher density of data obtained from High 229 

Throughput Sequencing techniques [35]. 230 

Fig 4. 5-Fold Cross Validation results from VSEPRnet compared with DeepMHC. (A) 5-fold 231 

CV for 9-Length peptide sequences and (B) 5-fold CV for 10-Length peptide sequences; (C) 232 

Average 5-fold CV for 9 and 10-AA peptides across alleles. Performance of VSEPRnet falls in 233 

comparison to DeepMHC in the 9-Length peptides case for most alleles, the most probable 234 

reason being overfitting due to increased dimensionality. The performance of VSEPRnet is better 235 

than DeepMHC in case of 10-Length peptides on most alleles due to reduced dominance of distal 236 
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effects. Overall, VSEPRnet performs consistently across sequence lengths and does not have 237 

the drop in accuracy between 9 and 10-AA peptides as is the case with DeepMHC. 238 

Performance Comparison of VSEPRnet and DeepMHC on previously frozen test 239 

data, uses Pearson Coefficient (PC), Spearman Rank Correlation Coefficient (SRCC) and 240 

Area Under receiver operating Curve (AUC) as metrics to compare the performance of 241 

the two models. For the PC metric, VSEPRnet wins on 11 out of 27 alleles in the 9-AA 242 

case and 5 out of 10 alleles in the 10-AA case; for the SRCC metric, VSEPRnet wins on 243 

8 out of 27 alleles in the 9-AA case and 4 out of 10 alleles in the 10-AA case; And for the 244 

AUC metric, VSEPRnet wins or performs equally on 7 out of 27 alleles in the 9-AA case 245 

and wins on 9 out of 10 alleles in the 10-AA case.  Across all metrics, the performance of 246 

VSEPRnet is within the first standard deviation of DeepMHC for 9-AA peptides, and for 247 

10-AA peptides, VSEPRnet wins on both PC and AUC metrics. The average PC across 248 

all alleles for DeepMHC is 0.244 with a standard deviation of 0.112 for 9-AA peptides, 249 

and 0.279 with a standard deviation of 0.112 for 10-AA peptides. The average PC for 250 

VSEPRnet is 0.235 with a standard deviation of 0.096 for 9-AA peptides and 0.296 with 251 

a standard deviation of 0.042 for 10-AA peptides. Similarly, across all tested alleles, the 252 

average SRCC of DeepMHC is 0.6 with a standard deviation of 0.140 for 9-AA peptides 253 

and 0.514 with a standard deviation of 0.165 for 10-AA peptides, while the average 254 

SRCC, across all tested alleles for VSEPRnet is 0.571 with a standard deviation of 0.099 255 

for 9-AA peptides and 0.5 with a standard deviation of 0.046 for 10-AA peptides (See Fig 256 

5 and S2 Fig for more details).  257 

Additionally, across all tested alleles, the average AUC of DeepMHC is 0.795 with 258 

a standard deviation of 0.072 for 9-AA peptides and 0.684 with a standard deviation of 259 

0.072 for 10-AA peptides, while the average AUC, across all tested alleles for VSEPRnet 260 
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is 0.767 with a standard deviation of 0.062 for 9-AA peptides and 0.745 with a standard 261 

deviation of 0.025 for 10-AA peptides. A consistent response across alleles is also shown 262 

by the VSEPRnet, without being affected by the sequence length of the peptides. 263 

Fig 5. Comparison of DeepMHC and VSEPRnet on test data for 9-AA and 10-AA long 264 

peptides. DeepMHC performs consistently better on the (A) PC, (B) SRCC and (C) AUC metric 265 

for 9-AA long peptides because of lower probability of overfitting due to low information content 266 

of the 1-hot encoding. VSEPRnet PC values are within the mean and spread of the PC values for 267 

DeepMHC. For 10-AA, VSEPRnet performs equally as well as DeepMHC in case of (D) PC and 268 

(E) SRCC, while performing consistently better for (F) AUC owing to the elimination of distal 269 

effects. 270 

 271 

 272 
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Conclusions and Future Work 273 

VSEPRnet is an introductory implementation for extending cheminformatics style 274 

feature-maps to bioinformatics studies while maintaining generalizability across lengths 275 

and molecule-types. There is a demonstrated consistency in prediction-accuracy of 276 

VSEPRnet model across alleles and between 9-AA to 10-AA long peptides binding to 277 

MHC-I allele. Therefore, there are advantages of using this implementation as a first step 278 

in generalization of feature-maps to include other molecules. There is a need to 279 

incorporate conformations and substrate information into the model to make it truly 280 

generalizable to DNA, RNA, proteins, peptides, intrinsically-disordered regions, lipids, 281 

peptidoglycans, phospholipids, sugars, and smaller biomolecules such as vitamins and 282 

co-factors. 283 

Since the VSEPRnet 5-fold CV does not show appreciable dependency on distal-284 

effects, there are available strategies to further improve the displayed generalizability of 285 

the model. The strategies are: (a) Binary-vectorizing the input without overlap between 286 

the channels; (b) Incorporating angular information into GCN; (c) Implementation on high 287 

density datasets; (d) Appending error modulating layers downstream; and (e) 288 

Incorporating allele information to generalize the VSEPRnet to a pan-specific model. It is 289 

also worthy of noting that because the structures of the functional groups are encoded in 290 

VSEPRnet, this is applicable to lipids, peptidoglycans, polynucleotides, small molecules, 291 

sugars, etc. As long as the size of the molecule is within the limits of the training set, 292 

peptide data may be used to train the model while using a small set of peptidoglycans as 293 

the test set, for example.  294 
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The data and scripts for all the above steps including model building and training are 295 

available on GitHub (https://github.com/Sarikaya-Lab-GEMSEC). 296 
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Supporting information 406 

S1 Appendix. Description of Channel Inputs to VSEPRnet. This section describes the 407 

information obtained from VSEPR structures of peptides that is sent through each of the 408 

5 channels into the neural network. 409 

S1 Fig. 5-fold CV data across all alleles. The 5-fold CV of training set peptides for 9 410 

and 10-Amino Acid long sequences, and their means and standard deviations are 411 

tabulated for DeepMHC and VSEPRnet. 412 

S2 Appendix. Model Comparison of dependency of 5-fold CV on available training 413 

data. This section describes the dependency of 5-fold CV’s obtained from the VSEPRnet 414 

and DeepMHC models on available training data. 415 

S2 Fig. PC, SRCC and AUC metrics from test set. The Pearson Correlations, 416 

Spearman Rank Correlation Coefficients, and Area Under the Curve of test peptides for 417 

9 and 10-Amino Acid long sequences, for DeepMHC and VSEPRnet implementations 418 

and their means and standard deviations are tabulated. 419 
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