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Abstract 

The polymicrobial context of chronic infection has received increasing attention due to widespread use 

of microbiome sequencing technology. However, clinical microbiology analysis of infection samples in hospitals 

continues to focus only on established human pathogens. This disconnect between diverse ‘infection 

microbiomes’ and limited clinical microbiology profiling leaves open the possibility that important risk markers 

are being unexploited during infection management. To address this disconnect, we focus on lung infections in 

people with Cystic Fibrosis (CF). A cohort of CF patients (N=77) were recruited for this study. We collected health 

information (age, BMI, lung function) and clinical microbiology records for each patient. We also collected 

sputum samples during a period of clinical stability, and determined lung microbiome compositions through 16S 

rDNA sequencing. We use a regularized linear regression algorithm (ElasticNet) to select informative features to 

predict lung function. We find that models including whole microbiome quantitation outperform models trained 

on pathogen quantitation alone, with or without the inclusion of patient metadata. Our most predictive models 

retain key pathogens as negative predictors (Pseudomonas, Achromobacter) along with established correlates of 

CF disease state (age, BMI, CF related diabetes). In addition, our models select specific non-pathogen taxa 

(Fusobacterium, Rothia) as positive predictors of lung health. Our analysis does not address causality, leaving 

open whether these non-pathogen taxa are playing an active role in promoting lung health (e.g. by suppressing 

pathogens), or are simply informative biomarkers of patient health (orthogonal to age, BMI, etc). Our results 

support a reconsideration of clinical microbiology pipelines to ensure the provision of the most informative data 

to guide clinical practice. 
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Introduction  1 

Bacterial infections in otherwise healthy people are often rapidly resolved by effective immune 2 

responses, independent of antibiotic treatment. In some cases however, infections fail to clear even with 3 

appropriate drug treatment, permitting the establishment of chronic (long-lasting) infection and imposing 4 

elevated morbidity and mortality risk on affected individuals.
1
 Chronic infections are a rising burden on global 5 

health-care systems as populations at risk (e.g. diabetics) grow.
2
 Deficits in host barrier defenses and/or immune 6 

function in these at-risk people provide an opening for the establishment of infection, which are further 7 

compounded by changes in pathogen growth mode (e.g. biofilm formation
3
 and the accumulation of other 8 

pathogens to form complex multispecies communities.
4
  9 

The polymicrobial context of chronic infection has received increasing attention due to advances in 10 

microbiome sequencing technology. However, clinical microbiology analysis of infection samples in hospitals 11 

continues to focus only on the ‘usual suspects’ of established human pathogens – a relatively short list of 12 

organisms for which there is a long established literature on risk to patient health. This disconnect between 13 

diverse ‘infection microbiomes’ and limited clinical microbiology profiling leaves open the possibility that 14 

important risk markers are being unexploited during infection management.  15 

To address this potential disconnect, we focus on chronic lung infections in people with cystic fibrosis 16 

(CF). Cystic fibrosis is an autosomal recessive disease characterized by defective lung mucociliary clearance and 17 

an accumulation of viscous mucus in the patient’s lung.
5–7

 This environment provides both nutrients for bacterial 18 

growth and protection from host immune responses,
8–11

 facilitating long-term microbial infections.
12–15

 CF-lung 19 

infections have historically been studied as single-species phenomena, focused on a few key pathogens that are 20 

routinely identified by clinical microbiology labs (e.g. Pseudomonas aeruginosa and Staphylococcus aureus). 21 

However, the advent of inexpensive 16S rDNA sequencing has caused a major shift in CF lung microbiology 22 

research. Sequencing of expectorated sputum samples has revealed diverse communities of tens to hundreds of 23 

taxa, including numerous non-pathogenic bacteria.
13,16

 24 

CF lung microbiome studies have linked lung microbiome composition to disease progression and overall 25 

patient health
17,18

 and found three key patterns: (1) severe disease is associated with pathogen dominance and 26 

loss of microbiome diversity in cross-sectional studies;
17–19

 (2) loss of microbiome diversity correlates with 27 

declining lung function in longitudinal studies;
20

 (3) prevalence of non-pathogenic fermentative anaerobes 28 

(Veillonella, Prevotella, Fusobacterium) is associated with higher lung function.
21,22

  29 

While these correlative observational results are supported across multiple studies, their causal 30 

interpretation is the subject of some controversy. One line of argument proposes that these results reflect 31 

community ecological processes at play within the lung, where networks of facilitatory and inhibitory 32 
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interactions among species govern community structure and subsequent harm to the host.
12,23,24

 Conversely, the 33 

counter argument is that these patterns are simply the result of oral anaerobe contamination during sample 34 

collection.
25,26

 Under this contamination model, increasing pathogen load compared to a constant background of 35 

oral microbiome contamination generates a spurious link between oral microbes, microbiome diversity, and 36 

patient health, assuming a causal relationship between pathogen burden and health.
25

 These conflicting 37 

hypotheses highlight the uncertainty in the role of taxa present in sputum, and the limitations of observational 38 

studies in establishing causal inference. 39 

In the current study, we side-step the question of causal inference, and instead focus on the degree to 40 

which expectorated sputum microbiome data (inclusive of potential oral contaminants) is informative of patient 41 

lung health. We hypothesize that the addition of non-pathogen data provides additional information that can 42 

improve the predictability of patient health outcomes, compared to established pathogen data alone. To 43 

address this hypothesis we apply machine learning tools to an integrated lung microbiome and electronic 44 

medical record dataset for a cohort of 77 CF patients. We find that compared to the benchmark of pathogen 45 

data alone, prediction of lung function was improved by the addition of non-pathogen taxa.  46 

 47 

Results 48 

Clinical and microbiome data summary 49 

 In total, we obtained sputum expectorates from 77 CF patients with varying lung function. We measure 50 

lung health by percent predicted forced expiratory volume in 1 second (ppFEV1), and stratify ppFEV1 into four 51 

categories from Normal to Severe; a summary of patient information is presented in Table 1. As expected, age 52 

varies significantly across lung function category (ANOVA; p < 0.01). Blood glucose control (HbA1c levels) and 53 

bacterial load (log-scaled) are also significantly associated with lung function (ANOVA, p < 0.01, p < 0.05 54 

respectively). Unsurprisingly, culture-based detection of Pseudomonas aeruginosa also strongly associated with 55 

lung function (ANOVA, p < 0.001).  56 

 57 

 Normal  Mild Moderate Severe P-value 

N 23 15 25 14  

ppFEV1*  101.2  74.9  46.5  32.9   

      (range) (80.4-119.5) (61.6-79.8) (40.8-59.6) (19.7-39.2)  

Age* 20 24 32 31.5 0.0068 

      (range) (9-66) (17-51) (10-63) (21-61)  

Male 11 7 11 6  
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CFTR Genotype      

      Homo-

dF508 

13 7 12 5  

      Hetero-

dF508 

10 8 10 9  

      Other/other 0 3 0 0  

BMI*  21.51 22.23 20.73  19.43  0.0943 

      (range) (16.65-33.91) (19.38-26.07) (16.70-29.81) (16.27-25.69)  

CF-related 

diabetes (CFRD)  

6 8 14 11  

      (%) (26.1) (53.3) (56.0) (78.6)  

HbA1c* 5.5 5.7 5.9** 6.25 0.00933 

      (range) (5.1-7.1) (5.0-7.6) (4.9-8.4) (5.3-11.9)  

Clinical Micro      

       PA (%) 5 (21.7) 10 (66.7) 20 (80.0) 10 (71.4) 0.000119 

       SA (%) 16 (69.6) 10 (66.7) 12 (48.0) 8 (57.1) 0.454 

       MRSA (%) 4 (17.4) 6 (40.0) 6 (24.0) 4 (28.6) 0.486 

       BC (%) 0 (0.0) 1 (6.7) 1 (4.0) 0 (0.0) 0.553 

       AX (%) 2 (8.7) 0 (0.0) 1 (4.0) 3 (21.4) 0.147 

       STE (%) 2 (8.7) 3 (20.0) 1 (4.0) 0 (0.0) 0.191 

Table 1. Summary of patient clinical data, stratified by lung function. Lung function classes are defined as 58 

follows: Normal (ppFEV1 > 80); Mild (60 < ppFEV1 < 80); Moderate (40 < ppFEV1 < 60); and Severe (ppFEV1 < 40). 59 

Quantitative metrics are reported using the median and ranges. *Median reported values. **Two patients did 60 

not have reported HbA1c values. Significant differences between lung function categories tested by ANOVA, p-61 

values shown.  62 

 63 

Turning to our 16S microbiome analyses, we found that the majority (>90%) of reads mapped to one of 13 64 

genera (Fig 1a), highlighting the relatively species-poor nature of sputum microbiome. Fig 1a illustrates that 65 

these 13 dominant genera are a mixture of recognized CF pathogens (red) and orally derived bacteria (black).  66 

The predominant pathogenic species was Pseudomonas aeruginosa, accounting for 30.4% of all reads. 67 

PA sequences were detected in every patient sample. Other established CF pathogens (Staphylococcus, 68 

Achromobacter, Haemophilus, and Burkholderia) collectively represented a further 19.3% of all reads, while oral 69 

taxa account for over 45% of all reads (Fig 1). Total pathogen and oral taxa abundance were both found to vary 70 

significantly (p<<0.001) with lung function (Table 1). 71 

 72 
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Fig 1. CF lung microbiome is species poor, and dominated by oral anaerobes and opportunistic pathogens We 74 

analyzed CF sputum expectorate (N=77) using 16S sequencing and an in-house QIIME 2-based bioinformatics 75 

pipeline to resolve strain-level OTUs. Samples were rarefied to 17000 reads. We identified 217 OTUs across 81 76 

species and 59 genera. Overall, we find that CF sputum samples are species-poor, dominated by oral anaerobes 77 

and opportunistic pathogens. a) Sequences mapped to 14 genera comprised 90% (red line) of the total reads 78 

obtained. 95% (blue line) of all reads mapped to 21 genera. Total cumulative read fraction represented in shaded 79 

region. Pseudomonas was the most prevalent genus, followed by Streptococcus and Veillonella. b) Binning reads 80 

by sample shows variation in relative abundance. Pseudomonas comprises >10% of reads in the majority of our 81 

samples. While over 6% of the total reads mapped to Achromobacter, only 4 samples were comprised of >10% 82 

Achromobacter. 83 

 84 

Microbiome Composition Correlates with Lung Function 85 

 To explore the relationship between the composition of sputum samples and patient health, we next 86 

analyzed microbiome composition across broad lung function categories. Fig 2a shows composition plots 87 

highlighting the relative abundance of six canonical CF pathogens. As expected, Pseudomonas was more 88 

prevalent in people with severe lung function, whereas samples from people with normal lung function contain 89 

more Haemophilus and non-pathogen taxa (grey). However, the data also illustrate that identification of 90 

pathogens with lower lung function is not clear cut – there are multiple individuals whose sputum is dominated 91 

by pathogens and yet have normal lung function. Conversely, there are multiple individuals with low prevalence 92 

of any or all pathogens and yet suffer from heavily impaired lung function. We next examined the composition 93 

of the non-pathogen component of sputum samples (the gray bar in Fig 2a), and found a striking consistency 94 

across individuals regardless of lung function (Fig 2b). Veillonella and Streptococcus consistently dominate the 95 

non-pathogen microbiome component, regardless of lung health or pathogen status. Integrating across 96 

pathogen and non-pathogen components, we find that normal lungs are more diverse than severe ones (p<0.01, 97 

Fig 2c), in line with multiple other studies.
27,28

 Turning to ordination plots (principle coordinates analysis, Fig 2d) 98 

we find ppFEV1 was significantly associated with microbiome composition (Mantel test, r=0.195, p<0.001).  99 

 100 
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 101 

Fig 2. CF Lung microbiome composition varies with lung function and pathogen dominance. Relative 102 

abundances of (a) 6 canonical CF pathogens and (b) other taxa (the grey bar taxa in (a)). Microbiome 103 

compositions grouped by disease severity, classified by ppFEV1 score: normal (80+), mild (60-80), moderate (40-104 

60), and severe (<40). c) Within-sample diversity (Shannon index) is lower in severe disease states (Kruskal-105 

Wallis, p<0.01). d) Between-sample diversity (Bray-Curtis PCoA on top 25 genera, centered log-ratio 106 

transformed). PCs 1 and 2 combined explain ~40% of the microbiome variance, and weakly clusters patients by 107 

Lung Function. 108 

 109 

 110 
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Integrating microbiome and patient meta-data 111 

Fig 2 illustrates patterns of association between microbiome data and a critical patient health outcome. 112 

However multiple confounding variables are not addressed, such as patient age, BMI or CF-related diabetes 113 

(CFRD). To look more globally at the associations between our multiple clinical and microbiome metrics, we 114 

generated a clustered correlation matrix across all variable pairs (Fig 3). We found a complex autocorrelation 115 

structure, with many expected consistencies. Heirarchical clustering notably groups 16S quantitation variables 116 

with patient metadata and clinical microbiology results. Unsurprisingly, FEV1 and ppFEV1 cluster together and 117 

are anticorrelated with ppFEV1 decline rate (average rate of decline in ppFEV1 since birth). Additionally, 16S 118 

quantitation results for Pseudomonas, Staphylococcus, Burkholderia, and Achromobacter cluster with their 119 

respective culture-based clinical microbiology results. This does not hold for Stenotrophomonas, which may be 120 

due to its infrequent detection. 121 

Hierarchical clustering identified two large clusters of correlated variables. One correlated with ppFEV1, 122 

and included alpha diversity as well as 16S quantitation of Fusobacterium, Haemophilus, and Neisseria. The 123 

other anticorrelated with ppFEV1, and included ppFEV1 decline, pathogen abundance, CFRD and 16S 124 

quantitation of Pseudomonas and Achromobacter.  125 
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  126 
Fig 3. Lung function varies with patient meta-data. Spearman correlations (R::corrplot) across all patient 127 

metadata (blue), clinical micro results (maroon), and microbiome data (orange, clr-transformed) reveal a 128 

complex correlation structure. We used a centered-log transform on 16S data to mitigate compositional effects. 129 

Rows and columns were ordered by hierarchical clustering, which identified clusters of metadata and 130 

microbiome variables with similar correlation patterns. 131 

 132 

Predicting Lung Function 133 

The hairball correlation matrix in Fig 3 highlights the statistical challenges in addressing our underlying 134 

question of identifying meaningful predictors of patient outcomes. First, there are many potential predictors (Fig 135 

3 shows 44 patient parameters out of 86 total, including 59 bacterial genera), and second, there are substantial 136 
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and at times strong correlations among these parameters. Further compounding the challenge, we have 137 

relatively few independent patient observations (N=77) compared to the number of potential predictors. 138 

To address these challenges, we first restrict our microbiome analysis to only the top 23 genera in our 139 

dataset, to focus on commonly encountered taxa only (Fig 1). We also calculate three additional features: % 140 

pathogen, % oral taxa, and Shannon diversity. Next, we use machine learning methods to provide a principled 141 

basis for the retention of meaningful predictors. To address compositionality of 16S data, we incorporate total 142 

bacterial load (universal 16S primer qPCR) as a predictor. In addition, we use a centered log-ratio (clr) transform 143 

on our genus-level relative abundance data before standardizing to mean zero, unit variance inputs.  144 

Our machine learning pipeline is outlined in Fig 4, illustrating our approach to assessing the relative 145 

predictive power of different subsets of patient data (patient electronic records and sputum 16S microbiome 146 

data). Our null hypothesis, following the work of Jorth et al. and others
25,26

 is that clinical microbiology provides 147 

an adequate explanatory basis for lung function outcomes, and more specifically that the addition of non-148 

pathogen 16S data does not improve predictive ability. We expect that the addition of patient metadata (age, 149 

BMI etc) will improve our ability to predict lung function due to the progressive nature of CF, however our null 150 

hypothesis predicts that the addition of non-pathogen microbiome data will not improve predictive power, with 151 

or without the inclusion of meta-data.  152 

 153 
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 154 

Fig 4. Machine Learning Data Preparation. Machine learning models are trained on different input data table155 

using varying data resampling methods. (a) Features are categorized by information source (16S, patient 156 

metadata, or culture results). 16S data is further split into pathogens and other taxa in agreement with Fig 2.157 

Machine learning models are trained on each input data table individually (CF Pathogens, Other Taxa, Metad158 

Clinical Micro) and combined (All 16S Data, All Data). (b) We randomly selected 24 patient samples to withho159 

as a test set and train our models on the remaining 53 samples. To assess overfitting, we use leave-one-out cr160 

validation on our training set. We estimate the variance of our model fits using 1000-fold bootstrap resamplin161 

 162 

To illustrate our machine learning approach, we begin with the model output trained on the full data163 

(all 16S and metadata predictors, Fig 5). Fig 5a plots predicted versus observed lung function, for both the 164 

es 

 

data, 

old 

ross 

ng. 

aset 
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training dataset (data on 53 patients used to train model parameters) and the test dataset (data on 24 patients 165 

held back during model training). The consistency of training set and test set R
2
 values suggests the model is not 166 

overfitting the training sets. Fig 5b highlights the parameters retained in the predictive model and their 167 

weighting (blue for positive predictors, red for negative predictors). In Fig. S1 we illustrate the performance of 168 

models trained on subsets of the data, all of which show lower R
2
 values than the model trained on all data (Fig 169 

5). However the predictive features selected in the integrated model are broadly consistent with models trained 170 

on each dataset individually. Positive and negative predictors selected in the pathogen-only and all 16S models 171 

(Fig S1b) were also selected in the all data model. While bacterial load and CFTR mutation type were informative 172 

in a metadata-only model (metadata, Fig S1b), the all data model does not select these features. We 173 

hypothesize that mutation type and bacterial load, share information with Rothia quantitation, and indeed find 174 

these features closely clustering in our correlation analysis (Fig 3).  175 

  176 
 177 

 178 

Fig 5. ElasticNet-identified predictors of lung function. We train a predictive model of ppFEV1 using the 179 

ElasticNet algorithm (alpha = 0.5) to perform feature selection. We assess the train-test holdout method on 180 

metadata + all 16S data. The train-test uses a standard 70-30 split (53 patient training set, 24 patient test set). 181 

(a) We plot model-predicted ppFEV1 values (scaled) against actual ppFEV1 values and calculate the R
2
 of the fit. 182 

We find that the model trained with the full dataset has the highest performance (see Fig S1 for prediction subset 183 

model performance) and selects features across different input data sources. (b) Model coefficients from the 184 

train-test holdout show general agreement with CF heuristics. Age, diabetes, and Pseudomonas abundance are 185 

selected as negative predictors of age whereas oral taxa abundance and BMI are positive predictors. 186 

 187 
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Our analysis in Figures 5 and S1 suggest that the addition of non-pathogen 16 data improves model 188 

performance as evidenced by improvements in R
2
, and flags specific non-pathogen taxa as potential predictors. 189 

To more carefully assess these suggestions, we computationally augment our training datasets using 1000-fold 190 

bootstrap resampling and train models on each of the bootstrapped datasets. 191 

 Figure 6a shows the relative model prediction performance (measured by mean squared error) for each 192 

of the five input data sources, and plots bootstrap-generated confidence intervals (boxplots) in addition to single 193 

points for the non-bootstrapped train/test model approaches from Figure 5 and S1 (black points). To establish a 194 

performance baseline, we design a non-informative (randomized) input dataset by within-feature shuffling the 195 

entries from the ‘all data’ input set, scrambling between-feature correlations while preserving the mean zero, 196 

unit variance within-feature structure. All models using patient metadata or microbiome data outperform our 197 

negative control baseline.  198 

To address the key question of relative model performance, we find that the addition of non-pathogen 199 

taxa significantly improves predictive ability (significantly reduces bootstrapped MSE; Figure 6a), with or without 200 

the addition of patient meta-data. Models trained on all 16S quantitation overall significantly outperform 201 

models trained only on pathogen quantitation. Interestingly, while microbiome data and metadata-trained 202 

models perform equivalently, combining the two datasets permits greater model performance. Looking broadly 203 

across models, we find reasonable consistency in positive and negative predictor selection between our non-204 

bootsrapped train/test (black dots) and our bootstrapped (boxplots) models (Fig 6c-g).  205 

We find multiple features selected across all training sets. Pseudomonas, Achromobacter, age, and 206 

diabetic status are consistently selected as negative predictors, while Haemophilus, Fusobacterium, Rothia, oral 207 

taxa abundance, and BMI are consistently positive predictors. All informative features selected in the 208 

independent models (Fig 6c-e) were also selected in the integrated model (Fig 6g). A small subset (< 50%) of the 209 

bootstrapped models also selected a handful of oral taxa, bacterial load, and CFTR mutation type as positive 210 

predictors of lung function (Fig 6g, gray boxplots). However, a majority of bootstrapped models and the 211 

train/test model did not select these as informative features.  212 

As an additional check against overfitting, we obtain ranges of model errors (measured by mean squared 213 

error of predicted ppFEV1 values) using leave-one-out cross validation (Fig 6b).  We do not find significant 214 

differences between cross-validated model errors across our training sets. Median cross-validated errors were 215 

consistently lower than the train/test split model error (Figure 6b), suggesting that our models are not 216 

overfitting. 217 

 218 

 219 
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Fig 6. ML identification of lung function predictors. 220 

221 

Fig 6. Bootstrapped ElasticNet-identified predictors of lung function. ML models were trained using varying 222 

input datasets. a 1000-fold bootstrapping and b) LOOCV were used to generate prediction error (MSE) ranges223 

across feature subsets. Models trained on all of the data show lower error compared to other feature subsets224 

Adding 16S pathogen quantitation decreases model error. Models trained on all 16S data outperform models225 

using only 16S quantitation (p < 0.01, t test). Regardless of input features, models trained on the full sample s226 

(black points) are greater than median LOOCV MSEs (boxplots). c-g) Coefficient ranges for train/test (black 227 

points) and bootstrapped models (boxplots) trained on varying input datasets (blue: metadata, orange: 16S 228 

pathogens, yellow: 16S other taxa) show consistency between both machine learning strategies. Both cases 229 

select Pseudomonas and Achromobacter as negative predictors.  230 

 231 

Discussion 232 

People with CF face the challenge of managing long-term chronic infections. Current management 233 

practice is driven by clinical microbiology identification of specific pathogens in expectorated sputum sample234 

alongside measures of overall health status (lung function, BMI, CF-RD). In the current study, we used 16S 235 

sequencing to assess sputum microbiome content more broadly, and ask whether the addition of non-patho236 

taxa improves our ability to predict patient lung health, with or without the inclusion of patient health data. T237 

address this question we applied machine learning tools to an integrated 77 patient lung microbiome and 238 
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electronic medical record dataset. Our analysis revealed that the addition of non-pathogen data improves 239 

prediction of patient health, with the most accurate models selecting patient metadata, pathogen quantitation, 240 

and non-pathogen information. Our inclusive ‘all data’ models additionally point to a predictive role for specific 241 

non-pathogen taxa, in particular the oral anaerobe genera Rothia and Fusobacterium.  242 

Despite the significant contribution of non-pathogen data, our results are still broadly consistent with 243 

what might be termed the ‘traditional’ view of CF microbiology. Established CF pathogens (P. aeruginosa, S. 244 

aureus, H. influenzae, B. cenocepacia) are the major drivers of patient outcomes, as evidenced by substantial 245 

improvement in predictive outcomes whenever we include pathogen data (Fig 6a), and the by comparison 246 

relatively weak contribution of the addition of non-pathogen taxa. Note that we specifically use quantitative 16S 247 

measures of pathogen composition to provide a level playing field in the comparison of pathogen and non-248 

pathogen predictive contribution. Fig 3 highlights that quantitative 16S and qualitative (presence/absence) 249 

clinical microbiology data are in general agreement.  250 

The traditional role of CF pathogens as the central predictors of patient outcomes has been challenged 251 

over the past decade by the advent of microbiome sequencing. In a CF context, extensive surveys have 252 

documented an association between CF lung function and microbiome diversity, also evident in the current 253 

study (Fig 2). These results at face value suggest a biological role for these non-pathogen taxa, potentially 254 

competing with
29

 or facilitating
30

 pathogen taxa and therefore indirectly shaping disease outcomes. Jorth et al. 255 

recently published a forceful rejection of this ‘active microbiome’ view, stressing the causal role of changing 256 

pathogen densities in shaping disease outcomes, viewing shifting diversity metrics as a simple statistical artifact 257 

of shifting pathogen numbers against a roughly constant oral contamination background.
25

 Our analyses provide 258 

some support for this view, in particular the constancy of the non-pathogen microbiome across patients (Fig 2b) 259 

and the lack of substantial predictive improvement on addition of non-pathogen data (Fig 6b). However on a 260 

more fine-scaled analysis we see that specific non-pathogen taxa are retained in our most explanatory models, 261 

alongside pathogen taxa.  262 

Our ‘all data’ models highlight Rothia and Fusobacterium as positive predictors of lung function across 263 

our 77 patients, in models that already take into account pathogen data, age and BMI. The retention of these 264 

specific taxa in both this full model and in partial models (Fig 6b-c) suggests that these taxa provide potentially 265 

valuable predictive information on current patient health. Of course, this analysis does not allow inference to 266 

causal mechanism or even direction of causality. It is entirely possible that these taxa are simply bio-markers of 267 

dimensions of improved health that are largely independent of age, BMI, and other established positive 268 

predictors that are already accounted for in the model. It is also possible that these specific taxa play a more 269 

active causal role, for instance holding specific pathogens at bay via competitive interspecific mechanisms.
31

 270 
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 Interestingly, our ‘all data’ models also highlight Haemophilus, a canonical CF pathogen, as a positive 271 

predictor of lung function. Haemophilus influenzae infections are most common in younger CF patients,
8,32

 272 

hence we would expect a positive association in a model that is not controlled for age (Fig 6c, 6d). However we 273 

see that the positive weighting on Haemophilus is retained in models that also account for age as a positive 274 

predictor of lung function (Fig 6f-g). A second possibility is that the positive weighting of Haemophilus is due to 275 

pathogen-pathogen competition and the relatively less severe nature of Haemophilus infections in adults (i.e., 276 

Haemophilus is ‘best of a bad job’). Fig 2a illustrates that we only appreciably detect two and rarely three 277 

coexisting pathogens of the six we find across all patients. The relatively depauperate pathogen communities 278 

implies that Haemophilus presence coincides with the absence of other more severe pathogens – and indeed we 279 

see a dominance of negative correlations among pathogens (Fig 3). In this context we cannot preclude a 280 

protective role of Haemophilus against more severe pathogens in older patients. 281 

 A caveat of this analysis is the dependency of machine learning performance and robustness on 282 

particular distributions of data, and the failure of linear algorithms such as LASSO and ElasticNet on microbiome-283 

like data.
33–35

 This is in part due to the compositionality constraint of microbiome data, which can be mitigated 284 

by using absolute quantitation.
36

 However, training on absolute abundances introduces additional caveats, as 285 

order-of-magnitude differences in qPCR sample quantitation can in turn over-represent samples with higher 286 

bacterial loads. We address these issues by using a centered-log transform on relative abundance data and 287 

including log-scaled bacterial load as a potential feature to select. While a small minority of bootstrapped 288 

models selected bacterial load as a positive predictor (Fig 6c, Metadata + All 16S Data), the majority of models 289 

did not. This further suggests that the majority of microbiome information is encoded in the relative ratios of 290 

taxa abundance, which is broadly consistent with previous findings.
25,26

 291 

 Finally, our study is limited to a cross-sectional analysis, limiting us to making predictions on lung 292 

function state at the same time-point as microbiome sample and EMR collection. Assessing and refining our 293 

predictive machine learning algorithms on subsequent lung function data is an important future goal. Our 294 

primary objective is to predict future disease states and preemptively identify patients in need of medical 295 

intervention using early warning microbiome markers. To this effect, we plan to continue our analysis on a 296 

cohort of patients across time to evaluate predictive capacity for future health status. 297 

 In summary, our study finds that inclusion of non-pathogenic taxa significantly improves model 298 

prediction accuracy of patient health status. We identify two oral-derived taxa (Fusobacterium, Rothia) that are 299 

independently informative of lung function, which may be either biomarkers or potential probiotics. Our results 300 

call attention to the potential predictive utility of oral microbes (regardless of their functional roles) in the 301 

clinical assessment of CF patient health. 302 
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Methods 303 

Subjects 304 

All procedures performed in studies involving human participants were in accordance with the ethical 305 

standards of the institutional and national research committees.  Authorization was obtained from each patient 306 

enrolled according to the protocol approved by the Emory University Institutional Review Board (IRB00010219 307 

for adult and IRB00002161 for pediatric patients).   308 

 309 

Sample collection. 310 

Expectorated sputum samples were obtained from the CF-BR at Children's Healthcare of Atlanta and 311 

Emory University Pediatric CF Discovery Core from January 2015 to August 2016.  De-identified patient 312 

information including age, sex, height, BMI, CFTR genotype, degree of glucose tolerance (HbA1c), and ppFEV1) 313 

were obtained (Table 1).  Among these CF patients, 39 were diagnosed with CF-related diabetes patients (CFRD) 314 

by a CF endocrinologist.  HbA1c value was missing for one CFRD subject.  315 

All patients were clinically stable, defined as having less than a 10% change in ppFEV1 over the previous 316 

year with no medication changes for three weeks prior to sputum collection. Upon collection, sputum samples 317 

were stored and transported according to Emory CF-Biospecimen Registry protocols.  Briefly, samples were 318 

diluted 1:3 (mass:volume) with PBS supplemented with 50 mM EDTA.  Diluted samples were then homogenized 319 

by being repeatedly drawn through a syringe and 18-gauge needle.  The resulting sputum homogenates were 320 

aliquot and stored at -80 °C until all 77 samples were collected; these were then sent to MR DNA Lab 321 

(Shallowater, TX) for DNA extraction, sequencing library preparation, Miseq sequencing, and absolute 16S 322 

quantitation.  Clinical microbiology results were additionally obtained on the sputum sampling date. 323 

 324 

DNA extraction and 16S sequencing 325 

DNA was purified from sputum homogenate with the MoBio Power Soil kit (MoBio, Carlsbad, CA).  The 326 

V4 region of the resulting DNA was amplified with the 16S universal primers 515F (5’-327 

GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’).  A single-step 30 cycle PCR 328 

integrating sequencing amplification and library adapter/barcode attachment was performed using the 329 

HotStarTaq Plus Master Mix Kit (Qiagen, USA) by first incubation at 94 °C for 3 minutes, followed by 28 cycles of 330 

94 °C for 30 seconds, 53 °C for 40 seconds and 72 °C for 1 minute, followed by a final elongation step at 72 °C for 331 

5 minutes.  Amplification products were then normalized, pooled and purified using calibrated Ampure XP beads 332 

for Illumina Miseq sequencing.  333 

 334 
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Bioinformatics pipeline 335 

Illumina Miseq sequencing generated in a total of 10,603,544 sequences, with an average of 137,708 336 

sequences per sample (minimum 76,281, maximum 191,868).  All sequence processing was done through 337 

QIIME2 2018.2.0.  Raw sequences were firstly de-multiplexed and quality filtered on a per-nucleotide basis (min 338 

quality: 4, window: 3, min length fraction: 0.75, max ambiguous: 0). Reads were denoised using the deblur 339 

plugin, and the sequences were trimmed at the length of 250 bp (sample stats: T, mean error: 0.005, indel_prob: 340 

0.01, indel_max: 3, min_reads: 10, min_size: 2, jobs_to_start: 1). Taxonomic assignments were classified against 341 

both the SILVA and greengenes database and assigned based on their highest taxonomic resolution. 342 

Discrepancies were resolved manually through BLAST and comparing against the non-redundant NCBI sequence 343 

database.  344 

Based on taxonomic information, microbiome composition data was obtained for every sputum sample 345 

and a phylogenetic tree was constructed via fasttree. To correct for the variation 16S rDNA copy number among 346 

different taxa, the number of sequences per sample were divided by known 16S rDNA copy number of the genus 347 

or divided by four (average number of 16S rDNA copy number) if the information was missing.
37

  Samples were 348 

rarefied to 17000 reads to guarantee equal sampling for subsequent analysis.
38

 349 

 350 

Statistical and Quantitative Analysis  351 

Patient samples were binned by ppFEV1-based lung function (Normal: >80%, Mild: 80-60%, Moderate: 352 

60-40%, Severe: <40%). Variance across lung function categories in patient metadata, clinical microbiology data, 353 

and 16S metadata was tested using ANOVA. Variation between microbiome composition and ppFEV1 was tested 354 

using Mantel tests on Bray-Curtis distances at 9999 permutations. Within-sample and among-sample diversity 355 

was calculated using the Shannon diversity index and Bray-Curtis based PCoA on 16S quantitation data 356 

agglomerated to the genus level.
39

 Associations between continuous variables were tested using Spearman 357 

correlations. To mitigate compositional effects, 16S data were center-log transformed prior to all analyses. A full 358 

pairwise correlation matrix was calculated, with rows and columns ordered by hierarchical clustering.
40

  359 

 360 

Machine Learning 361 

We use ElasticNet to fit regularized linear models predicting lung function (ppFEV1) from patient 362 

metadata, microbiome composition, and clinical microbiology results.
41

 All input features were standardized to 363 

mean 0 variance 1 prior to model training. We create 6 input datasets based on information source – Clinical 364 

Micro, CF Pathogens, Other Taxa, All 16S Data (CF Pathogens + Other Taxa), Metadata, and All Data. We 365 
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additionally perform within-feature shuffling on the All Data set to create a bootstrap randomized dataset with 366 

the same dimensions, serving as a non-informative negative control. 367 

For model validation, we employ three methods. First, we use a simple 70/30 train/test holdout, where 368 

models are trained on 53 samples and used to predict on the remaining 24. Model accuracy is measured using 369 

mean squared error (MSE). Second, we perform leave-one-out cross-validation on the training set to simulate 370 

model performance on new data, and compare the resulting MSE ranges to the holdout method to assess model 371 

overfitting. Finally, we perform bootstrap reshuffling on the training set to generate 1000 new training sets, fit a 372 

new regularized linear model to each, and obtain ranges and variances for the selected model coefficient 373 

weights. We perform each validation method on each input dataset to compare between information sources. 374 

We identify important predicting variables as ones with nonzero median coefficient weights selected across all 375 

bootstrap models. 376 
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Microbiome data enhances predictive models of lung function in people with CF - Supplementary Figures 468 

 469 

Fig S1. Predicting ppFEV1 from genus data. We assess the train-test holdout method on five input data sources: 470 

16S quantitation of CF Pathogens (clr-transformed), all 16S data (clr-transformed), metadata, metadata + 471 

pathogens, and metadata + all 16S data. 472 
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 473 

Fig S2. Predicting ppFEV1 decline rate. We find that models trained on varying datasets weakly outperform a 474 

random data control. Rothia and Fusobacterium are selected as negative predictors of decline rate, suggesting a 475 

protective role in the CF microbiome. 476 
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