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Abstract 

Objective 

To investigate the impact of alpha-2-macroglobulin (A2M), a suspected intrinsic radioprotectant, on 

radiation pneumonitis and esophagitis. Additionally, we establish multifactorial predictive models for 

pneumonitis and esophagitis. 

Materials/Methods 

Baseline A2M levels were obtained for 258 patients prior to thoracic radiotherapy (RT). Dose-volume 

characteristics were extracted from treatment plans. Spearman’s correlation (Rs) test was used to 

correlate A2M levels, smoking status and dosimetric variables with toxicities. Esophagitis and 

pneumonitis prediction models were built using least absolute shrinkage and selection operator (LASSO) 

logistic regression on 1000 bootstrapped datasets. Models were built using 2/3 of the data for training 

and 1/3 for validation. 

Results 

There were 36 (14.0%) patients with grade ≥2 pneumonitis and 61 (23.6%) with grade ≥2 esophagitis. 

The median A2M level was 191 mg/dL (range: 94-511). Never/former/current smoker status was 47 

(18.2%)/179 (69.4%)/32 (12.4%). We found a significant correlation between baseline A2M levels and 

esophagitis (Rs=-0.18/p=0.003) and between A2M and smoking status (former or current) 

(Rs=0.13/p=0.04) but not between A2M and pneumonitis. On univariate analysis, significant parameters 

for grade ≥2 esophagitis included number of fractions (Rs=0.47/p<0.0001), treatment days 

(Rs=0.44/p<0.0001), chemotherapy use (Rs=0.40/p<0.0001), dose per fraction (Rs=-0.34/p<0.0001), 

total dose (Rs=0.29/p<0.0001), age (Rs=-0.22/p=0.0003), and several dosimetric variables in esophagus 

with Rs>0.5 (p<0.0001). For pneumonitis, significant clinical parameters were treatment days 

(Rs=0.24/p=0.0001), chemotherapy use (Rs=0.22/p=0.0004), number of fractions (Rs=0.21/p=0.0007), 

dose per fraction (Rs=-0.18/p=0.0035), and total dose (Rs=0.15/p=0.013). The most significant 

dosimetric variable in lung and heart was D70 (Rs=0.28/p<0.0001) and max dose (Rs=0.27/p<0.0001), 

respectively. LASSO bootstrap logistic regression models on the validation data resulted in the area 

under the receiver operating characteristic curve of 0.84 and 0.75 for esophagitis and pneumonitis, 

respectively. 
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Conclusion 

Our findings show an association of higher A2M values with lower risk of radiation esophagitis and 

smoking status. Multivariate predictive models also confirmed a role of heart dose in the risk of 

pneumonitis. 

 

Introduction 

Advances in radiation technology like intensity modulated radiation therapy (IMRT) and image guided 

radiation therapy (IGRT) have facilitated improved sparing of healthy surrounding tissues and organs 

when developing treatment plans. Nonetheless, radiation pneumonitis and esophagitis remain the two 

most common dose-limiting toxicities in thoracic RT.1–6 The development of either toxicity is known to 

depend on dosimetric and clinical variables. Concurrent chemoradiation also significantly increases the 

risk of developing pneumonitis or esophagitis compared to radiation alone.7,8 

The reported incidence of radiation pneumonitis after definitive thoracic RT ranges from 10 to 20% , 

although figures can vary greatly.3,9–13 This is partly due to the fact that radiation pneumonitis remains a 

clinical diagnosis; there are no biomarkers or radiological findings that unequivocally confirm its 

presence. While many patients display only mild radiological or clinical symptoms (cough/dyspnea), 

which is defined as grade 1 pneumonitis per Common Terminology Criteria for Adverse Events (CTCAE) 

v4.03 [Supplementary Material 1], medical intervention is required with grade 2 and higher 

pneumonitis. Pneumonitis, which typically develops around 2 to 6 months after RT, can lead to fatal 

outcomes in severe cases. Severe esophageal toxicity (grade 3 to 5) occurs in around 4% of patients with 

sequential chemotherapy and RT and in 18-22% of patients that receive concurrent chemoradiation.5,14 

Most patients experience mild symptoms like dysphagia or the feeling of food being “stuck” when 

swallowing while still undergoing radiation. Commonly opioids are needed to control dysphagia and 

odynophagia, but in the most severe cases, tube feeding or surgical intervention can be necessary 

[Supplementary Material 1]. 

To reduce dose-limiting toxicity in thoracic radiation, efforts have been made to adhere to normal tissue 

constraints derived from dose volume correlations with clinical toxicities.15 However, dose volume 

histograms do not fully predict clinical toxicities, as great interindividual variation remains. Intrinsic 
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predictors of normal tissue radiation response may explain the variation, and improving our 

understanding of these is a critical component to further optimize the therapeutic ratio of thoracic RT.  

Radioprotective agents, both natural and synthetic, can present an alternative method to prevent 

radiation-induced toxicity. Although this has been an active field of research for decades, only two 

compounds, amifostine and palifermine, were FDA-approved for the use in radiation therapy and 

neither is being commonly used in routine thoracic RT.  

Another compound under investigation as an intrinsic radioprotector is alpha-2-Macroglobulin (A2M). 

Human A2M is a glycoprotein and the largest non-immunoglobulin serum protein. In animal studies, 

A2M has been shown to exhibit radioprotective effects in healthy irradiated tissue. In studies with rats 

that underwent full body irradiation to 6.7 Gy, rats with endo- or exogenously increased levels of A2M 

had a higher rate of survival, regained their baseline body weight and lymphocyte count faster, and 

displayed normal proliferative ability of the liver tissue compared to the control groups receiving no pre-

treatment (i.e. A2M) in which all the aforementioned factors were decreased.16–18 Suggested key 

mechanisms supporting the potential of A2M as a radioprotector include its ability to promote 

expression of antioxidant enzymes like superoxide dismutases (SODs), inhibition of activation of 

fibroblasts to myofibroblasts thus preventing fibrosis, inactivation of pro-inflammatory cytokines, 

inhibition of all classes of proteases to maintain homeostasis, and enhancement of DNA and cell repair 

mechanisms by binding cytokines and growth factors.19 Our previous study in a small cohort showed a 

correlation of A2M with radiation pneumonitis.9 Smoking can potentially increase A2M levels however, 

literature specifically on A2M in smokers remains rare. Some studies confirmed higher A2M levels in 

smokers compared to non-smokers.20–22 

We therefore investigated whether pre-treatment serum A2M levels are an independent predictive 

variable for the development of post-radiation toxicity in the lung and esophagus in a large cohort of 

patients receiving thoracic RT.  
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Materials and Methods 

Patients 

We prospectively collected data of all patients at our institution who received thoracic RT for primary 

malignancies or metastases at our institution between 2012 and 2016 and who had measured pre-

treatment A2M values tested under an IRB waiver (n=258). Patients with any prior thoracic RT were 

excluded. Patients were treated with conventionally fractionated RT using 3D conformal RT (3DCRT), 

intensity-modulated RT (IMRT), or stereotactic body RT (SBRT). We obtained patient and treatment 

characteristics, smoking history, toxicity and follow-up data. Toxicity data consist of radiation 

pneumonitis and esophagitis rates graded per CTCAE v4.03. Data were obtained at baseline and at 

routine follow-up visits every three months for the first two years. 

Alpha-2-Macroglobulin  

Serum samples were taken ≤30 days prior to RT start. CLIA (Clinical Laboratory Improvement 

Amendments) approved A2M testing was performed at Quest Diagnostics Nichols Institute (San Juan 

Capistrano, CA). A2M levels were given in mg/dL; the normal range was defined as 100-280 mg/dL.  

Treatment plans 

For patients treated before 2014, treatment plans were retrieved from our in-house planning system.23 

From 2014 onwards, treatments were planned in the Eclipse treatment planning system (Varian Medical 

Systems, Palo Alto, CA). To analyze dosimetric data, treatment plans were imported to the research 

platform CERR (Computational Environment for Radiological Research) and recalculated.24 Dosimetric 

variables were extracted from target structures: esophagus for esophagitis and ‘lung minus gross tumor 

volume (GTV)’ and heart for pneumonitis. Before that, plan doses were converted to equivalent dose in 

2 Gy fractions (EQD2) with a/b ratio of 3 for esophagus and 10 for lung minus GTV and heart. For 

esophagitis, one more set of dosimetric variables were extracted by dividing the dose volume histogram 

(DVH) in each structure by the number of treatment days. For these fractional variables, a prefix ‘f’ was 

added to each dosimetric variable, for example, fmax dose. A random sample of 20 patients was used 

for quality assurance (QA) by verifying agreement between dose-volume metrics of the original plans 

and those of the recalculated DVH parameters in CERR. ‘Mean heart dose’, ‘mean esophageal dose’ and 
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‘lungs minus GTV’ were used for QA. The maximum differences in individual dose calculations were on 

the order of 10 cGy and thus considered within an acceptable range. 

Statistical methods 

Univariate and multivariate analyses were performed to investigate associations between radiation-

induced injuries and A2M expression, clinical, and dosimetric variables. In this study, we focused on two 

endpoints: esophagitis and pneumonitis. Patients were categorized into two groups for each endpoint: 

non-toxicity (grade 0 or 1) and clinically significant toxicity (grade 2 or greater). 

A Wilcoxon rank-sum test was used to find a difference in A2M expression between the two groups. 

Spearman’s correlation (Rs) test was used to assess associations between endpoints, Dx values 

(minimum dose to the volume with the x% hottest dose in the organ of interest), computed from x=5% 

to x=100% in intervals of 5%, mean dose, max dose, clinical variables, and A2M.  

Multivariate analysis using the least absolute shrinkage and selection operator (LASSO) logistic 

regression was performed using features with p-value < 0.05 that resulted from the univariate 

Spearman’s correlation test. Before the multivariate analysis, to avoid variable instability due to high 

collinearity, Pearson’s correlation test was conducted among all variables. A cutoff of Pearson’s 

correlation coefficient > 0.8 was used to determine a relatively small group of variables for further 

LASSO modeling.  

To rigorously verify model validity, the data were split into two groups (training data with 2/3 of samples 

and validation data with 1/3 of samples). The model building process was carried out using only the 2/3 

training data. Furthermore, to examine the stability of LASSO variable selection, the model building 

process was conducted using a bootstrapped dataset generated from the training data. Finally, the 

validation data were tested on the resulting model, quantified by the area under the receiver operating 

characteristic curve (AUC) as a function of sensitivity and 1-specificity. The final reported results 

represent the average performance on the validation data for predictive models built using 1000 

bootstrapped datasets.  

For statistical analyses, R language (version 3.2.4), MATLAB (version 8.6.0; MathWorks. Natick, MA) and 

SPSS (version 24; IBM. Armonk, NY) were used. 
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Results 

Patient characteristics 

In total, 258 patients were eligible for analysis. Median age was 69 years (range: 25 to 93 years) and 122 

(47.3%) patients were male. Most patients were former (n=179, 69.4%) or current smokers (n=32, 

12.4%). 134 patients (51.9%) underwent chemotherapy in addition to RT and the median total RT dose 

was 5400 cGy (range: 2700 to 7400 cGy) for conventional fractionation and 5000 cGy (range: 3000 to 

10400 cGy) for SBRT. The median A2M level was 191 mg/dL (range: 94 to 511 mg/dL). More details are 

available in Table 1.  

Toxicities 

Forty-nine patients (19.0%) experienced grade 1, fifty-three (20.5%) grade 2 and eight (3.1%) grade 3 

radiation esophagitis. No grade 4 or 5 esophagitis was observed. Median time to development of 

esophagitis was 0.85 months after the start of RT (range: 0.2 to 6.47 months). Grade 1 radiation 

pneumonitis developed in 28 patients (10.9%), grade 2 in 26 (10.1%), grade 3 in 9 (3.5%) and grade 4 in 

1 patient (0.4%). No grade 5 pneumonitis was observed. Median time to development of pneumonitis 

was 4.73 months after the start of RT (range: 1.3 to 8.1 months).  

 Of the patients who developed grade ≥2 esophagitis, 8 (13.1%) were never, 43 (70.5%) former and 10 

(16.4%) current smokers. Patients with grade ≥2 pneumonitis were never smokers in 9 (25%), former 

smokers in 24 (66.7%) and current smokers in 3 (8.3%) cases. 

Univariate analysis 

Alpha-2-macroglobulin 

A significant correlation between baseline A2M values and esophagitis was found (Rs=-0.18/p=0.003). 

Using a Wilcoxon rank-sum test, there was a significant difference of A2M serum levels between 

patients with grade ≤1 versus grade ≥2 esophagitis (p = 0.015) when all 258 patients were analyzed as 

shown in Table 2. Patients with grade ≥2 esophagitis showed lower baseline serum levels of A2M than 

those with grade 0 or 1. For radiation pneumonitis, no statistically significant difference was found 

between baseline A2M levels and development of radiation pneumonitis (p = 0.84).  
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A trend between smoking status and A2M levels was observed. Current smokers had higher levels 

(217.3 mg/dl) compared to former (207.3 mg/dl) and never smokers (185.4 mg/dl), and former smokers 

had higher levels compared to never smokers. The A2M level had a significant correlation with a status 

of former and current smoker (Rs=0.13/p = 0.04).  

Clinical factors 

Among standard clinical variables, the following variables showed significant correlations with both 

grade ≥2 esophagitis and pneumonitis, respectively: use of chemotherapy (Rs=0.40/p<0.0001, 

Rs=0.22/p=0.0004), number of fractions (Rs=0.47/p<0.0001, Rs=0.21/p=0.0007), dose per fraction (Rs=-

0.34/p<0.0001, Rs=-0.18/p=0.0035), treatment days (Rs=0.44/p<0.0001, Rs=0.24/p=0.0001), and total 

dose (Rs=0.29/p<0.0001, Rs=0.15/p=0.013), and age had a significant correlation with grade ≥2 

esophagitis with Rs=-0.22 (p=0.0003). 

Dosimetric factors 

Spearman’s correlation test between Dx in esophagus and esophagitis showed that D5 through D45 had 

Rs>0.50 (p<0.0001) as shown in Figure 1A. For the fractional dose, fD35 was the highest correlated 

variable with Rs=0.43 (p<0.0001) as shown in Figure 1B.  

For pneumonitis, D70 (Rs=0.28/p<0.0001) in lung and max dose (Rs=0.27/p<0.0001) in heart were 

assessed as the highest correlated variables with pneumonitis in each organ [Figure 1C].  

Multivariate analysis and validation testing 

Pearson’s correlation test using training data was performed with dosimetric variables with p<0.05 in 

the univariate Spearman’s correlation test for each organ. As can be seen in Supplementary Material 2, 

many dosimetric variables were highly correlated. With a threshold of 0.8 in Pearson’s correlation, 

redundant features were removed and one feature with the highest Rs was selected in each cluster. 

Clinical variables with p<0.05 in the univariate analysis and dosimetric variables left after Pearson’s 

correlation test were used in the LASSO logistic regression: (D10, D35, D40, D65, D85, fD20, fD25, fD35) 

in esophagus, age, and A2M for esophagitis; (D10, D15, D70, D90) in lung, (D5, D55, D95, max dose) in 

heart for pneumonitis; for both endpoints, treatment days, chemotherapy use, dose per fraction, total 

dose, and number of fractions were used. In addition, indication of SBRT treatment (coded as 1 and 0 for 

SBRT and non-SBRT treatment) was used as a variable.  
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LASSO logistic regression models were trained using bootstrapped datasets generated from training 

data and were tested on the validation data, resulting in an average AUC of 0.84 (standard deviation 

[SD]=0.03) and 0.75 (SD=0.06) for esophagitis and pneumonitis, respectively [Supplementary Material 

3]. Additional modeling was performed for esophagitis without A2M which resulted in the same average 

AUC (0.84). This appears to be due to more significant dosimetric and clinical variables used in the 

modeling. To assess the importance of features, the frequency of occurrence of each feature during the 

model building process was counted [Figure 2]. For the esophagitis model, D85 and chemotherapy were 

most frequently selected with 755 and 717 times, respectively. It is worthy to note that A2M was 

selected with 621 times, implying its high correlation with esophagitis. Taken together, although A2M 

did not further improve performance of the predictive model for esophagitis, its association with 

esophagitis was confirmed. For the pneumonitis model, max dose in heart was most frequently selected 

with 792 times. Patients were sorted based on predicted outcomes on the validation data and grouped 

into six equal bins with 1 being the lowest risk group and 6 being the highest risk group. When 

comparing observed and predicted incidence, we found a high conformity of both endpoints, meaning 

that the predictive models are highly robust [Figure 3]. Final predictive models built using all training 

data are shown in Supplementary Material 4. 

In addition, the frequency of occurrence of a pair of features used in the LASSO logistic regression model 

was investigated [Figure 4], which provides the information of interaction effects of features in the 

predictive model. 

 

Discussion 

Our study showed that there is an association between low natural pre-treatment baseline A2M serum 

levels in patients with thoracic malignancies and an increased risk of developing radiation esophagitis. 

This finding suggests that higher levels of A2M may have a protective effect in patients undergoing 

thoracic RT. This result is in line with previous reports from studies in mice.16–18 Although we found this 

association for esophagitis, we were unable to detect such a correlation between A2M and pneumonitis 

rate. This may be due to an effect of the uneven distribution of smoking history in the high- and low-risk 

toxicity groups. For example, of the patients that developed esophagitis, 13.1% (n=8) were never 

smokers, while there were 25% (n=9) never smokers among those who developed pneumonitis.  
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As we identified in our correlative analysis, A2M levels appear to be influenced by patients’ smoking 

status. Former and current smokers displayed higher A2M values than patients that had never smoked. 

The effect of smoking on the immune system has been studied extensively. Paradoxically, smoking 

results in immunosuppression in regard to infections as well as aggravated autoimmunity. Altered levels 

of inflammatory cytokines like TNF-α, IFN-γ, IL-1β, IL-6, IL-8, IL-10 and others have been reported in 

healthy smokers.25–28 A possible explanation for the connection between active smoking and a lower risk 

for esophagitis or pneumonitis is that long-term cigarette smoking leads to an increased immune 

response in the lung and surrounding tissues due to the damage it inflicts on the lung parenchyma. 

Although the mechanisms resulting in normal tissue injury after RT are still under investigation, the 

release of reactive oxygen species (ROS) as well as proinflammatory and profibrotic cytokines is thought 

to have a central role in the process.29 Higher baseline levels of acute-phase proteins like A2M may have 

a protective effect on the irradiated tissue by binding proinflammatory and profibrotic cytokines, thus 

reducing the acute cytokine toxicity, and inducing an upregulation of antioxidant enzymes like 

manganese superoxide dismutase (MnSOD).19,29  

Taking into account the multifactorial etiology of radiation toxicity29, it is essential to look at different 

predictive factors in the development of lung and esophageal injury after RT. Most commonly, different 

dosimetric parameters are included in predictive models for pneumonitis and esophagitis but biological 

and genetic determinants are also under investigation.9,11,29–36 In our analysis, we focused on dose-

volume metrics, age, chemotherapy, and other clinical variables in addition to A2M. The high selection 

frequency of A2M in the model building process also confirms our primary correlative analyses linking 

A2M levels to esophagitis rates. Factors that have repeatedly shown significant correlation with 

esophagitis include V40-V606,37–40 (Vx: percentage volume receiving at least x Gy) and the mean 

esophageal dose 41–43. Several authors have reported on the increased risk for high-grade esophagitis 

after sequential and especially concurrent chemo-RT in comparison to RT alone.5,6,44–47  

For pneumonitis, we were able to validate the correlation with radiation dose received by the heart (in 

our model, max dose in heart). Different lung dose volumes (V5-V40 and mean dose in lung) have been 

found to predict the development of pneumonitis7,10,48. In addition, the dose received by the heart 

during thoracic radiation seems to be an accurate predictor.49,50 The best fitting predictive model 

reported by Huang et al. included the following variables, in order of selection: D10 in heart, D35 in lung 

and max dose in lung, and had an AUC of 0.72.49 Although the ideal dosimetric variable(s) for predicting 

pneumonitis across all patient subgroups may not yet be known, it is evident that heart doses are an 
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essential part of any model built for this cause. Though we could not confirm the impact of A2M on 

pneumonitis with our data, a correlation between them has been previously described.9,50 We may have 

been limited by the lower incidence of grade ≥2 pneumonitis (14.0%) and the low rate of current 

smokers in our patient cohort. In the previously published study on A2M and pneumonitis, pneumonitis 

rates were between 19 and 35%. Furthermore, we confirmed chemotherapy in conjunction with RT 

(either concurrent or sequential) as a significant factor for the development of pneumonitis, evident by 

its fifth-highest frequency in 1000 model runs [Figure 4B], consistent with multiple other studies.7,48  

While all patients had A2M prospectively collected before their RT and toxicity data were systematically 

prospectively scored per CTCAE v4.03, caution is warranted regarding the interpretation of these results. 

In particular, including a factor like chemotherapy in predictive models should be considered carefully as 

different regimens, doses and timings, depending on the patient population, make it a very 

heterogeneous variable. Similarly, the patient cohort we studied was diverse in regard to diagnosis and 

treatment. Although requirements for eligibility included no prior RT, patients underwent different 

modes of RT (conventional, SBRT, IMRT) which may have an impact on the toxicity profile. Furthermore, 

as noted in the beginning of the discussion, smoking status as a variable was not evenly distributed. 

Given its proposed link to serum A2M levels, this could be a cause for certain discrepancies in our 

results.  

 

Conclusion 

In summary, the analysis of our institutional dataset has produced predictive models for both 

esophagitis and pneumonitis. This is the first report on the apparent protective function of higher A2M 

levels in regard to esophagitis. While using A2M is untested as a prophylactic radioprotective agent in 

humans at the present time, our study provides an incentive to utilize pre-treatment A2M levels as an 

indicator for the potential risk of developing radiation-induced toxicity. However, further independent 

validation and clinical trials are needed to establish A2M as a dependable biomarker and potential 

radioprotective mediator.  
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Figures and Tables 

Table 1. Patient characteristics 
 

Factor N % 

Age [median, range] 69 (25-93) years 

Sex 
Male 
Female 

 
122  
136  

 
47.3 
52.7 

KPS [median, range] 90 (50-100) %  

Subgroups 
NSCLC  
SCLC 
Thymoma 
Mesothelioma 
Lung metastases (other primary)  

 
202 
17 
8 
25 
6 

 
78.3 
6.6 
3.1 
9.7 
2.3 

Smoking History 
Never 
Former 
Current 

 
47 
179 
32 

 
18.2 
69.4 
12.4 

Pack-Years (former/current smokers) [median, range] 37 (1-204) years 

Alpha-2-Macroglobulin [median, range] 191 (94-511) mg/dL  

Chemotherapy Timing 
Concurrent 
Sequential 
No chemotherapy 

 
60 
74 
124 

 
23.2 
28.7 
48.1 

RT Total Dose [median, range] 
Conventional RT 
SBRT 

 
5400 (2700-7400) cGy  
5000 (3000-10400) cGy  

 
 
 
 
Table 2. Comparison of mean A2M serum levels between (unit: mg/dL) grade ≤1 and grade ≥2 
esophagitis and pneumonitis. The p-value was calculated using Wilcoxon rank-sum test. 
 

Toxicity  Grade 0 or 1 Grade 2+ p-value 

Esophagitis N 197 61 0.015 

Mean A2M 208.9 190.4 

Pneumonitis N 222 36 0.837 

Mean A2M 204.1 207.0 
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Figure 1. Spearman’s correlation coefficients between radiation-induced injuries (grade 2 or greater) 
and Dx in esophagus for (A) esophagitis, fDx in esophagus for (B) esophagitis, and Dx in lung and heart 
for (C) pneumonitis. 
 

(A)  

 

 

 

 

 

 

(B)  
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Figure 2. Frequency of occurrence of each feature used in 1000 predictive models for (A) esophagitis 

and (B) pneumonitis. 

 

(A)        (B) 

 

 

Figure 3. Comparison of observed and predicted incidence on validation data (1/3 of samples) for (A) 

esophagitis and (B) pneumonitis. The numerator and denominator indicate the number of events and 

the number of samples in each bin, respectively. 

 

(A)       (B) 
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Figure 4. Frequency of occurrence of a pair of features used in 1000 predictive models for (A) 
esophagitis and (B) pneumonitis. The frequency of occurrence of a pair of features was divided by 1000. 
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Supplementary Material 

Supplementary Material 1. CTCAE v4.03 grading for pneumonitis and esophagitis. 

Adverse Event Pneumonitis 

Definition: A disorder characterized by 

inflammation focally or diffusely affecting 

the lung parenchyma 

Esophagitis 

Definition: A disorder characterized by 

inflammation of the esophageal wall. 

Grade 1 Asymptomatic; clinical or diagnostic 

observations only; intervention not 

indicated 

Asymptomatic; clinical or diagnostic 

observations only; intervention not 

indicated 

Grade 2 Symptomatic; medical intervention 

indicated; limiting instrumental ADL 

Symptomatic; altered eating/swallowing; 

oral supplements indicated 

Grade 3 Severe symptoms; limiting self-care ADL; 

oxygen indicated 

Severely altered eating/swallowing; tube 

feeding, TPN or hospitalization indicated 

Grade 4 Life-threatening respiratory compromise; 

urgent intervention indicated (e.g., 

tracheotomy or intubation) 

Life-threatening consequences; urgent 

operative intervention indicated 

Grade 5 Death Death 

 

 

Supplementary Material 2. Pearson’s correlation test using training data to remove redundant features 

with a threshold of 0.8: (A) dosimetric variables in esophagus for esophagitis, (B) in lung for 

pneumonitis, and (C) in heart for pneumonitis. 
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Supplementary Material 3. Average AUC after 1000 iterations of the LASSO logistic regression modeling 

on the validation data. The error bar indicates the standard deviation. 

 

Supplementary Material 4. Final predictive models for esophagitis and pneumonitis. 

Esophagitis model Pneumonitis model 
Variable Coefficient Variable Coefficient 

D40 0.036 D70 in lung 0.196 
D85 -0.053 Max dose in heart 0.009 
fD35 0.116 Dose per fraction -0.034 

Number of fractions 0.050 Treatment days 0.012 
Dose per fraction -0.019 Constant -2.627 
Chemotherapy 0.371 

  Constant -3.094     
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