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Abstract

Genetic correlations between traits may cause correlated responses to selec-

tion. Previous models described the conditions under which genetic correla-

tions are expected to be maintained. Selection, mutation and migration are

all proposed to affect genetic correlations, regardless of whether the underly-

ing genetic architecture consists of pleiotropic or tightly-linked loci affecting

the traits. Here, we investigate the conditions under which pleiotropy and

linkage have differential effects on the genetic correlations between traits by

explicitly modeling multiple genetic architectures to look at the effects of

selection strength, degree of correlational selection, mutation rate, muta-

tional variance, recombination rate, and migration rate. We show that at

mutation-selection(-migration) balance, mutation rates differentially affect

the equilibrium levels of genetic correlation when architectures are composed

of pairs of physically linked loci compared to architectures of pleiotropic loci.

Even when there is perfect linkage (no recombination within pairs of linked

loci), a lower genetic correlation is maintained than with pleiotropy, with a

lower mutation rate leading to a larger decrease. These results imply that the
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detection of causal loci in multi-trait association studies will be affected by

the type of underlying architectures, whereby pleiotropic variants are more

likely to be underlying multiple detected associations. We also confirm that

tighter linkage between non-pleiotropic causal loci maintains higher genetic

correlations at the traits and leads to a greater proportion of false positives

in association analyses.

Keywords: Pleiotropy, Linkage, Genetic Architecture, GWAS, Migration,

Mutation

Introduction

Both pleiotropy and linkage disequilibrium create genetic correlations be-

tween traits so that traits do not vary independently of one another (Wright,

1977; Arnold, 1992; Walsh and Blows, 2009). Under natural selection, this

process can prevent a combination of traits from reaching their respective op-

timum trait values favored by natural selection (Falconer and Mackay, 1996).

Likewise, under artificial selection it can constrain breeders from improving

one trait due to undesired changes in another, and in medical gene targeted

therapy treatments it can cause adverse side-effects (Wright, 1977; Parkes

et al., 2013; Visscher et al., 2017; Wei and Nielsen, 2019). Pleiotropy may

cause genetic correlation because one gene’s product (e.g., an enzyme or a

transcription factor) has more than one target and therefore affects more

than one trait or because one gene’s product belongs to a metabolic pathway

that has more than one downstream effect (Hodgkin, 1998; Stearns, 2010;

Wagner and Zhang, 2011). Linkage disequilibrium (LD) may be the result of

a set of loci in close physical proximity on a chromosome that makes a set of

alleles at those loci less likely to be split up by recombination and therefore

more likely to get passed on together from one generation to the next. But

other mechanisms leading to the transmission of one combination of alleles

at separate loci over another combination, can also generate LD and cre-

ate genetic correlations between traits that those loci affect (e.g., assortative
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mating, environmental correlations) (Falconer and Mackay, 1996).

One of the main objectives of a genome-wide association study (GWAS)

is to identify causal genetic variants underlying one or more traits. GWASes

leverage the rapid increase in genomic sequencing to find correlations between

traits and genotypes, and their success is dependent on the effect sizes of the

loci and the distinction between phenotypes. GWASes have had success

in associating genetic variants with traits of interest, which have allowed

researchers to find the molecular underpinnings of trait change (Visscher

et al., 2017). Moving from one trait to two or more trait associations can

lead to discovering pleiotropic loci (Saltz et al., 2017). One GWAS using 1094

traits and 14,459 genes, found that 44% of genes were “pleiotropic”, but this

was determined by assigning genetic variants to the closest gene and even to

both flanking genes when the genetic variant was intergenic (Chesmore et al.,

2018). This conflates linkage and pleiotropy, and the chain of causality (Platt

et al., 2010). Another study, found 90% of genes and 32.4% of SNPs were

associated with more than one trait domain, but they could not rule out

SNPs associated with traits due to linkage disequilibrium (Watanabe et al.,

2018). Unfortunately, determining whether genetic variant associations and

trait correlations are actually the result of pleiotropy or linkage is difficult

since they often map to large regions of genomes, or are in intergenic regions

and don’t associate with the closest genes (Flint and Mackay, 2009; Zhu

et al., 2016; Peichel and Marques, 2017; Visscher et al., 2017). Distinguishing

between the two types of genetic architectures is important for understanding

the underlying molecular functions of the traits, and determining how the

traits may be deferentially affected by selection (Lynch et al., 1998; Barrett

and Hoekstra, 2011; Saltz et al., 2017). This is salient at a time when an

increasing number of traits of interest (e.g., human diseases) appear to be

affected by loci that affect other traits, and especially when targeted gene

therapy clinical trials are more widespread than ever (Edelstein et al., 2007;

Cai et al., 2016; Pickrell et al., 2016; Visscher and Yang, 2016; Chesmore
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et al., 2018; Ginn et al., 2018). There are potentially negative implications for

gene therapy because fixing a gene underlying one disease might increase risk

for another disease. For example, some genetic variants that are associated

with greater risk of Ankylosing spondylitis are also associated with less risk

of Rheumatoid arthritis, and so “fixing” one gene would have undesired side-

effects in this case (Parkes et al., 2013; Gratten and Visscher, 2016).

But the evolutionary dynamics of pleiotropic versus linked loci in creat-

ing genetic correlations are expected to be different, since pleiotropy requires

only one mutation to affect multiple traits and build-up genetic correlations,

and linked pairs require two. Mutation rate should be an important factor

distinguishing pleiotropy and linked pairs because single mutations affecting

more than one trait provides the opportunity for combinations of effects to

match patterns of correlational selection better than linked loci that affect

one trait at a time. Thus, linked pairs may require high mutation rates to

maintain genetic correlations. Recombination can also reduce genetic corre-

lations between traits by breaking up associations between alleles at linked

loci, but the same cannot occur with a pleiotropic locus (but see Wagner

et al. (2007) for other mechanisms to alleviate pleiotropic constraints). Poly-

genic analytical models attempting to approximate the level of genetic vari-

ance and covariance at mutation-selection balance in a population suggest

that tight linkage between pairs of loci affecting separate traits “is nearly

equivalent to” pleiotropic loci affecting both traits (Lande, 1984). Therefore,

genetic correlations between traits can be approximated using previously

elucidated pleiotropic models under certain conditions (Lande, 1980, 1984;

Turelli, 1985). On the other hand, more recent extensions of Fisher’s Ge-

ometric Model (Fisher, 1930) predict that pleiotropic mutations, compared

to mutations that affect only one trait, are less likely to be beneficial over-

all since a beneficial effect on one trait may be detrimental to others (Orr,

1998; Otto, 2004). The detriment of pleiotropic effects is exacerbated when

increasing the strength of selection or with very strong correlational selection
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between traits, since both reduce the amount of phenotypic space where mu-

tations are beneficial (unless pleiotropic effects are aligned with the fitness

surface created by correlational selection). This detriment is not present for

linked loci affecting separate traits since their beneficial mutations will not

have the collateral effects of pleiotropy. These, therefore suggest that linkage

and pleiotropy may have differential effects on genetic variance and covari-

ances depending on mutation, recombination and selection regimes, but this

comparison was not fully explored in any previous model.

Lande (1984) predicted that when loci affecting different traits are tightly

linked, and there is strong correlational selection between traits, recombina-

tion rates between loci affecting different traits can strongly affect genetic

correlations between traits, when selection is weak and mutation rates are

relatively high. In an extreme case where there is complete linkage between

pairs of loci affecting different traits (the recombination rate is 0), and no

linkage between sets of these pairs of linked loci (the recombination rate is

0.5), then he determined that the maximum genetic correlation due to link-

age may be almost as large as the extent of correlational selection, which can

be calculated from the (per linkage group) genetic covariance between traits

and the genetic variances, respectively, as:

genetic covariance (b) =
ρω2µα2

2c
, (1)

genetic variance (c) =

√
(1 +

√
1− ρ2)ω2

µα2

2
, (2)

where ρ is the extent of correlational selection acting between the traits, ω2 is

the strength of selection (with lower values representing stronger selection), µ

is the per-locus mutation rate, and α2 is the per-locus mutation variance. If

there is equal variances among traits then the genetic correlation is calculated

as:

genetic correlation =
b

c
=

ρ

1 +
√

1− ρ2
. (3)
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From these equations we see that, even in the absence of pleiotropy, genetic

covariance may arise from linkage disequilibrium, and depends on both the

strength of correlational selection between traits and selection on each trait,

as well as on the mutational inputs (mutation rates and mutational vari-

ances) of the genes affecting those traits. Yet, from equation (3), the genetic

correlation is independent of the genetic architecture of the traits. Lande

goes on further to state that the case of complete linkage between pairs of

loci affecting different traits is “equivalent to a lesser number of loci with

pleiotropic effects”, but this is not quantified nor is the scaling of the two

examined. We seek to quantify the equivalence of pleiotropy and linkage in

their ability to maintain equilibrium levels of genetic (co)variation under the

same conditions. We also wish to extend this to look at a range of link-

age distances, selection variances and correlations, and mutation rates and

variances, to look at the relative effects of each.

The expectations given by Lande are only expected to be accurate under

conditions where mutation rates are high compared to the strength of selec-

tion on the traits of interest (Turelli, 1984; Turelli and Barton, 1990). When

mutation rates are lower < 10−4, predictions for equilibrium levels of genetic

variation break down and are better approximated by the a “house-of-cards”

model (Kingman, 1978; Turelli, 1984). Analytic predictions for equilibrium

levels of genetic covariation between traits due to linkage disequilibrium, on

the other hand, have not been well explored for the “house-of-cards” model

(Bürger, 2000).

Additionally, levels of trait genetic covariation can be influenced by other

evolutionary processes that affect allele frequencies, and the covariation of al-

lelic values in a population (e.g., migration (Guillaume and Whitlock, 2007),

drift (Griswold et al., 2007), inbreeding (Lande, 1984), and phenotypic plas-

ticity (Draghi and Whitlock, 2012)). Migration affects genetic covariation

because when it is sufficiently high (relative to selection in the focal popula-

tion), then combinations of alleles coming from a source population will also
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be maintained in the focal population. This can lead to higher genetic co-

variation between traits in the focal populations, whether the combinations

of alleles immigrating are (more likely to be) correlated in their effects on

those traits or not (Guillaume and Whitlock, 2007). Migration may also have

different effects depending on whether the genetic architecture is pleiotropic

or made up of linked loci, but this has not been explored.

Here, we are interested in the conditions in which pleiotropic architectures

behave similarly or differently to architectures with tight physical linkage be-

tween loci affecting different traits, with respect to their effects on genetic

correlations between the traits. We use computer simulations to investigate

whether the effect of evolutionary forces on the genetic correlation between

traits is dependent on the type of genetic architecture, and how. We fo-

cus on the relative contributions of selection, mutation and migration to the

build up of genetic correlation between traits having different genetic archi-

tectures. We show that unless mutation rates are high, genetic architectures

with tight linkage between loci maintain much lower equilibrium genetic cor-

relations than pleiotropic architectures. Even when mutation rates are high,

other evolutionary forces affecting equilibrium levels of genetic correlation

still show a difference between architectures but to a much lesser extent. Ad-

ditionally, we simulate genomic single-nucleotide polymorphism (SNP) data

sets using the different architectures, and show that linkage distances affect

false positive proportions in GWA analyses.

Methods

We modeled four different genetic architectures in a modified version of

the individual-based, forward-in-time, population genetics simulation soft-

ware Nemo (Guillaume and Rougemont, 2006; Chebib and Guillaume, 2017).

Nemo was modified to allow single non-pleiotropic loci to affect different

quantitative traits. To compare how pleiotropy and linkage differentially af-

fect the genetic correlation between traits, we modeled a set of 120 pairs of
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linked, non-pleiotropic loci, and a set of 120 pleiotropic loci affecting the two

traits. We varied the recombination distance between the two non-pleiotropic

loci of each pair with distances 0cM, 0.1cM, or 1cM (Figure 1). Pairs were

unlinked to other pairs and placed on separate chromosomes. The pleiotropic

loci were also unlinked to each other. The recombination rates chosen rep-

resent no recombination between linked loci, as well as an average and an

extreme value of recombination at “hotspots” in the human genome, respec-

tively (Myers et al., 2006). All loci had additive effects on the traits.

Figure 1: Four genetic architectures showing the distribution of loci on 120 chromosomes.
In the case of linkage architectures, pairs of loci affecting the two different traits on each
chromosome are either 1, 0.1 or 0 cM apart. In the case of the pleiotropic architecture,
each locus on each chromosome affects both traits.

Unless otherwise specified, each simulation was run with 5,000 initially

monomorphic (variation is gradually introduced through mutations), diploid

individuals for 10,000 generations achieving mutation-selection(-migration)

balance in order to observe general patterns of genetic correlation in the
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near-absence of drift. Individuals were hermaphrodites mating at random

within a population, with non-overlapping generations. Phenotypes were

calculated for each of the two traits modeled by summing the allelic values

of all loci affecting one trait. Gaussian stabilizing selection was applied and

determined the survival probability of juveniles, whose fitness was calculated

as w = exp
[
−1

2

(
(z− θ)T ·Ω−1 · (z− θ)

)]
, where z is the individual phe-

notype vector (initialized to the optimum values), θ is the vector of local

optimal trait values (set to 10 for both traits in the focal population), and

Ω is the selection variance-covariance matrix (n× n, for n traits) describing

the multivariate Gaussian selection surface. To examine the effects of the

strength of stabilizing selection on each trait and strength of correlational

selection between traits, different sets of simulations were run with the di-

agonal elements of the Ω matrix set as ω2 = 50, or 100 (selection strength),

and off-diagonal set to ω2 × ρω (where the correlational selection, ρω = 0.5

or 0.9). The strength of selection scales inversely with ω2 where a value of

100 corresponds to weak (but non-trivial) selection as opposed to correla-

tional selection, ρω, where a value of 0.9 corresponds to strong correlational

selection between traits (Lande, 1984; Turelli, 1984).

To examine the effects of mutational input on genetic correlation between

traits, different sets of simulations were run with mutation rates (µ) of 0.001,

0.0001, or 0.00001, and moderate mutational effect sizes (α2) of 0.1, 0.01,

or 0.001 (Turelli, 1984). Mutational effects at each non-pleiotropic locus

were drawn from a univariate normal distribution (with a mean of zero) or

a bivariate normal distribution (with means of zero and a covariance of 0)

for pleiotropic loci. Mutational effects were then added to the existing allelic

values (continuum-of-alleles model; Crow and Kimura, 1964). All loci were

assumed to have equal mutational variance. No environmental effects on the

traits were included.

To examine the effects of migration from a source population on genetic

correlation between traits, additional sets of simulations were run with uni-
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directional migration from a second population (as in an island-mainland

model with each population consisting of 5000 individuals) with backward

migration rates (m) of 0.1, 0.01, and 0.001. The backward migration rate

represents the average proportion of new individuals in the focal population

whose parent is from the source population. The local optimum values for

the two traits in the source population were set at θ =
[√

50,
√

50
]

(10

units distance from the focal population’s local optimum). Both focal and

source populations had weak stabilizing selection with a strength of ω2 = 100,

the focal population had no correlational selection between the two traits

and the source population had a correlational selection of ρω = 0 or 0.9.

Fifty replicate simulations were run for each set of parameter values and

statistics were averaged over replicates. Averages were also compared against

analytical expectations laid out by Lande (1984) and reproduced here in

Equations 1–3.

Effects of genetic architecture on false positive/negative proportions in asso-

ciation studies

In order to elucidate the differential effects of pleiotropy and linkage on the

detection of true causal genetic variants in association studies, a genome-wide

association (GWA) analysis was performed on data simulated as described

above (with only a single population), except that diallelic loci were used in-

stead of a continuum-of-alleles model to better represent SNPs. Correlational

selection values were chosen that provided equal on-average genetic correla-

tions between traits for all genetic architectures of 0.2, 0.3, and 0.4 values

frequently observed in both morphological and life-history traits (Roff, 1996).

In the association study, a per-locus regression of trait values was performed

over genotypes, and the (negative log 10) p-values of regression slopes were

plotted with a Benjamini-Hochberg False Discovery Rate (FDR) cutoff to

adjust significance levels for multiple tests (Benjamini and Hochberg, 1995).

From this, we observed the number (and proportion) of false positives (linked

loci that had no effect on a trait but whose regression slope p-values were
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above the FDR cutoff for that same trait) and false negatives (pleiotropic loci

that had an effect on both traits but whose regression slope p-values were

below the FDR cutoff for either trait). No correction for population strat-

ification was performed during this analysis because each simulation had a

single, large, randomly breeding population. Linkage disequilibrium values

of D
′

and R2 between pairs of linked traits were also calculated using the R

package genetics (v1.3.8.1) (Warnes et al., 2013). Statistics for number and

proportion of false positives and negatives were obtained from the average

over 20 replicate simulations of each genetic architecture.

Results

Effects of genetic architecture on genetic correlation at mutation-selection

balance

By generation 10,000, when mutation-selection balance is reached, simu-

lations with the pleiotropic architecture generally maintain a higher average

genetic correlation than those with linkage architectures, even when recom-

bination is absent (linkage distance of 0cM between pairs of loci) (Figure

2). Variation in the mutation rate has the largest effect on the difference of

genetic correlation between pleiotropic loci and fully linked non-pleiotropic

loci (0cM), with much lower correlations as the mutation rate decreases from

10−3 to 10−5 (Figure 3). This reduction in genetic correlation mostly affected

the non-pleiotropic pairs of loci for which a large drop in genetic correlation

occurred between µ = 10−3 and µ = 10−4 (Figure 3). With lower mutation

rate there is also a lower total genetic variance and lower genetic covariance.

The higher genetic correlation obtained with pleiotropic loci was due to a

lower total genetic variance when the mutation rate was high (µ = 10−3),

but to a higher genetic covariance when mutation rate was low (µ = 10−4 or

10−5).

The genetic correlation between the traits decreases with reduction in

all four factors tested and for all genetic architectures, with the coefficient of
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correlational selection (ρω) having the strongest effect (Figure 4), as expected

from equation (3). However, changes in the strength of selection (ω2) and the

mutational variance (α2) also affect the genetic correlation at equilibrium.

We find that reducing the strength of selection (Figure 5) had a relatively

smaller effect than reducing the mutational variance (Figure 6). A decrease

in mutational variance leads to a decrease in genetic correlation by a similar

amount regardless of genetic architecture (though loose linkage is affected

the most). Populations with linkage architectures need both high mutation

rates and high mutational variance to maintain strong genetic correlation,

whereas the pleiotropic architecture just needs high mutational variance.

In contrast to the correlation, the genetic covariance of the two traits

was generally equal between pleiotropic and fully linked non-pleiotropic loci,

and decreased as recombination increased within pairs of non-pleiotropic loci.

The cause of the observed higher trait correlation obtained with pleiotropic

loci was the lower genetic variance they maintain under stabilizing selection.

Figure 2: Average genetic correlation, total genetic variation and genetic covariation (and
their standard deviations) over 10,000 generations reaching mutation-selection equilibrium
for four different genetic architectures: pairs of linked loci affecting two different traits with
0, 0.1 or 1cM between loci, or pleiotropic loci affecting both traits. N = 5000, ω2 = 100,
ρω = 0.9, α2 = 0.1, and µ = 0.001. Dashed line represents Lande’s 1984 expectations for
completely linked loci (0 cm).
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Figure 3: Effect of mutation rate (µ) on average genetic correlation, total variance and
genetic covariance (and their standard deviations) after 10,000 generations of correlated,
stabilizing selection for four different genetic architectures. N = 5000, ω2 = 100, ρω = 0.9,
and α2 = 0.1. Dashed lines represents Lande’s 1984 expectations for completely linked
loci (0 cM).

Effects of migration on genetic correlation

A higher migration rate from a source population, whose traits are under

correlational selection, leads to higher genetic correlations in the focal popu-

lation than with no migration regardless of the genetic architecture (Figure

7A). The effect of migration increases with tighter linkage and is highest with

pleiotropic architecture. This effect on genetic correlation is still observed

when there is no correlational selection on the traits in the source population,

but to a largely reduced degree (Figure 7B).

Effects of linkage and pleiotropy on proportion of false positives/negatives

and linkage disequilibrium in multi-trait GWASes

In simulations where there is linkage between SNPs and equivalent levels

of genetic correlation between traits, the number and proportion of loci that
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Figure 4: Effect of correlational selection (ρω) on average genetic correlation, total variance
and genetic covariance (and their standard deviations) after 10,000 generations of corre-
lated, stabilizing selection for four different genetic architectures. N = 5000, ω2 = 100,
α2 = 0.1, and µ = 0.001. Dashed lines represents Lande’s 1984 expectations for completely
linked loci (0 cM).

are false positives (above FDR cutoff but no effect on trait) increase as linkage

distance decreases between SNPs affecting different traits (shown in Figure

8 and Supplementary Figure S1). When genetic correlation is higher (due to

stronger correlational selection), linkage distance has a greater impact on the

proportion of false positives. Also, genetic correlation has a larger effect than

linkage distance on the number of false positives. In simulations where SNPs

are pleiotropic, genetic correlation due to correlational selection has little

impact on the number and proportion of false negatives (below FDR cutoff

but does affect the traits). Linkage disequilibrium between pairs of linked

SNPs decreases as distance between SNPs increases regardless of genetic

correlation (Figure 9 and Supplemental Table S1). Long-distance linkage

disequilibrium between unlinked SNPs increases when the distance between

pairs of linked SNPs increases (when measured with D
′
), and is higher with
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Figure 5: Effect of selection variance (ω2) on average genetic correlation, total variance and
genetic covariance (and their standard deviations) after 10,000 generations of correlated,
stabilizing selection for four different genetic architectures. N = 5000, ρω = 0.9, α2 = 0.1,
and µ = 0.001. Dashed lines represents Lande’s 1984 expectations for completely linked
loci (0 cM).

higher genetic correlation when comparing the same genetic architectures

(Supplemental Figure S2). In simulations where SNPs are pleiotropic, long-

distance linkage disequilibrium does not seem to be affected by change in

genetic correlation.

Discussion

Pleiotropy and linkage are not the same

The main expectation under an assumption of weak selection and strong

correlational selection is that populations with a genetic architecture con-

sisting of unlinked pairs of two completely linked loci (0cM distance) should

maintain similar equilibrium levels of genetic correlation as with a genetic

architecture consisting of a lesser number of unlinked pleiotropic loci (Lande,
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Figure 6: Effect of mutation variance (α2) on average genetic correlation, total variance
and genetic covariance (and their standard deviations) after 10,000 generations of corre-
lated, stabilizing selection for four different genetic architectures. N = 5000, ω2 = 100,
ρω = 0.9, and µ = 0.001. Dashed lines represents Lande’s 1984 expectations for completely
linked loci (0 cM).

1984). Our results show that this is the case when there are half as many

pleiotropic loci and mutation rates are relatively high. A high rate of mu-

tation (10−3) allows for multiple mutations in both loci in a tightly linked

pair to accumulate and maintain levels of genetic covariance near to that of

mutations in a single pleiotropic locus, but empirical estimations of muta-

tion rates from varied species like bacteria and humans suggests that per-

nucleotide mutation rates are in the order of 10−8 to 10−9 (Nachman and

Crowell, 2000; Lynch, 2010; Ford et al., 2011). If a polygenic locus consists

of hundreds or thousands of nucleotides, as in the case of many quantitative

trait loci (QTLs), then per-locus mutation rates may be as high as 10−5, but

the larger the locus the higher the chance of recombination between within-

locus variants that are contributing to genetic correlation. This leads us to

believe that with empirically estimated levels of mutation and recombination,
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Figure 7: Average genetic correlations in the focal populations (and their standard de-
viations) after 10,000 generations of migration from a source population with different
migration rates (m) for four different genetic architectures. A– Migration from a source
population with correlational selection between traits (ρω = 0.9). B– Migration from a
source population without correlational selection between traits (ρω = 0).

strong genetic correlation between traits are more likely to be maintained if

there is an underlying pleiotropic architecture affecting them than will be

maintained due to tight linkage. Consequently, GWASes that detect asso-

ciations between multiple traits and single genetic variants are more likely

to be detecting pleiotropic loci than linked loci. Also, previous theoretical

models suggest that Lande’s (1984) equilibrium levels of genetic variation

are not well approximated at low per-locus mutation rates (compared to the

strength of selection), which was also true in our simulations (Supplemental

Figure S3) (Turelli, 1984).

We find that even under scenarios where pleiotropy and tight linkage

maintain similar levels of genetic covariance, pleiotropic architectures have

higher genetic correlations because they have lower total genetic variance.

This can be explained by understanding the differential fitness effects of loci.
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Figure 8: Average number of false positives from GWA analyses (and their standard devi-
ations) for different linkage distances between paired loci and different genetic correlations
(gcor). A locus was considered a false positive if associations between the locus’ genotypes
and trait values, that the locus does not directly affect, are above the Benjamini-Hochberg
FDR cutoffs (with a significance level of 0.05).

Mutations that affect more than one trait are less likely to be beneficial (Orr,

1998; Otto, 2004). The distribution of fitness effects of pleiotropic mutations

is shifted towards more negative average values as the number of traits af-

fected increases (Martin and Lenormand, 2006; Chevin et al., 2010). Hence,

pleiotropic architectures that affect more traits have less positive mutational

effects on fitness and maintain a lower equilibrium genetic variation when

compared to linked architectures (Turelli, 1985). It has been suggested that

this might be overcome in more complex organisms with a greater number

of traits by modularization of the effects of different pleiotropic genes to
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Figure 9: Average linkage disequilibrium (LD) between pairs of linked loci (and their
standard deviations) for different linkage distances between paired loci and different genetic
correlations (gcor).

separate sets of traits and decrease the pleiotropic degree of the mutations

but theoretical models have shown mixed results (Baatz and Wagner, 1997;

Hansen, 2003; Welch et al., 2003; Martin and Lenormand, 2006; Chevin et al.,

2010; Wagner and Zhang, 2011).

When correlational selection between traits is strong in the simulations

with linked architectures, the genetic correlation is dependent on the recom-

bination rates between loci affecting different traits where tightly linked loci

can maintain higher levels of genetic correlation from a build-up of positive

linkage disequilibrium than loosely linked loci. This matches the analytical

predictions put forth in Lande (1984) under the assumption of weak stabi-

lizing selection, strong correlational selection, and loose linkage between loci
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affecting the same trait.

The impact of pleiotropy and linkage maintaining different genetic correla-

tions in association studies

When methods like GWA analyses are employed to detect shared ge-

netic influences (pleiotropy or linkage) on multiple traits of interest, they

are dependent upon detecting combinations of effect sizes of genetic variants

associated with those traits (Hill and Zhang, 2012b,a; Chung et al., 2014;

Visscher and Yang, 2016). The success or failure of this endeavor is directly

connected to the ability to detect loci with associations to each trait and

the strength of genetic correlation between traits (Wei et al., 2014; Pickrell

et al., 2016; Chesmore et al., 2018; Verbanck et al., 2018). Our results show

that (tight) linkage between loci affecting different traits will lead to “many”

false positives. Therefore, GWASes will not be able to distinguish between

pleiotropy and linkage, empirically. The proportion of genes associated with

two or more phenotypes in the GWAS catalog has increased to around 40% in

the last decade (Welter et al., 2013; Pickrell et al., 2016). But it is difficult to

determine if this is truly representative of the prevalence of pleiotropy because

QTLs are often mapped to loci that can encompass thousands of nucleotides

(and more than one gene) and informative SNPs with significant effect sizes

are assigned to the closest genes with annotated phenotypes (Chesmore et al.,

2018; Liu et al., 2019). Conflating inter-genic pleiotropic SNPs with nearby

pleiotropic genes (or loci) can distort the prevalence of pleiotropy and re-

duce the ability to distinguish pleiotropy and physical linkage, which in turn

can reduce the efficacy of treatments dependent on those results (like gene

targeted therapies) (Dudley et al., 2005; Gianola et al., 2015). Finding out

the true false positive rate in GWA studies due to linkage is difficult because

it is almost never known whether the source of genetic correlations between

traits is linked loci or not, even when fine-scale sequences are available (for the

reasons mentioned above and because of the way pleiotropy is erroneously de-

fined in GWA studies) (Platt et al., 2010). Watanabe et al. (2018) attempted
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to break down this issue in a meta-analysis of 558 GWASes by looking at

the proportion of genomic loci, genes, and SNPs associated with multiple

traits, which may provide a clearer picture of the prevalence of pleiotropic

causal variants. They found that 93.3% of loci, 81.0% of genes, and 60.2% of

SNPs, were associated with more than one trait. This may seem to provide

a better estimate of pleiotropic levels, except that in this study SNPs that

were associated with more than one trait could still have been the result of

linkage disequilibrium. A point that was brought up by the authors.

When there is tighter linkage between loci affecting separate traits, there

is also a higher proportion of loci that will be statistically associated with

traits that they do not affect (false positives). This is expected (for the

same level of genetic correlation between traits), since the genetic correla-

tion, and therefore the power to detect a locus linked to a causal variant, is

proportional to the correlation coefficient between loci (given by their linkage

disequilibrium) (Siegmund and Yakir, 2007). Of course, in the simulations in

our study all loci had effects on traits and there was correlational selection

on those traits. Had there been neutral loci linked to the causal loci instead,

then linkage distance between them would have been solely responsible for

the number of false positives. On the other hand, very few false negatives

in pleiotropic loci were observed (regardless of genetic correlation) because

we “sampled” the entire population and therefore had the power to find

significant associations with (almost) all causal loci. Had we taken smaller

samples of our population to perform the GWA analysis, we would have found

a greater number of false negatives. The salient consequence is that study

design, threshold levels, and genetic correlations between traits will all affect

detection of genetic variants, whether the variants are causal themselves or

linked to causal variants (Wagner and Zhang, 2011; Hill and Zhang, 2012a).

Also, the number of pleiotropic effects a locus has may be under-represented

by significance levels in association studies (Hill and Zhang, 2012b). Wagner

and Zhang 2011 go a step further to suggest that number or proportions of
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traits affected may not be as meaningful as describing the distributions of

pleiotropic effect sizes on traits.

There is a difference between pleiotropy and linkage at the nucleotide level

Transgenic experiments may differentiate pleiotropy from linkage at the

gene level (Mills et al., 2014), but at the nucleotide level does the distinction

between two linked loci and one pleiotropic locus go away? There is evidence

that even in the same gene, adjacent polymorphisms affecting different traits

in Drosophila can be in linkage equilibrium due to fine-scale recombination

(Carbone et al., 2006; Flint and Mackay, 2009). But imagine a case where

a mutation in a single base-pair has an effect on one trait and a mutation

in the base-pair right next to the first base-pair has an effect on a second

trait. Now imagine a second case where a mutation in a single base-pair

has an effect on two traits. There still seems to be a distinction between

these two cases because the probability of a change in both traits in the first

case is the mutation rate squared compared to the second case where the

probability of a change in both traits is just the mutation rate. Depend-

ing on the per-locus mutation rate this difference can be quite large (e.g.

10−4 versus 10−16). Even in this extreme case, there may indeed still be a

gray area in the distinction between pleiotropy and linkage at a mutational

level. Mutations may affect the pleiotropic degree (e.g. like enzyme speci-

ficity) of a protein-coding gene and the degree to which the gene maintains

multi-functionality may itself evolve (Guillaume and Otto, 2012). If there

is correlational selection between the catalytic functions of an enzyme, then

some pleiotropic mutations that affect more than one catalytic ability will

be favoured, and genetic correlations will increase. With this in mind, it

makes more sense from a theoretical and functional standpoint to refer to

pleiotropy at the nucleotide level (or at the unit of a mutation), than at the

gene or larger locus level (but this may depend on the questions of interest

(Rockman, 2012; Rausher and Delph, 2015)).
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Other factors

Even in the absence of correlational selection it is possible to maintain

genetic correlation through continued migration from a source population.

High migration brings individuals whose combination of alleles will expand

focal population variation in the direction of the source population. This

corroborates previous results that showed that slow introgression of allelic

combinations into a population can affect the genetic variance-covariance

structure of that population (Guillaume and Whitlock, 2007). Whether ge-

netic covariance will be maintained in real populations depends on the nature

of correlational selection on traits in the population of interest, since migra-

tion can reduce local fitness (i.e. migration load) if allele combinations are not

favoured by selection or increase it if they are (Nosil et al., 2006; Bolnick and

Otto, 2013). Migration into a population will also affect false positive rates

since immigrating allele combinations will be in LD from the source popula-

tion and will therefore increase the proportion of certain genotypes, even if

there is no strong trait correlation in the source population. Although not

investigated in this study, a structured population and/or a continual system

of inbreeding in a population where there is correlational selection between

polygenic traits can result in increased genetic covariation caused by larger

LD Lande (1984), which can in turn increase false positive proportions.

Conclusion

Pleiotropic loci maintain stronger genetic correlations between traits than

linked loci affecting different traits even when no recombination occurs be-

tween the loci, and especially in the magnitude of empirically estimated mu-

tation rates. Previous models of the maintenance of genetic covariation at

mutation-selection equilibrium describe genetic covariation as a function of

the product of mutation rate and variance. These models provide similar

expectations for pleiotropic and tight linkage architectures. The discrepancy
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occurs because of the contingency of mutational covariance input on the oc-

currence of mutations (and hence mutation rate). Without high mutation

rates, the ability to create genetic covariance between linked loci is highly

diminished because the combined likelihood of mutations in each linked loci

with both mutational effects in the same direction is low. This result will

have implications in the type of underlying architecture we expect to find

in multi-trait association studies. On the one hand, tighter linkage between

causal loci and detected loci maintains higher genetic correlations, leading

to a greater proportion of causal variant false positives. More importantly,

variants are more likely to have pleiotropic effects on traits than linked ef-

fects, when they are found to be associated with multiple, strongly correlated

traits.
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Supplemental

Figure S1: GWA analysis: -log(p-values of slope of regression of trait values on genotypes)
from one set of example simulations. In the case of linkage architectures, the first 120
loci only affected trait 1 and the next 120 loci only affected trait 2. The order of the loci
are sorted for visualization purposes whereby linked pairs are separated by the trait they
affect (e.g. loci 1 and 121 in the figure are a linked pair). In the case of the pleiotropic
architecture, all 120 loci affected both traits. The average genetic correlation of ≈ 0.3
was observed by adjusting the correlational selection levels to 0.88, 0.89, 0.93, and 0.965
for pleiotropy, linkage 0cM, linkage 0.1cM, and linkage 1cM, respectively. Dashed lines
represent the Benjamini-Hochberg FDR cutoffs for a significance level of 0.05.
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Figure S2: Average linkage disequilibrium (measured by D
′
) between linked pairs (left

panel) and between unlinked pairs (right panels) for different genetic correlations and
genetic architectures. N.B. No linked pairs existed between pleiotropic loci.
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Figure S3: Average genetic variances for different mutation rates and genetic architectures,
with either one pleiotropic locus or two completely linked loci, compared against theoretical
expectations from several models (Bürger, 2000).
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Table S1: Results of GWA analyses for different architectures with average false nega-
tives (Type II errors) for pleiotropic architectures and false positives (Type I errors) for
linkage architectures, as well as linkage disequilibrium (LD) measurement averages for
short-distance (physically linked loci) and long-distance (unlinked loci) comparisons. The
genetic architectures in the bottom half of the table have higher genetic correlations than
the top half (created by adjusting correlational selection) to compare the differences at
different genetic correlation.

Genetic Genetic Cor Type I/II D’ D’ R2 R2

Architecture (SE) Error % short long short long
Pleiotropy 0.308 (0.0046) 0.35% NA 0.018 NA 0.00027
Linkage (0cM) 0.300 (0.0055) 22.06% 0.37 0.023 0.089 0.00026
Linkage (0.1cM) 0.300 (0.0045) 20.17% 0.26 0.025 0.047 0.00027
Linkage (1cM) 0.308 (0.0035) 18.28% 0.13 0.030 0.007 0.00027
Pleiotropy 0.407 (0.0048) 0.32% NA 0.018 NA 0.00027
Linkage (0cM) 0.398 (0.0074) 28.76% 0.43 0.025 0.107 0.00027
Linkage (0.1cM) 0.408 (0.0035) 28.46% 0.30 0.027 0.050 0.00027
Linkage (1cM) 0.404 (0.0029) 25.34% 0.19 0.048 0.006 0.00027
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