
functionInk: An e�cient method to detect functional groups

in multidimensional networks reveals

the hidden structure of ecological communities

May 31, 2019

Alberto Pascual-García1, 2,* and Thomas Bell1

(1) Department of Life Sciences. Silwood Park Campus. Imperial College London, Ascot, United Kingdom
(2) Current address: Institute of Integrative Biology. ETH-Zürich, Zürich, Switzerland

(*) Correspondence: alberto.pascual.garcia@gmail.com.

Abstract

Complex networks have been useful to link experimental data with mechanistic models, becoming widely
used in modern science. More recently, the increasing amount and complexity of data, in particular in biology,
prompted the development of multidimensional networks, where dimensions re�ect the multiple qualitative
properties of nodes, links, or both, classifying them into types. As a consequence, traditional quantities com-
puted in single dimensional networks should be adapted to incorporate this new information. A particularly
important problem is the detection of communities, namely sets of nodes sharing certain properties, which
reduced the complexity of the networks, hence facilitating its interpretation. The two traditional approxima-
tions to this problem come either through the identi�cation of modules (communities more densely connected
within their members than with nodes belonging to other communities) or of structurally equivalent commu-
nities (sets of nodes connected with the same neighbours, even if they are not connected themselves), that
we call guilds. The relevance of this distinction is notable in biology, where we aim to di�erentiate between
trophic levels, guilds, or concepts such as functional groups or ecotypes. In this work, we argue that structural
equivalence represents an appropriate de�nition of the function of a node in the network, and we exploit this
fact to show that it is possible to detect modules and guilds that, in this way, can be understood as di�erent
kinds of functional groups. We call our method functionInk (functional linkage), a method capable of objec-
tively �nding simultaneously both modules and guilds, and to determine which is the most relevant kind of
functional group for a given network. Notably, it is computationally e�cient handling large multidimensional
networks, since it does not require an optimization procedure nor tests for robustness. The method is freely
available at: https://github.com/apascualgarcia/functionInk.
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1 Introduction

Networks have played an important role in the development of ideas in ecology, particularly in understanding food1

webs [1], and �ows of energy and matter in ecosystems [2]. However, modern ecological datasets are becoming2

increasingly complex, notably within microbial ecology, where multiple types of information (taxonomy, behaviour,3

metabolic capacity, traits) on thousands of taxa can be gathered. A single network might therefore need to4

integrate di�erent sources of information, leading to connections between nodes representing relationships of5

di�erent types, and hence with di�erent meanings. Advances in network theory have attempted to develop tools6

to analyses these more sophisticated networks, encompassing ideas such as multiplex, multilayer, multivariate7

networks, reviewed in [3]. There could therefore be much value in extending complex networks tools to ecology8

in order to embrace these new concepts.9

Broadly speaking, a network represents how a large set of entities share or transmit information. This de�nition10

is intentionally empty-of-content to illustrate the challenges we face in network analysis. For instance, a network11

in which information is shared may be built relating genes connected if their sequence similarity is higher than12

certain threshold. In that case, we may capture how their similarity diverged after an evolutionary event such as13

a gene duplication. On the other hand, networks may describe how information is transmitted, as in an ecosystem14

in which we represent how biomass �ows through the trophic levels or how behavioural signals are transmitted15

among individuals. We aim to illustrate with these examples that, when building networks that consider links of16

di�erent nature (e.g. shared vs. transmitted information) or di�erent physical units (e.g. biomass vs. bits) care17

should be taken in extrapolating methods from single-dimensional to multidimensional complex networks.18

A particularly relevant problem in mutiplex networks is the detection of �communities�, which are de�ned in19

network theory as being sets of nodes sharing similar topological properties. Perhaps the most widely adopted20

de�nition of community is the one considering sets of nodes more densely connected within the community than21

with respect to other communities, often called modules [4]. Strategies to detect modules explore trade-o�s in22

quantities like the betweeness and the clustering coe�cient [4], as in the celebrated Newman-Girvan algorithm23

[5]. Generalizing traditional quantities like the clustering coe�cient to multidimensional networks is di�cult.24

Consider, for instance, that a node A is linked with a node B and this is, in turn, linked with a node C, being25

both links of a certain type. If A is then linked with node C with a di�erent type of link, should the triangle ABC26

considered in the computation of the clustering coe�cient?27

An approximation to such generalization was the derivation of the Newman-Girvan modularity de�nition,28

which considers the dynamics of the �ux of information in the network (in a statistical sense) through a Laplacian29

dynamics [6]. This method was extended to consider multilayer networks [7] but it is unclear whether it can be30

extended to networks considering any type of edges. It would likely be possible if, for the �ux of information of31

interest, the di�erent types of edges have a clear meaning on how their presence a�ect informational �uxes. If the32

links types are, however, qualitatively very distinct and have no explicit relationship with the �uxes dynamics,33

the application of a dynamical model would likely be meaningless.34

Another alternative is given by the notion of structural equivalence. Two nodes are said to be structurally35

equivalent if they share the same number (and type, if the network is multidimensional) of links. This framework36

was originally developed for social systems [8], where the role of the nodes (social agents) is important, and it37

is encoded in the nodes' interactions. This notion also goes hand in hand with the Eltonian classic de�nition of38

niche, which emphasizes species function rather than species habitat [9]. We note that, since two nodes can be39

structurally equivalent even if they are not connected themselves, communities determined under this de�nition40

may be quite di�erent to modules, in which members of the same module are tightly connected by de�nition. This41

latter community structure is known as disassortative mixing [10], and has received comparatively less atention42

than the �assortative� situation, leading to modules, perhaps with the exception of bipartite networks [11, 12].43

We call to this second class of communities guilds, inspired in the ecological meaning in which species may share44

similar ways of exploiting resources (i.e. similar links) without necessarily sharing the same niche (not being45

connected themselves), emphasizing the functional role of the species [13]. Nevertheless, we note that the nodes46

within modules are also structurally equivalent. Therefore, the notion of structural equivalence seems to open an47

avenue to identify and distinguish both guilds and modules. Both types of communities can then be understood48

as functional groups �in the eltonian sense� and this is the name we adopt here. We reserve in this way the term49

community for a more generic use, since other types of communities beyond functional groups may exist.50

In this work, we show that a modi�cation of the community detection method developed by Ahn et al. [14],51

leads to the identi�cation of two quantities we call internal and external partition densities, which allow the52

identi�cation of modules and guilds, respectively. For a set of nodes joined within a community by means of their53
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structural equivalence similarity, the partition densities quantify whether their similarities come from connections54

linking them with nodes outside the community (external density) or within the community (internal density).55

One of the main challenges in this work is to determine the structural equivalence similarity threshold above56

which nodes are considered to belong to the same community, a problem that, in the literature, led to de�nitions57

such as regular equivalence [8], which proves to be problematic, as illustrated in Fig. 1. Notably, our method58

brings absolute maximum values for internal and external partition densities, allowing us to objectively determine59

optimal cut-o�s for the structural equivalence similarities. In addition, the method has several advantages that60

make it particularly suitable for analysing large networks. First, we generalized the method to consider an61

arbitrary number of link types, which makes it suitable for the analysis of multidimensional networks. Second,62

the method is deterministic, and hence it does not require costly optimality or tests for robustness [10], whose63

improvement has attracted much attention in recent years [15].64

We call our method functionInk (functional linkage), emphasizing the fact that the number and types of links65

of a node determine its functional role in the network. We illustrate its use by considering complex biological66

examples, for which we believe the notion of functional role is particularly relevant. For instance, modules may be67

of interest if we aim to detect sets of species within the same trophic level, with competitive interactions within the68

set and other types of interactions like prey-predator or mutualistic, between sets. In this case, the functionInk69

method is able to accomodate the di�erent types of interactions (predator-prey, competitive, mutualisms) in these70

networks. In other circumstances, we may be interested in identifying biological entities having a similar function71

despite not interacting themselves. This kind of community would be closer to the notion of guild than to the72

concept of a trophic level [13]. We show in the examples that, combining the external and internal partition73

densities, we are able to identify the underlying type of dominant structures of the network (either towards74

modules or towards guilds). Moreover, selecting the most appropriate community de�nition in each situation75

provides results that are comparable to state-of-the-art methods. This versatility in a single algorithm, together76

with its low computational cost to handle large networks and its ability to work in multidimensional networks,77

makes our method suitable for any type of complex, multidimensional network.78

Results79

Structural equivalence similarity in multidimensional networks80

We modi�ed and extended the method presented in Ahn et al. [14] to consider i) di�erent types of links, where81

types are classi�ed according to their qualitative attributes and ii) the di�erent expressions de�ned between nodes82

instead of between links. The latter modi�cation has several technical advantages. Most notably it allows us to83

propose two quantities, the external and internal partition densities, which we use to identify guilds and modules,84

respectively.85

The method starts by considering a similarity measure between all pairs of nodes, that quanti�es the number86

and type of interactions they share, shown in Fig. 1. For simplicity, we present the derivation for two types of87

undirected interactions (for instance positive, +, and negative, −), and its extension for an arbitrary number of88

types is presented in Methods. We call {i} the set of N nodes and {eij} the set of M edges in a network. We call89

n(i) the set of neighbours of i, that can be split into di�erent subsets according to the types of links present in the90

network. We split the set of neighbours linked with the node i into those linked through positive relationships,91

n+(i), or through negative relationships, n−(i) (see Fig. 1, we follow here a notation similar to the one presented92

in [14], but note that n(i) stands there for neighbours irrespective of the kind of edges).93

This splitting of neighbours into di�erent subsets according to their identity, is one of the modi�cations of the94

original method. Distinguishing link types induces a division in the set of neighbours of a given node into subsets95

sharing the same link type, shown in Fig. 2A. More speci�cally, in the absence of link types we de�ne the Jaccard96

similarity between to nodes i and j as:97

S(J)(i, j) =
|n(i) ∩ n(j)|
|n(i) ∪ n(j)|

(1)

where |·| is the cardinality of the set (the number of elements it contains). Generalizing this expression to two98

attributes (see Suppl. Methods for an arbitrary number of attributes) leads to99

S(J)(i, j) =
|n+(i) ∩ n+(j)| ∪ |n−(i) ∩ n−(j)|
|n+(i) ∪ n+(j) ∪ n−(i) ∪ n−(j)|

. (2)
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A) B)

Figure 1: Illustration of the method. (A) The similarity between nodes i and j is computed considering
the neighbours that each node has and the types of interactions linking them. In this example, continuous links
stand for positive interactions, determining the set of neighbours n+(i) and n+(j), and negative ones are shown
with dotted links connecting the sets n−(i) and n−(j). In Ref. [14] the similarity computed in this way would be
assigned to the links eik and ejk. (B) Under the blockmodelling approach, nodes that are regularly structurally
equivalent are classi�ed in two communities (blue and yellow, top-left network). The method of Guimerá and
Amaral determines communities through their topological role (top-right network) having central networks (A
and B nodes), peripheral (A1-A3 and B1-B5) and connectors (C and D). functionInk (bottom network) de�nes
communities joining nodes sharing approximately the same number and type of links. All non-zero Jaccard
similarities S(J)(n(i), n(j)) of the example are shown. Clustering these similarities will lead to di�erent partitions
and, stopping at S(J) = 1/4, would lead to communities being the intersection of those found in the above
networks, highlighting the potential to identify communities whose nodes are joined through a local notion of
function that encapsulates more global topological features. Figure adapted from [16].
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Accounting for the weight of the edges can be made with the generalization of the Jaccard index provided by100

the Tanimoto coe�cient [17], S(T)(i, j), presented in Methods.101

We note the particular case in which i and j are only connected between them which, with the above de�nition,102

means that they do not share any neighbours. This is problematic, because we want to distinguish this situation103

from the one in which they do not share any nodes, for which we get S(i, j) = 0. On the other hand, if they104

share a connection with respect to a third node, we want to distinguish the situation in which all three nodes105

are connected (a perfect transitive motif, the archetype of a module) from a situation in which they only share a106

neighbour but they are not themselves connected (the archetype of a guild). If we consider that a node is always a107

neighbour of itself, i.e. {i} ∈ n(i), in both situations S(i, j) = 1 and we cannot distinguish these cases. Therefore,108

we take the convention that, for a connection between two nodes |n(i) ∩ n(j)| = 1 and |n(i) ∪ n(j)| = 2. In Fig.109

1 we illustrate the computation of this similarity with a simple example.110

Identi�cation of optimal similarity cut-o�s111

Once the similarity between nodes is computed, the next objective is to cluster the nodes using a similarity112

measure in order to identify communities (see Methods). Clustering is performed in a stepwise manner, where113

nodes that are increasingly dissimilar in their links are iteratively partitioned into communities. A critical question114

in clustering procedures is to identify the clustering step for which the optimal partition is achieved [18]. This115

question is often addressed by proposing a measure that monitors the clustering and that has a well de�ned116

maximum or minimum determining a threshold to stop the clustering. In [14], they proposed a quantity called the117

partition density, whose maxima determines the optimal clustering threshold (that we recover for completeness in118

Methods). We reconsider the de�nition of partition density because it was originally de�ned over edge partitions.119

We develop a similar measure that de�nes partition densities across nodes, and which adds a new dimension to the120

investigation of node partitioning. To develop this measure, we note that, when we join nodes into a partition, we121

are concluding that these nodes approximately share the same number and type of connections, but we actually122

do not know whether they are connected between themselves or not. We therefore rede�ne the partition density123

di�erentiating between the contribution of links density arising from the connections within the community from124

connections shared with respect to external nodes, i.e. between partitions.125

Given a node i, we di�erentiate between those neighbours that are within the same community to which the126

node belongs, that we call nint(i) (where int stands for �interior�), and those in the exterior of the community,127

next(i), hence n(i) = nint(i) ∪ next(i) (See Fig. 2). For a singleton (a cluster of size one) nint(i) = {i} and128

next(i) = ∅. Similarly, the set of edges m(i) linking the node i with other nodes can be also split into two sets:129

the set linking the node with neighbours within its community mint(i), and those linking it with external nodes130

mext(i).131

Given a partition of nodes into T communities, our method identi�es, for each community, the total number132

of nodes within it, nint
c , and the total number of links connecting these nodes mint

c . In addition, it computes the133

total number of nodes in other communities with connections to the nodes in the community C (next
c ) through a134

number of links mext
c . Clearly, to identify next

c neighbours requires at least next
c links, and the number of links in135

excess, mext
c −next

c , contributes to the similarity of the nodes in the community through external links. Therefore,136

we quanti�ed the fraction of links in excess out of the total possible number (mext
c − next

c )/next
c

(
nint
c − 1

)
. The137

weighted average of this quantity through all communities leads to the de�nition of external partition density:138

Dext =
1

M

∑
c

mext
c

2

(mext
c − next

c )

next
c (nint

c − 1)
, (3)

where M is the total number of edges. We follow now a similar reasoning now considering the internal links,139

but we should acknowledge that in a community created linking nodes through the similarity measure we propose,140

it may happen that nint
c > 0 even if mint

c = 0. Therefore, any link is considered a link in excess, leading to the141

following expression for the internal partition density:142

Dint =
1

M

∑
c

mint
c

2mint
c

nint
c (nint

c − 1)
. (4)

Finally, we de�ne the total partition density as the sum of both internal an external partition densities:143

Dtotal = Dint +Dext,
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Figure 2: De�nition of guilds and modules. For each set of nodes belonging to the same community c (nint
c ,

nodes within the same shaded area) we consider the number of links within the community (black dashed links,
called mint

c in the main text) out of the total number of links of the community, to compute the internal partition
density. We identify modules as those communities that maximize the internal partition density (right �gure).
We then compute the density of links connecting nodes external to the community (mext

c , solid red lines linking
nodes in other partitions) out of the total to estimate the external partition density. We call guilds to those
communities obtained maximizing this quantity.
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and hence, if all the fractions in Dint and Dext are equal to one, i.e. all possible links in excess are realized,144

Dtotal equals to one. Since at the beginning of the clustering the communities have a low number of members,145

most of the contribution towards Dtotal comes from Dext while, in the last steps where the communities become146

large, Dint will dominate. All three quantities will reach an absolute value along the clustering and, if one of them147

clearly achieves a higher value, it will be indicative that one kind of functional group is dominant in the network.148

If that is the case, the maximum of Dtotal (which is always larger or equal to max(max(Dint),max(Dext))), will be149

close to one of these. If neither Dext nor Dint clearly dominates, Dtotal will peak at an intermediate step between150

the two partial partition densities, suggesting that this intermediate step is the best candidate of the optimal151

partition for the network, and communities determined at this intermediate point will be called, generically,152

functional groups.153

Plant-pollinator networks154

To illustrate the use of the method we start analysing a synthetic example. In ecological systems, species are often155

classi�ed into communities according to their ecological interactions, such as in mutualistic networks of �owering156

plants and their animal pollinators. These networks are characterized by intra and interspeci�c competition157

within the pool of plants and within the pool of animals, and by mutualistic relationships between plants and158

animals, leading to a bipartite network.159

To investigate the performance of our method and, in particular, the in�uence of the topological properties160

into the partition density measures, we generated a set of arti�cial mutualistic networks with diverse topological161

properties, following the method presented in [19]. For the mutualistic interactions, we focused on two properties:162

the connectance κmut, which is the fraction of observed interactions out of the total number of possible interac-163

tions, and the nestedness ν as de�ned in [20] (see Methods), which codi�es the fraction of interactions that are164

shared between two species, averaged over all pairs of species. We selected these measures for their importance165

in the stability-complexity debate in mutualistic systems [19], and the similarity between thenestedness (which,166

in the de�nition we adopt here, represents the mean ecological overlap between species) and the notion of struc-167

tural equivalence we considered. For the competition matrices, we considered random matrices with di�erent168

connectances, κcomp, since it is di�cult to estimate direct pairwise competitive interactions experimentally, and169

it is frequently modelled with a mean �eld competition matrix.170

In all networks, the set of plants and animals are joined in the very last step of the clustering irrespective of171

the clustering method used, indicating that our similarity measure is appropriate and that the method is robust172

with respect to the clustering method selected. As expected, the curves monitoring the external and internal173

partition densities depends on the properties of the networks. We illustrate this �nding in Fig. 3, where we have174

selected two networks with contrasting topological properties. One of the networks has high connectance within175

the pools and low connectance and nestedness between the pools. The internal partition density peaks at the176

last step minus one (i.e. where the two pools are perfectly separated) consistent with the de�nition of modules,177

where the intra-modules link density is higher than the inter-modules link density. On the other hand, the second178

network has intra-pool connectance equals to zero, and very high connectance and nestedness between the pools179

(see Fig. 3). We selected a κcomp = 0 for simplicity in the network representation, but similar results are obtained180

for low values of κcomp, see for intance Suppl. Fig. 10. In this second network (see Fig. 3, right panel), only181

the external partition density peaks and, at the maximum, the communities that we identi�ed clearly re�ect the182

structural equivalence of the nodes members in terms of their connectance with nodes external to the group,183

as we expect for the de�nition of guilds. The ecological information retrieved for guilds is clearly distinct from184

the information retriedved for the modules, being the former related to the topology of the network connecting185

plants and animals. We observe that guilds identify specialist species clustered together, which are then linked186

to generalists species of the other pool: a structure typical of networks with high nestedness.187

The method identi�ed several interesting guilds and connections between them. For instance, generalists188

Plant 1, Animal 1 and Animal 2 (and to a lesser extent Plant 2) have a low connectivity between them but, being189

connected to many specialists, determine a region of high vulnerability, in the sense that a directed perturbation190

over these species would have consequences for many other species. This is con�rmed by the high betweeness of191

these nodes (proportional to the size of the node in the network). In addition, the algorithm is able to identify192

more complex partitions of nodes into clusters. As an example of this, Animal 16 (torquoise) is split from193

Animals 10 and 11 (cyan), which form a second cluster, and from Animals 15, 18 and 19 (light pink) that are194

joined into a third cluster, despite of the subtle connectivity di�erences between these six nodes. Finally, it also195

detects clusters of three or more species that have complex connectivity patterns which, in this context, may be196
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indicative of functionally redundant species (e.g. red and blue clusters).197

Examples with other intermediate properties are analyzed in the Suppl. Figs. 8 and 9. Broadly speaking,198

either the internal or the total partition density maximum peaks at the last step minus one, allowing for detection199

of the two pools of species. Nevertheless, the method fails to �nd these pools if the within-pools connectance200

is very low, since the network becomes highly dissasortative (see Suppl. Fig. 10). The relative magnitude of201

the external vs. internal partition density depends on the connectance between the pools of plants and animals202

and on the connectance within the pools, respectively (see Suppl. Fig. 8). Interestingly, networks for which the203

nestedness is increased being the remaining properties the same, generated an increase in the external partition204

density (see Suppl. Fig. 9). These examples illustrate how the external partition density is sensitive to complex205

topological properties, in particular to an increase in the dissasortativity of the network.206
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Figure 3: Synthetic mutualistic networks. (Top left) Partition densities for a network with κcomp = 0.5,
nestedness ν = 0.15 and κmut = 0.08 and (top right) for a network with κcomp = 0, nestedness ν = 0.6 and
κmut = 0.08. The high density of competitive links in the �rst network makes the internal partition density
dominate, leading to two modules representing the plant-pollinator pools (bottom left network), while reducing
the density of competitive links to zero in the second network makes the external partition density to dominate,
�nding guilds (bottom right). In the networks, plants are labelled �Pl� and animals are labelled �An�. Nodes are
coloured according to their functional group. In the network �nding guilds (bottom right), specialist species are
yellow, single species clusters are grey, and the size of the nodes is proportional to their betweeness.
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Predators

Omnivore

Crustoses
Scavengers

Kelp

Plankton

Algae (Ephemeral)

Filter Feeders

Algae (corticated)

Herbivores

Figure 4: Analysis of a trophic network. Trophic networks with links representing trophic (grey), non-trophic
positive (red), and negative (green) interactions. (Left) Nodes are grouped according to the classi�cation found in
[21] (reference classi�cation), and coloured by the guilds found with functionInk at the maximum of the external
partition density. (Right) Nodes are grouped according to the trophic levels and coloured by the modules found
by functionInk (see Main Text for details). The modules separate the three main levels, predators, herbivores and
basal species, although it separates these into �ner subgroups (�lter feeders) and plankton, which is an orphan
module.

1.1 Trophic networks207

We tested our method in a comprehensive multidimensional ecological network of 106 species distributed in trophic208

layers with approximately 4500 interactions, comprising trophic and non-trophic interactions (approximately 1/3209

of the interactions are trophic) [21]. This network was analysed looking for communities extending a stochastic210

blockmodelling method [10] to deal with di�erent types of interactions [21]. The estimation of the parameters of211

the model through an Expectation-Maximization algorithm requires a heuristic approximation, and hence it is212

needed to test the robustness of the results found. Here we show that, in this example, our method is comparable213

with this approximation, and it has the advantage of being deterministic. Moreover, the simplicity of the method214

allows us to handle large networks with arbitrary number of types of links and to evaluate and interpret the215

results, as we show in the following.216

Our method �nds a maximum for the internal density when there are only three clusters. Previous descriptions217

of the network identi�ed three trophic levels in the network (Predators, Herbivores and Basal species). The latter218

are further subdivided into subroups like (e.g. Kelps, Filter feeders), and there are some isolated groups like219

one Omnivore and Plankton. To match these subgroups we observed that the total partition density reaches220

a maximum close to the maximum of the external partition density (step 69) and maintains this value along a221

plateau until step 95 (see Suppl. Fig. 11). We analysed results at both clustering thresholds �nding that, at step222

95, we obtain modules with a good agreement with the trophic levels, shown in Fig. 4. On the other hand, at step223

69 we �nd a larger number of communities some of which �t the de�nition of modules and others the de�nition224

of guilds.225

To shed some light on the information obtained from this second network, we compared the classi�cation226

obtained by Ke� et al. [21] (in the following reference classi�cation) and our method, shown in Fig. 4. We227

computed a number of similarity metrics between the classi�cation we obtained at each step of the agglomerative228
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clustering with functionInk and the reference classi�cation (see Methods). In Fig. 5, we show that the similarity229

between both classi�cations is highly signi�cant (Z-score > 2.5) and is maximized when the external partition230

density is also maximized, i.e. at step 69. This is particularly apparent for the Wallace 01, Wallace 10 and Rand231

indexes (see Fig. 7 and Suppl. Fig. 12). Clusters in the reference classi�cation were also interpreted as functional232

groups in the same sense proposed here [21] , supporting our arguments to use the external partition density as233

a quantity to detect guilds.234

Nevertheless, there are some discrepancies between both classi�cations. In particular, although there is a com-235

plete correspondence between the two largest clusters in both classi�cations, there are a number of intermediate236

clusters in the reference classi�cation whose members are classi�ed di�erently in our method. To illustrate these237

discrepancies, we plotted a heatmap of the Tanimoto coe�cients of members of four clusters of intermediate size238

containing discrepancies, showing their membership in both the reference and the functionInk classi�cation with239

di�erent colours (see Fig. 4). The dendrograms cluster rows and columns computing the Euclidean distance be-240

tween their values. Therefore, this illustration is very similar to functionInk, and the clusters must be consistent,241

representing a powerful way to visually inspect results. Indeed, the blocks found in the heatmap are in correspon-242

dence with functionInk clusters, as expected, but we observe some discrepancies with the reference classi�cation.243

For instance, the cluster found by the reference classi�cation containing several Petrolishtes species, joins species244

that have low similarity regarding the number and type of interactions as measured by the Tanimoto coe�cients,245

while functionInk joins together the three species with high similarity, leaving aside the remainder species. Of246

course, we cannot discard that the method used in the reference classi�cation captures other properties justifying247

the di�erences. But it is immediately apparent the advantages provided by the simplicity our method, which248

permits validation through visual inspection of the consistency of the classi�cation.249

1.2 Microbial networks250

We discuss a last example of increasing importance in current ecological research, which is the inference of251

interactions among microbes sampled from natural environments. We considered a large matrix with more than252

700 samples of 16S rRNA operative taxonomic units (OTUs) collected from rain pools (water-�lled tree-holes)253

in the UK [23, 24] (see Suppl. Methods). We analysed β−diversity similarity of the communities contained in254

the matrix with the Jensen-Shannon divergence metric [25], further classifying the communities automatically,255

leading to 6 disjoint clusters (see Methods). Next, we inferred a network of signi�cant positive (co-occurrences)256

or negative (segregations) correlations between OTUs using SparCC [26], represented in Fig. 6 (see Methods).257

Applying functionInk to the network of inferred correlations, we aimed to understand the consistency between258

the results of functionInk (modules and guilds) and the β−diversity-classes. The rationale is that, by symmetry,259

signi�cant co-occurrences and segregations between OTUs should re�ect the similarity and dissimilarity between260

the communities, hence validating the method.261

Contrasting with the trophic network analysed in the previous example, the external partition density achieves262

a low relative value and brings a poor reduction of the complexity of the network, suggesting optimal clustering263

after just 22 clustering steps (see Suppl. Fig. 13). The internal partition density achieves a higher value, hence264

suggesting that modules are more relevant than functional groups in this network. Two large modules are apparent,265

see Fig. 6, with a large number of intracluster co-occurrences (continuous links) and interclusters segregations266

(dotted links). Note that this is quite di�erent to what is found in macroscopic trophic networks, where pools of267

species (e.g. prey) have within module competitive (segregating) interactions, while between-modules interactions268

can be positive (for predators) or negative (for prey). In addition, the total partition density peaks at a much269

higher value and it seems to be able to split some of the large modules into smaller motifs, some of which were270

identi�ed as guilds and have clearly distinctive connectivities, that we analyse in further detail. Since some of271

these motifs have characteristics closer to those of guilds while others are closer to modules, we refer to them272

generically as functional groups.273

There is reasonable agreement between the functional groups found at the maximum of the total partition274

density and the β−diversity-classes shown in Fig. 6. Since it was shown in [23] that the β−diversity-classes might275

be related to a process of ecological succession driven by environmental variation, the functional groups are likely276

driven by environmental preferences rather than by ecological interactions, likely explaining the large number of277

positive co-occurrences. This speaks against a näive interpretation of correlation networks in microbial samples as278

ecological interactions, unless environmental preferences are controlled [27]. However, the detection of networks279

complements the information that β−diversity-classes provides, since it is possible to individuate the key players280

of these classes. For instance, only two OTUs from the green functional group have an important number of281
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Figure 5: Analysis of guilds. (Top) Z-score of the Wallace 10 index [22], measuring the similarity between
the reference classi�cation and the functionInk method at each clustering step. The similarity with the reference
classi�cation is maximized around the maximum of the external partition density. (Bottom) Comparison of
clusters 1, 4, 7 and 9 in the reference classi�cation, whose members were classi�ed di�erently by functionInk.
Colours in the names of species in rows (columns) represent cluster membership in the functionInk (reference)
classi�cations. The heatmap represents the values of the Tanimoto coe�cients, and the dendrograms are computed
using Euclidean distance and clustered with complete linkage. The heatmap blocks of high similarity are in some
cases inconsistent with the reference classi�cation. Given the simplicity of the interpretation of these coe�cients,
it is di�cult to explain the clustering of distant members by the reference classi�cation.
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co-occurrences with members of the red functional group, and only one of them has a signi�cant segregation282

with respect to a member of the blue functional groups. These two highly abundant segregating OTUs are283

Pseudomonas putida and Serratia fonticola, both of which were shown to dominate two of the β−diversity-classes284

[23]. The functional groups hence allow us to easily identify their most important partners and, more in general,285

to analyse in detail how clusters of communities are structured.286

Discussion287

We presented a novel method for the analysis of multidimensional networks, with nodes containing an arbitrary288

number of link types. The method extends and generalizes the method proposed by Ahn et al. [14] and presents289

a number of advantages with respect to other approximations. First, we developed the method to work with290

nodes instead of with links (which was the case for the original method [14]), which we �nd more intuititive,291

and allows the interpretation of the communities and its analysis with current visualization software. From an292

ecological perspective, we were also interested in the functional role of the nodes. In this sense, the de�nition of293

a species function in the network is straightforward for nodes, adopting the de�nition of structural equivalence294

used in social networks. This notion underlies both the similarity measure de�nition and the rationale behind295

both the clustering and our de�nition of external partition density. Working with this de�nition we de�ned two296

measures of nodes partitioning. While the internal partition density is very similar to the de�nition provided in297

[14] (see Suppl. Methods), the external partition density brings a new dimension, being similar in spirit to the298

search of structural equivalent clusters in social networks [8]. This allowed us to propose a clear di�erentiation299

between modules (determined by the maximum of the internal partition density) and guilds (determined by the300

maximum of the external partition density). Although the method might not be able to achieve the generality301

of approximations such as the mixture models proposed in [10], which aims to �nd any arbitrary structure in302

the network, such approximations are far from being generalized to an arbitrary number of link types, as we303

presented here. In addition, these are statistical approximations requiring either heuristics to �nd a solution for304

the parameters �and hence a unique optimal solution is not guaranteed�, or a computationaly costly sampling305

of the parameter space. Our method relies on a deterministic method whose results are easily inspected, given306

the simplicity of the similarity metric used and the partition density functions proposed to monitor the optimal307

clustering.308

Beyond these technical advantages, we illustrated the versatility of functionInk using several ecological ex-309

amples. The relative value between the internal and external partition density, immediately yields information310

on whether the network is dominated by modules, guilds, or intermediate structures. This allows for increasing311

�exibility in the analysis of the networks, and for a more nuanced interpretation of network structure and species'312

roles in the ecosystem. For both mutualistic and trophic networks, the internal partition density correctly �nds313

the trophic layers, justifying the success of the original method [14]. Our extension recovered the functional groups314

as determined by Ke� et al. [21] through the external partition density, and the visual inspection re�ects a good315

consistency with the de�nition we proposed for functional groups in terms of structural equivalence. Moreover,316

in the mutualistic networks, we showed that the functional groups discovered in this way was sensitive to changes317

to high-order topological properties such as the nestedness.318

The analysis of the microbial network was dominated by modules rather than guilds. Interestingly, these mod-319

ules had intra-cluster positive correlations, contrary to what would be expected in a macroscopic trophic network,320

where competitive interactions would be dominant between members of the same trophic layer. We selected in this321

example for further exploration the functional communities found at the maximum of the total partition density,322

with some groups having properties closer to those of guilds and others closer to modules. The communities that323

we identi�ed were in good agreement with the functional communities found using β−diversity similarity [23],324

supporting the consistency of the method. Interestingly, it was found in [23] that similar β−diversity-classes were325

driven by environmental conditions. Although co-occuring more often in the same environment may be indicative326

of a higher probability of interaction [28], the most economical hypothesis is that they co-occur because they share327

similar environmental preferences, and hence it cannot be disentangled the type of interaction (if any) unless the328

environmental variables are under control.329

functionInk requires the computation of Jaccard or Tanimoto coe�cients, whose computational cost scales as330

N2, being N the number of nodes. However, the similarity coe�cients only need to be computed once, and then331

the clustering with di�erent methods and posterior analysis are at most order N , making the method suitable for332

large networks. The method is available in the address (https://github.com/apascualgarcia/functionInk)333

and, importantly, although we developed it with ecological networks in mind, it can be applied to any kind of334
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Figure 6: Comparison of functional groups in the microbial network. Network of signi�cant co-occurrences
(continuous links) and segregations (dotted links) at the species level (nodes). Colours indicate functional group
membership, which was determined by the maximum of the external (top), total (middle) and internal partition
densities (bottom). Orphan nodes are coloured grey in the top �gure for clarity. The higher value of the internal
partition density (see Suppl. Fig. 13) suggests that a modular structure is the more appropriate to describes the
functional groups. This is con�rmed by the low number of guilds (top �gure) and the good agreement between
the global topological structure and the modules (bottom �gure).
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Figure 7: Analysis of a microbial network. Heatmap representing the z-score of the log-transformed abun-
dances of the OTUs (see Methods). Species are coloured according to their functional group membership obtained
at the maximum of the total partition density. Samples are coloured according to one of the six community
classes found in [23]. Heatmap blocks show segregation and co-occurrence between modules, further mapping the
β−diversity classes.
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network.335

Methods336

Generalization of the Jaccard and Tanimoto coe�cients to an arbitrary number of337

link types338

Consider a network with a set {i} of N nodes and a set {eij} of M links. These links are classi�ed into Ω types339

labelled with the index α = (1, ...,Ω). These types would typically account for di�erential qualitative responses340

of the nodes properties due to the interactions. For example, if we consider that the nodes are species and341

the property of interest is the species abundances, the e�ect of cooperative or competitive interactions on the342

abundances can be codi�ed using two di�erent types of links: positive and negative. If these relations are inferred343

through correlations between abundances, we could use a quantitative threshold (for instance a correlation equal344

to zero) to split the links into positive and negative correlations. In general, we may use a number of qualitative345

attributes or quantitative thresholds in the weights of the links to determine di�erent types of links.346

We call n(i) the set of neighbours of i, and we split these neighbours into (at most) Ω di�erent subsets347

according to the types of links present in the network. The Jaccard coe�cient de�ned in 2 can be extended348

(already considering similarities between nodes) as:349

S(J)(ni, nj) =

⋃Ω
α=1 |nα(i) ∩ nα(j)|⋃Ω
α=1 |nα(i) ∪ nα(j)|

. (5)

Accounting for the weight of the edges can be made with the generalization of the Jaccard index provided by350

the Tanimoto coe�cient [17]. We �rst introduce the method without di�erentiating between di�erent types of351

neighbours. Consider the vector ai =
(
Ãi1, . . . , ÃiN

)
with352

Ãij =
1

ki

∑
i′∈n(i)

wii′δij + wij (6)

where wij is the weight of the edge linking the nodes i and j, ki = |n(i)| and δij is the Kronecker's delta353

(δij = 1 if i 6= j and zero otherwise). Determining the quantityWij = aiaj =
∑
k ÃikÃkj , the Tanimoto similarity354

is de�ned as355

S(T)(eik, ejk) =
Wij

Wii +Wjj −Wij
. (7)

Working with link types requires a generalization of the above expression. Consider for the moment two types356

related with a positive wij > 0 or a negative wij < 0 weight of the links. The term Ãii = 1/ki
∑
i′ wii′ is the357

average of the strengths of the edges connected with node i, and it is desiderable to keep this meaning when358

considering two types to properly normalize the Tanimoto similarity. This is simply achieved rede�ning Ãij as359

Ãij =
1

ki

∑
i′∈n(i)

abs(wii′)δij + wij . (8)

On the other hand, the similarity is essentially codi�ed in the term Wij that we now want to rede�ne to360

account for two types of interactions in such a way that only products ÃikÃkj between terms with the same361

sign contribute to the similarity. This is achieved with the following de�nition, which generalizes the Tanimoto362

coe�cient363

Wij =
∑
k

ÃikÃkjδ(sgn(Ãik)− sgn(Ãkj)) (9)

where sgn(·) is the sign function and δ(a− b) is the Dirac delta function (δ(a− b) = 0 if a 6= b). Generalizing364

to an arbitrary number of types can be achieved by de�ning a variable µij that returns the type of the link, i.e.365

µij = α with α being a factor variable which, for the example of positive and negative links, is codi�ed by the366

sign of the links' weight. We �nally generalize the expression 9 as follows367
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Wij =
∑
k

ÃikÃkjδ(µik − µkj). (10)

Finally, the generalization of the external and internal partition densities to consider multiple types of links368

simply requires us to correctly classify the neighbours of each node accounting for the di�erent types n(i) =369 ⋃Ω
α=1 n

int
α (i)∪

⋃Ω
α=1 n

ext
α (i). Similarly, the set of edges m(i) linking the node i with other nodes must be also split370

into sets according to the di�erent types m(i) =
⋃Ω
α=1m

int
α (i) ∪

⋃Ω
α=1m

ext
α (i). The expressions for the internal371

and external partition densities remain otherwise the same.372

Original de�nition of partition density373

For completenes, we present the de�nition of partition density presented in [14]. In short, the method starts374

building a similarity measure between any pair of links sharing one node in common. Two links will be similar if375

the nodes that these two links do not share have, in turn, similar relationships with any other node, shown in Fig.376

1. From this similarity measure, edges are clustered and an optimal cut-o� for the clustering is found monitoring a377

measure called partition density (which in this paper we call internal partition density). The optimal classi�cation378

found at the cut-o�, determines groups of links that are similar because they connect nodes that are themselves379

similar in terms of their connectivity. Therefore, the nodes are classi�ed indirectly, according to the groups that380

their respective links belong, and a node may not belong to a single community but to several communities if its381

links belong to di�erent clusters. This is claimed to be an advantage with respect to other methods (in particular382

for high density networks) as membership to a single cluster is not enforced. At every step of the clustering it is383

obtained a partition P = P1, ..., PC of the links into C subsets. For every subset, the number of links is mc = |Pc|384

and the number of nodes that these edges are linking is nc = | ∪eij∈Pc
{i, j}|. The density of links for the cluster385

C is then386

Dc =
mc − (nc − 1)

nc(nc − 1)/2− (nc − 1)
(11)

where the normalization considers the minimum (nc − 1) and maximum (nc(nc − 1)/2) number of links that387

can be found in the partition. The diference with respect to Eq. 4, is that a term (nintc − 1) is now subtracted.388

The reason is that, in Ahn et al. method, clustering with links implies that two nodes in the same cluster must389

share links. But, according to our de�nition of function, two nodes may be structurally equivalent even if there390

is no interaction between them.391

The partition density D is then given by the average of the density of links for all the partitions, weighted by392

the number of links393

D =
2

M

∑
c

mc
mc − (nc − 1)

(nc − 2)(nc − 1)
(12)

where M is the total number of links. It was shown that when using agglomerative clustering, this function394

achieves a maximum which determines the optimal partition [14].395

Clustering algorithm396

After computing the similarity between nodes with the method presented in the Results, the algorithm clusters397

nodes using one of three hierarchical clustering algorithms: average linkage [29], single linkage and complete398

linkage. Starting from each node being a separate cluster, at each step t all algorithms join the two most similar399

clusters A and B, and compute the similarity between the new combined cluster and all other clusters C in a way400

that depends on the clustering algorithm.401

Single linkage is the most permisive algorithm, because the similarity it assigns to the new cluster is the402

maximum similarity between the two clusters joined and clusters C:403

St+1(AB,C) = max (S(A,C), S(B,C)) .

where t labels the step of the algorithm, A and B are the clusters that are joined, AB denotes the new404

composite cluster, and C is any other cluster. On the other hand, complete linkage is the most restrictive,405

assigning the minimum similarity406
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ν κmut κcomp

0.15 0.08 0
0.35 0.16 0.15
0.6 0.28 0.5

Table 1: Topological properties of the bipartite networks analysed. Di�erent combinations of nestedness
(ν), intra-pools connectance κcomp and inter-pools connectance κmut were analysed.

St+1(AB,C) = min (S(A,C), S(B,C)) .

Finally, average linkage assigns an intermediate value computed as the weighted average similarity with the407

two joined clusters408

St+1(AB,C) =
nAS

t(A,C) + nBS
t(B,C)

nA + nB

being nA and nB the number of elements that A and B contain, respectively. Identi�cation of the two pools409

of plants and animals is indendent of the clustering method used, but the maximum of the external partition410

density is achieved earlier for single linkage and later for complete linkage; we found a good compromise between411

the number and the size of the clusters working with average linkage, but the clustering method could be selected412

according to information known from the links. In our experience, single linkage is easily dominated by the giant413

cluster in high density networks in which modules are prevalent (rather than for guilds). The appropriate clustering414

method should be guided by the research question. For instance, if gene homology is explored, it is probably415

more appopriate to use single linkage (as a relative of one gene's relative is also its relative, i.e. transitivity is416

automatically ful�lled [30]). On the other hand, if we analyse well-di�erentiated functional similarity, it might be417

more appropriate to be conservative and use complete linkage.418

Plant-pollinator networks and topological properties419

We selected six plant-pollinator networks arti�cially generated in [19] with known topological properties, sum-420

marized in Table. We consider as topological properties the connectance (fraction of links) of the mutualistic421

matrix, the connectance of the competition matrices, and the de�nition of nestedness provided in [20]. Given a422

mutualistic matrix A(P)
ik representing presence-absence of interaction between the set of plants, indexed by i, and423

the set of animal species, indexed by k, we compute the degree of a species as n(P)
i =

∑
k A

(P)
ik (see Ref. [20]424

in Supplementary Material). A similar de�nition would apply for animals n(A)
k =

∑
iA

(P)
ik . Next we de�ne the425

ecological overlap between two species of plants i and j as the number of insects that pollinate both plants:426

n
(P)
ij =

∑
k

A
(P)
ik A

(P)
jk ,

a de�nition that is equivalent to the Jaccard similarity used in this work. Summing over every pair of plants427

and normalizing leads to the de�nition of nestedness:428

ν(P) =

∑
i<j n

(P)
ij∑

i<j min(n
(P)
i , n

(P)
j )

.

A symmetric de�nition applies for animals, so we take as �nal de�nition of nestedness ν = max(ν(P), ν(A)).429

Trophic networks430

We downloaded the network and metadata provided in [21] and compared the clusters found with those obtained431

by functionInk. After computing the Tanimoto coe�cients as explained above, we cluster the nodes and retrieve432

the classi�cation found at each step. We then computed �ve indexes (Rand, Fowlkes and Mallows, Wallace 10,433

Wallace 01 and Jaccard), implemented in the R pci function of the profdpm package [22]. In order to assign a434

17

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/656504doi: bioRxiv preprint 

https://doi.org/10.1101/656504
http://creativecommons.org/licenses/by-nc/4.0/


signi�cance value for the di�erent indexes we obtained, for each index x, a bootstrapped distribution with mean435

x̄(B) and standard deviation σ(B), resampling with replacement the samples and recomputing the indexes 103
436

times. Next we computed 103completly random classi�cations, obtained by shu�ing the identi�ers relating each437

sample with one of the classi�cations, and retrieving the maximum x(R). We �nally veri�ed that the random438

value was signi�cantly di�erent from the bootstrapped distribution by computing the z-scores:439
440

z =
abs(x(R) − x̄(B))

σ(B)
,

which we considered signi�cant if it was higher than 2.5. Heatmaps were generated with the heatmap.2 function441

in R package gplots.442

Bacterial networks443

We considered a public dataset of 753 bacterial communities sampled from rainwater-�lled beech tree-holes (Fagus444

spp.) [24], leading to 2874 Operative Taxonomic Units (OTUs) at the 97% of 16 rRNA sequence similarity. These445

communities were compared with Jensen-Shannon divergence [25], and automatically clustered following the446

method proposed in Ref. [31] to identify enterotypes. The clusters found with this method in [23] were used to447

colour the community labels in Fig. 6.448

The inference of the OTU network started quantifying correlations between OTUs abundances with SparCC449

[26]. To perform this computation, from the original OTUs we reduced the data set removing rare taxa with450

less than 100 reads or occuring in less than 10 samples, leading to 619 OTUs. Then, the signi�cance of the451

correlations was evaluated bootstrapping the samples 100 times the data and estimating pseudo p-values for each452

of the N(N − 1)/2 pairs. A relationship between two OTUs was considered signi�cant and represented as a link453

in the network if the correlation was larger than 0.2 in absolute value and the pseudo p-value lower than 0.01.454

The network obtained in this way was analysed using Cytoscape [32].455
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Figure 8: Partition densities of synthetic mutualistic networks. Networks with nestedness ν = 0.15 ,
κmut = 0.08, and κcomp = 0.5 (left) or κcomp = 0.15 (right). Changing the connectance change the relative value
between the external and internal partition densities.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

● ●
● ●

●
● ● ●

●
●

● ●
●

●
●

●
●

●
●

●

●
● ● ●

● ●

●
● ●

● ●
● ●

● ●
● ● ●

● ●
● ●

●

● ●

● ● ●
● ●

●
● ●

● ● ●

●

0.0

0.1

0.2

0.3

0.4

0 25 50 75
Clustering Step

D
en

si
ty

●

●

●

External
Internal
Total

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

● ●
●

● ●

● ●
●

●

●

●

● ● ●

●
●

●
● ●

●
●

● ●
●

● ● ● ●
● ● ● ●

●
●

● ● ● ● ● ● ● ● ●
●

● ● ● ●

● ● ● ● ● ● ● ●
● ●

●

0.0

0.1

0.2

0.3

0.4

0 25 50 75
Clustering Step

D
en

si
ty

●

●

●

External
Internal
Total

Figure 9: Partition densities for synthetic mutualistic networks. Networks with κcomp = 0.5, κmut = 0.28
and ν = 0.35 (left) or ν = 0.6 (right). The high connectance of both networks make the internal partition
density dominant, and two pools are detected through the total partition density. Nevertheless, the increase of
the nestedness is detected through an increase in the internal partition density, which makes the second network
more disassortative.
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Figure 10: Partition densities of synthetic mutualistic networks. Network with nestedness ν = 0.05,
κmut = 0.065 and κcomp = 0.15. The low connectance hinders the detection of the two pools of plants and
pollinators.
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Figure 11: Partition density of the trophic network. The internal partition density peaks when there are
three clusters, consistent with the existence of three trophic layers. The external partition density has a maximum
at step 69, which is analysed in detail with respect to the reference classi�cation found in [21].
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Figure 12: Comparison between classi�cations of the trophic network. Similarity between the reference
classi�cation found in [21] and the one found with functionInk is performed with the Z-score of a di�erent indexes:
Wallace 01 (Top left), Fowlkes and Mallows (Top right), Jaccard (Bottom left) and Rand (Bottom right). All
indexes bring signi�cant values and the maximum similarity is close to the maximum of the external partition
density.
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Figure 13: Partition density of the microbial network. The external partition density brings a poor
reduction in the complexity of the network, with only 22 elements joined, while the internal partition density
achieves a higher value and still a good number of clusters. Results suggest that modules are more relevant in
this network given the high number of intra-cluster co-occurrences, later con�rmed by visual inspection in the
Main Text.
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