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Abstract

Decisions are occasionally accompanied by changes-of-mind. While considered a
hallmark of cognitive flexibility, the mechanisms underlying changes-of-mind remain
elusive. Previous studies on perceptual decision making have focused on changes-of
-mind that are primarily driven by the accumulation of additional noisy sensory
evidence after the initial decision. In a motion discrimination task, we demonstrate that
changes-of-mind can occur even in the absence of additional evidence after the initial
decision. Unlike previous studies of changes-of-mind, the majority of changes-of-mind in
our experiment occurred in trials with prolonged initial response times. This suggests a
distinct mechanism underlying such changes. Using a neural circuit model of decision
uncertainty and change-of-mind behaviour, we demonstrate that this phenomenon is
associated with top-down signals mediated by an uncertainty-monitoring neural
population. Such a mechanism is consistent with recent neurophysiological evidence
showing a link between changes-of-mind and elevated top-down neural activity. Our
model explains the long response times associated with changes-of-mind through high
decision uncertainty levels in such trials, and accounts for the observed motor response
trajectories. Overall, our work provides a computational framework that explains
changes-of-mind in the absence of new post-decision evidence.

Authors Summary

We used limited availability of sensory evidence during a standard motion discrimination
task, and demonstrated that changes-of-mind could occur long after sensory information
was no longer available. Unlike previous studies, our experiment further indicated that
changes-of-mind were strongly linked to slow response time. We used a reduced version
of a previously developed neural computational model of decision uncertainty and
change-of-mind to account for these experimental observations. Importantly, our model
showed that the replication of these experimental results required a strong link between
change-of-mind and high decision uncertainty (i.e. low decision confidence), supporting
the notion that change-of-mind are related to decision uncertainty or confidence.
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Introduction

Perceptual decision making is ubiquitous in our daily lives. As these decisions vary in
difficulty, so does our ability to make accurate and well-timed responses [1–3]. In some
situations, an initial decision can be revised as new evidence arrives [4–11]. For instance,
our interpretation of a road sign can change as we approach it, which may result in a
change-of-mind. Previous work investigating changes-of-mind has predominantly focused
on revising a decision in response to new sensory evidence [7, 9, 10,12], demonstrating
that the frequency of changes-of-mind increases with higher task difficulty, and that the
majority of the changes improve choice accuracy. Such reversals of decisions in response
to new evidence have also been previously linked to error correction [4, 5, 13,14],
indicating a strong association between the mechanisms underlying these behaviours.

Signatures of change-of-mind behaviour have previously been explained by cognitive
models [7, 9], which extended the drift-diffusion model of decision making [15–17]. A
central feature of these models is the temporal accumulation of noisy momentary
evidence over time: when the accumulated evidence reaches a prescribed threshold, a
choice is made. However, in extended drift-diffusion models [7, 9], evidence
accumulation continues after the initial decision, which may lead to a change-of-mind if
the accumulated evidence reaches a second prescribed threshold. Therefore,
late-arriving sensory information, or any explicitly provided additional evidence [6, 10],
can feed into this extended accumulation process, thereby potentially reversing the
initial decision. In many situations, however, additional post-decision evidence is not
available, and it is not well understood whether models implying post-decision evidence
accumulation in changes-of-mind extend to these situations. Thus, the mechanism
underlying changes-of-mind in the absence of additional post-decision evidence remains
unclear [7, 18].

Recently, the neural correlates of change-of-mind behaviour in humans and primates
have been gradually revealed [8, 10]. In particular, fMRI recordings indicated a strong
correlation between changes-of-mind and increased activity in the prefrontal cortex [10].
This correlation supported the argument that top-down signals could play an important
role in error correction mechanisms [19]. However, the neural mechanism by which these
top-down signals lead to a change-of-mind remains elusive. Furthermore, it is still
unclear how this mechanism is linked to other metacognitive processes partially
mediated by the frontal cortex, particularly, the encoding of decision uncertainty (or
confidence) [20–22].

In this work, we investigated changes-of-mind in the absence of additional
post-decision sensory evidence. In contrast to previous studies, the majority of
changes-of-mind we observed were associated with prolonged initial response times.
Using a neural circuit model, we demonstrate that these changes-of-mind can be
attributed to neural feedback control mediated by decision uncertainty. This suggests
that top-down uncertainty monitoring could play an important role in inducing
changes-of-mind in the absence of additional post-decision evidence, which is consistent
with recent neurophysiological evidence [10,19]. Overall, our work provides a
computational framework that explains changes-of-mind in the absence of additional
post-decision evidence, from the sensory integration stage up to the motor output.

Results

Experimental results

Eleven participants completed a perceptual decision-making task (2400 trials) in which,
upon initiating a trial, a random dot kinematogram (RDK) stimulus [23,24] appeared
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Fig 1. Experimental setup. Participants initiated a trial by clicking a start button at
the bottom of the screen. After a short random delay (uniformly distributed over
700-1000ms), a random dot kinematogram appeared for 800ms. Participants then chose
between two targets: Left or Right. Immediately after the choice, the feedback (red or
green circle) was displayed for 300ms, followed by the fixation point (300ms).

after a random delay (uniformly distributed over 700-1000ms). The RDK stimulus was
displayed for 800ms, followed by a choice prompt. Participants then decided whether
the majority of the randomly moving dots were moving towards the right or the left.
The participants were instructed to respond as quickly and accurately as possible by
moving a computer mouse cursor to one of the two choice target locations in the top
corners of the computer screen and clicking on it (Figure 1). The difficulty of the task
was varied via the motion coherence parameter, which controlled the probability of each
dot moving in a target direction (left or right); see Methods and Materials for details of
the experimental setup.

To check the validity of our paradigm, we analysed response times (z-scored within
participants) as a function of accuracy and coherence level (Table 1). In our
fixed-duration task, the term “response time” refers to the time it took participants to
initiate a movement towards one of the choice targets after stimulus offset (Figure 1).
For correct choices, initial response times were on average faster than in error choices
(b = −0.12, t = −20.0, p < 0.0001). There was no evidence for the main effect of
coherence (b = 0.07, t = 0.4, p = 0.7); however, we found significant interaction between
coherence and choice accuracy (b = −0.6, t = −13.3, p < 0.0001). These results indicate
that response time decreased with coherence, but only in correct trials, which is
consistent with previous perceptual discrimination studies using the reaction-time
task [7, 23].

Changes-of-mind occur even in the absence of post-decision sensory
evidence

In the vast majority of the trials, participants responded by moving the mouse cursor
directly to a choice target. However, in a fraction of trials, participants reversed their
initial decision before clicking on one of the choice targets (Figure 2). Similar to
previous studies [7, 9, 12,25], we observed changes-of-mind in 3% trials (0.3% to 6.1%,
median 2.4% across 11 participants). However, previous studies investigated
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Table 1. Parameters of a linear mixed-effects model analysing response time (z-scored
within participants) as a function of coherence and choice accuracy. The model included
a random intercept for participant and random slopes for coherence within participant.

Estimate Std. Error df t value Pr(>|t|)
Intercept 0.1737 0.0648 10.0320 2.6813 0.0230

Coherence -0.2302 0.1754 10.2769 -1.3124 0.2179
Is correct -0.1232 0.0061 26260.2576 -20.0404 <0.0001

Coherence by Is correct -0.6067 0.0457 26260.5434 -13.2891 <0.0001

changes-of-mind in situations where late-arriving evidence (i.e. due to processing delays)
could prompt a reconsideration of the initial decision. Under such circumstances, it was
suggested that changes-of-mind can occur within 450ms from initiating the
response [7, 26], which strongly links such changes to signal transduction delays. In
order to limit the potential effect of late-arriving evidence on changes-of-mind, in our
experimental task, participants were instructed to respond only after stimulus offset.
Although in some trials the participants initiated their response before stimulus offset,
this behaviour was not associated with changes-of-mind. Specifically, participants
responded after the stimulus offset in 82% of the trials involving a change-of-mind (as
opposed to 70% in trials without a change-of-mind). Importantly, in 72% of these
change-of-mind trials, decision reversal occurred later than 450ms after the stimulus
offset. Taken together, these observations suggest that in our experiment, the majority
of changes-of-mind are not driven by late-arriving post-decision sensory evidence.
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Fig 2. Response trajectories from two representative trials. Participants reached one of
the two choice targets (red/green areas) directly in non-change-of-mind trials (left), or
after reaching towards the opposite target first in change-of-mind trials (right).

In order to examine the relationship between choice accuracy and changes-of-mind,
we analysed choice accuracy as a function of coherence level in the presence and absence
of changes-of-mind (Table 2, Figure 3a). We found that accuracy increased with
coherence (b = 6.3, z = 7.1, p < 0.0001), consistent with previous work on perceptual
decision making [23, 24]. In change-of-mind trials, choice accuracy was on average lower
than in non-change-of-mind trials (b = −1.3, z = −11.9, p < 0.0001). Moreover, the
effect of coherence on accuracy was stronger in non-change-of-mind trials
(b = −6.8, z = −8.4, p < 0.0001) than in change-of-mind trials. Despite the less
accurate responses in change-of-mind trials, these changes-of-mind were beneficial to the
overall performance at intermediate-to-high coherence levels; the accuracy of
changes-of-mind was above chance level for 0.128 (p = 0.005) and 0.256 (p = 0.0001)
coherence (see also Figure 3b), demonstrating that changes of mind corrected an
impending erroneous choice more often than introducing an error. Consequently, in
change-of-mind trials, error-to-correct changes were more frequent than correct-to-error
changes at 0.128 and 0.256 coherence levels (Figure 3b).
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Fig 3. Experimental results. (a) Psychometric function showing choice accuracy as a
function of coherence level in the presence (grey) and absence (black) of a
change-of-mind. Accuracy generally increases as a function of coherence level, but is
lower in change-of-mind trials (grey) compared to non-change-of-mind trials (black).
However, for intermediate-to-high coherence levels (0.128 and 0.256), the accuracy of
change-of-mind trials is above chance level (i.e. > 0.5). (b) Observed probability of a
change-of-mind in all/correct/error trials as a function of coherence. Probability of a
change-of-mind peaks at low-to-intermediate coherence levels, and decreases sharply at
high coherence levels, with correct changes being more frequent than error changes at
moderate to high coherence levels (0.128 and 0.256). (c) Response times (z-scored
within each participant) for correct and error change-of-mind and non-change-of-mind
trials. The ‘<’ pattern of response times in the case of non-change-of-mind trials was
consistent with previous observations [7, 23]. (d) Observed probability of a
change-of-mind as a function of coherence level grouped by the tertile of the initial
response time. The majority of change-of-mind trials occurred when response times
were longest. In all panels, error bars indicate standard error of mean.
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Table 2. Parameters of a generalized linear mixed-effects model analysing choice
accuracy as a function of coherence and presence or absence of a change-of-mind. The
model included a random intercept for participant and random slopes for coherence
within participant.

Estimate Std. Error z value Pr(>|z|)
Intercept 1.1751 0.1645 7.1440 <0.0001

Is CoM -1.3436 0.1129 -11.9051 <0.0001
Coherence 6.2918 0.8918 7.0555 <0.0001

Is CoM by Coherence -6.7564 0.8058 -8.3852 <0.0001

Table 3. Parameters of a generalized linear mixed-effects model analysing probability
of a change-of-mind as a function of coherence and response time (z-scored within
participants). The model included a random intercept for participant and random
slopes for response time and coherence within participant.

Estimate Std. Error z value Pr(>|z|)
Intercept -4.0716 0.2973 -13.6968 <0.0001

RT (z) 0.4186 0.0914 4.5799 <0.0001
Coherence -2.9697 0.5568 -5.3335 <0.0001

Changes-of-mind are associated with slow initial decisions

To clarify the relationship between the formation of an initial decision (as reflected in
response times) and the subsequent emergence of a change-of-mind, we analysed the
probability of a change-of-mind as a function of coherence level and initial response time
(Table 3, see also Figures 3c and d). The frequency of changes-of-mind decreased with
coherence (b = −3.0, z = −5.3, p < 0.0001). Crucially, changes-of-mind were more likely
to occur in trials with a prolonged response time (b = 0.4, z = 4.6, p < 0.0001, see also
Figure 3d). This is in stark contrast with previous studies that linked changes-of-mind
to fast initial responses [7, 27]. This discrepancy could be attributed to the differences
between the experimental tasks as discussed above, and therefore the potentially
different mechanisms underlying changes-of-mind. In the next section, we show that our
neural circuit model provides a qualitative account of the behavioural results, and
provides predictions on the mechanism underlying changes-of-mind in our experimental
task.

Neural circuit model

To shed light on the potential mechanism underlying the observed changes-of-mind, we
adopted a previous computational model of decision uncertainty and changes-of-
mind [28] (Figure 4). This cortical circuit model was previously shown to account for
decision uncertainty and change-of-mind behaviour reported in previous work
[7, 11,22,29], while capturing recent neurophysiological evidence of encoding decision
confidence [10,19,22].

In our model, we describe the activity of sensorimotor populations using the
two-variable (reduced spiking neural network) model of decision making [30], with two
mutually-inhibiting populations selective for leftward/rightward sensory evidence,
endowed with self-excitation (Figure 4, cyan box). The hand module consists of two
neural populations that receive input from a corresponding left-/right-selective
sensorimotor population. Similar to the previous work [28], the hand populations are
modelled using a firing-rate type model (i.e. threshold-linear, see Methods). This
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Fig 4. Simplified neural circuit model of decision uncertainty. The sensorimotor
module (cyan box) consists of two mutually inhibitory (lines with filled circles) neuronal
populations selective for leftward and rightward motion with recurrent excitation
(curled black arrows). The uncertainty-monitoring population (red circle) receives
summed input from the sensorimotor populations. 600ms after stimulus onset, the
summed input is integrated and fed back to the sensorimotor populations (red arrow).
The hand response module (grey box) consists of two mutually inhibitory neuronal
populations that integrate the output from the corresponding sensorimotor population.
Model results in all subsequent figures were obtained via simulating the model using a
single set of parameters (see Table 4 for parameter values).

minimizes the number of new model parameters introduced. The simulated response of
the hand populations ultimately determines the model behaviour - in a given simulated
trial, a response is recorded when the activity of one of the populations of the hand
module reaches a prescribed threshold (see Methods). In our model, we have mapped
the output of the neural activity of the motor populations (Figure 4, cyan box) onto the
horizontal (x) position alongside the mouse cursor trajectories from our experimental
data (see Methods). We found that the model could produce motor response
trajectories (along the horizontal line) that are qualitatively similar to the experimental
ones (Figure 5).

Here, we propose a version of the model which simplifies the neural circuit
architecture developed in [28] (see Methods and Materials). Specifically, we used only
one neuronal population to encode decision uncertainty, termed the uncertainty-
monitoring population (Figure 4, red circle). We simulated this model (Figure 6) and we
observed a phasic neural activity profile for the uncertainty-monitoring population
(Figure 6, red activity traces) that is reminiscent of neural recordings from regions or
neurons that encode decision uncertainty [19,22]. In our model, 600ms after stimulus
onset, this uncertainty- monitoring population receives and integrates the summed
neural activities of the sensorimotor populations (Figure 4, two-way red arrows),
therefore continuously monitoring decision uncertainty during decision making. The
uncertainty-monitoring population then in turn equally excites both sensorimotor
neuronal populations, effectively providing them with excitatory feedback. When the
activity of one of the sensorimotor populations reaches a prescribed threshold (42.5 Hz),
the uncertainty-monitoring population stops integrating the summed input from the
sensorimotor populations. As in the previous modelling work [28], we observed this
equal excitation to be maximal in trials with error choices, during difficult tasks, and
change-of-mind trials. This is due to the increased absolute input to the uncertainty-
monitoring populations under such conditions (Figure 6), in which sufficient time is
allowed for the uncertainty-monitoring population to integrate the input (see also [28]).
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Fig 5. Experimental mouse cursor trajectories in the x positional space (grey lines with
markers) and model-generated motor output (blue solid lines). See Methods for details
on the linear mapping of the firing rates of the model hand response populations onto
the x positional space.
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Fig 6. Neural activity generated by the model. Activity is averaged over 3168 and 5346
non-change-of-mind trials for 0.032 and 0.256 coherence levels, respectively (left panels),
and 120 change-of-mind trials for 0.032 coherence level (right panels). Blue (orange)
colours: left (right) neuronal population. In trials without a change-of-mind, the
sensorimotor and hand neuronal populations representing the correct (rightward) choice
ramp up faster and reach higher activations in the case of high (0.256) coherence level
compared to trials with a low (0.032) coherence level. The activity level of the
uncertainty-monitoring neuronal population however is greater in trials with low (0.032)
coherence. In change-of-mind trials, high uncertainty levels lead to high competition
between the left and right sensorimotor neuronal population (through equal feedback
excitation). Right panel: Left neuronal population is initially “winning”, with a reversal
occurring late in the trial. In downstream neuronal populations (for motor output), the
left neuronal population reaches choice target, but is eventually suppressed by the rising
activity of the right neuronal population. Bottom panel: Model-generated trajectories
in the x positional space (see Materials and Methods).
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Fig 7. Simplified model accounts for signatures of decision uncertainty. (a) Uncertainty
as a function of coherence level. ‘<’ pattern: Uncertainty increases (decreases) with
coherence level for error (correct) choices. Error bars indicate binomial proportion
standard error of mean. (b) Response time as a function of uncertainty. Data points are
collected from 36,000 trials. Strong correlation between uncertainty and response time
(Pearson’s r=0.74). Discarded trials with zero uncertainty.

In quantifying the model’s uncertainty as a function of coherence level, we found
that uncertainty level increases with coherence for error choices, but decreases for
correct choices (Figure 7), which is consistent with previous findings [11,22,29].
Furthermore, we found that this positive uncertainty feedback loop is strongly
associated with initial response times (Pearson’s r = 0.74), similar to previous
experimental work on decision uncertainty [31]. Taken together, these observations on
the relationship between uncertainty, task difficulty, and response time can serve as a
basis for explaining the underlying mechanism for changes-of-mind observed in our
experimental task. However, in what follows, we first show that the model qualitatively
accounts for the behavioural effects observed in our experiment.

Model accounts for the observed change-of-mind behaviour

Our neural circuit model readily accounts for the observed experimental findings
(Figure 8, cf. Figure 3). In particular, the model reproduces the positive relationship
between choice accuracy and coherence, which is weakened in change-of-mind trials
(Figure 8a). The probability of error/correct changes-of-mind, as well as total
proportion of changes-of-mind as a function of coherence are also captured in the model
(Figure 8b). Similarly, the model accounts for the relationship between response time
and coherence in both non-change-of-mind and change-of-mind trials. Specifically, the
model’s response times for change-of-mind trials were prolonged (compared to
non-change-of-mind trials), and did not vary between correct and error trials
(Figure 8c).

Importantly, our neural circuit model accounts for the observed positive relationship
between response time and changes-of-mind (Figure 8d, cf. Figure 3d). The model
suggests that changes-of-mind occur exclusively in trials with long response times. In
the experimental data, changes-of-mind could occur even in the trials with fast initial
response, but were most probable when response times were longest. The qualitative
match between the model and the data suggests that, first, the mechanism underlying
changes-of-mind in our experiment and model could be similar, and, second, that these
mechanisms are different from other mechanisms that rely solely on post-decision
evidence accumulation [7, 9] (see S1 Appendix for analysis of a post-decision evidence
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Fig 8. Model simulation results. (a) Psychometric function showing choice accuracy as
a function of coherence level in the presence (grey) and absence (black) of a
change-of-mind. Similarly to the experimental data (Figure 3a), accuracy increases as a
function of coherence level, but is lower in change-of-mind trials (grey) compared to
non-change-of-mind trials (black). (b) Probability of a change-of-mind in
all/correct/error trials as a function of coherence. Similarly to Figure 3b, probability of
a change-of-mind is the highest at low-to-intermediate coherence levels, and decreases
sharply at high coherence levels. (c) Response times (z-scored) for correct and error
change-of-mind and non-change-of-mind trials. The data for correct and error
change-of-mind data overlap, whereas response times for non-change-of-mind trials
follow the experimentally observed ‘<’ pattern (Figure 3c). (d) Probability of a
change-of-mind as a function of coherence level grouped by the tertile of the initial
response time. All change-of-mind trials occurred when response times were longest. In
all panels, error bars indicate standard error of mean (in panel (c) the error bars overlap
with markers).
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Fig 9. Model uncertainty is strongly associated with changes-of-mind. (a) Uncertainty
as a function of coherence level split by the type of trial (i.e. change-of-mind vs.
non-change-of-mind). Change-of-mind trials are associated with higher uncertainty
levels compared to non-change-of-mind trials regardless of the coherence level (see
Figure 8c, where response times are predicted to be the same for change-of-mind trials
regardless of the coherence level). (b) Probability of a change-of-mind as a function of
coherence level split by the magnitude of uncertainty level (three tertiles). Changes-
of-mind occur only in the highest uncertainty tertile. See Materials and Methods for
uncertainty level quantification.

accumulation model in the context of the present paradigm).

Model’s high uncertainty is associated with changes-of-mind

To clarify the link between uncertainty and changes-of-mind in our model, we
investigate the pairwise relationships among decision uncertainty, changes-of-mind, and
response times (Figure 9).

First, we analysed the mean decision uncertainty level (see Methods) as a function of
task difficulty (i.e. coherence level) separately for change-of-mind and
non-change-of-mind trials (Figure 9a). As previously mentioned, on average, uncertainty
levels are higher in the case of change-of-mind trials compared to non-change-of-mind
trials (Figure 6, middle panel), regardless of the outcome of the trial (i.e. correct or
error). During such trials, we observed longer initial response times (Figure 8d), which
allows the uncertainty-monitoring population more time to integrate the summed input
from the sensorimotor populations, leading to increased greater neural activity
(uncertainty levels), and larger total excitatory feedback to the sensorimotor
populations.

Interestingly, when sorting the simulated trials based on tertiles of decision
uncertainty levels; the probability of a change-of-mind was shown to be highly
dependent on the decision uncertainty level (Figure 9b). Hence, our model suggests that
changes-of-mind are strongly associated with high decision uncertainty.

To further explain the effect of uncertainty on the dynamics of change-of-mind
behaviour in our model, we performed a systematic stability analysis of the value of the
population-averaged synaptic gating variable SL (corresponding to the left-selective
sensorimotor population, from Eq. 5) with respect to magnitude of uncertainty feedback
(Figure 10) — for simplicity, we set the coherence to be zero for this analysis (see [30]).

During the time-course of a change-of-mind trial, the activity of the uncertainty
monitoring population gradually increases from zero (Figure 6, red traces). Early in the
trial, uncertainty level is close to zero. This leads to low uncertainty excitatory feedback
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Fig 10. Bifurcation diagram of the value of the synaptic gating variable SL

(corresponding to the left-selective sensorimotor population) with respect to the
magnitude of uncertainty excitatory feedback (at zero coherence level). No or low
uncertainty feedback yields two stable steady states (black solid lines) and one unstable
steady state (black dotted lines). This forms a “winner-take-all” regime (blue dashed
line). In contrast, high uncertainty feedback (around 0.03) yields only one stable steady
state (red dashed line).

(Figure 10, blue dashed line), and therefore, the network maintains a “winner-take-all”
regime with two stable steady states corresponding to two decision states (i.e. Left or
Right). As the uncertainty excitatory feedback increases later in the trial, a single
stable steady state appears, which corresponds to indecision (Figure 10, region around
the red dashed line). However, since the uncertainty feedback is only transient
(Figure 6), the network eventually returns to the initial configuration with two stable
steady states (Figure 10, blue dashed line). It should be noted that recurrent network
reverberation [30] allows neural integration even in the absence of a stimulus.
Additionally, due to the stochastic nature of the sensory integration, in cases where the
choice ends up being different from the initial choice (i.e. an initially “losing” neural
population “wins” later in the trial), a change-of-mind occurs (see [28] for detailed
discussion).

Overall, our model simulations were consistent with our experimental findings; the
model predicts that the observed relationship between changes-of-mind and long initial
response times is due to high levels of decision uncertainty. Taken together, these
results suggest a tight relationship among decision uncertainty and changes-of-mind.

Discussion

Even well-prepared and thoughtful decisions are occasionally accompanied by a
change-of-mind that reverses the initial choice. While considered a hallmark of cognitive
flexibility, the mechanism underlying change-of-mind behaviour remains elusive. Here
we demonstrate that changes-of-mind can occur even in the absence of additional
evidence after the initial decision. These changes-of-mind are associated with slow
initial decisions. This is in contrast to previous theories suggesting that changes-of-mind
result primarily from post-decision sensory evidence accumulation. The neural circuit
model we proposed captures these properties of changes-of-mind, and provides insights
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into the dynamics of this behaviour, predicting that changes-of-mind in the absence of
new post-decision evidence are associated with high levels of decision uncertainty.

Early modelling and experimental work on error correction [4, 5, 13,14] suggested
that error correction can be characterised by an evidence accumulation process in which
initial error responses are reversed (or corrected) by new incoming evidence that negates
the initial erroneous judgement. Recent experimental investigations of changes-of-mind
build on the same framework, reinforcing the link between error correction and
changes-of-mind. These studies focus on changes-of-mind that are primarily driven by
the noisy accumulation of additional sensory evidence, which either arrives late due to
processing delays [7, 9, 12], or is provided separately after the initial decision [6, 10]. In
contrast, majority of changes-of-mind in our study occurred later than 450ms after the
stimulus offset, which is outside the hypothesised delayed information processing
window [26]. This supports the notion that the changes-of-mind we observed are not
associated with post-decision accumulation of delayed evidence or explicitly provided
new information, as opposed to previous studies [4, 7, 9, 10,12,14].

Despite the absence of new post-decision evidence, changes-of-mind in our
experiment improved the initial decisions in the trials with intermediate-to-high stimulus
coherence (Figure 3a), which was also the case in previous studies [7, 9, 27]. However, in
sharp contrast to these studies, we found a positive relationship between initial response
times and subsequent changes-of-mind: changes-of-mind were most likely to occur in
trials with prolonged response times (Figure 3d). Hypothetically, this relationship can
arise when initial response times and the frequency of changes-of-mind are both
associated with high decision uncertainty. Future experimental work can directly test
this hypothesis by requiring participants to report their confidence retrospectively [10]
or in parallel with their choice [9,31] using the fixed stimulus viewing duration paradigm
employed in this study. In the absence of such confidence reports in our paradigm, here
we take a complementary approach — we demonstrate that our mechanistic model of
decision uncertainty and changes-of-mind could account for our experimental findings.

In our mechanistic model, decision uncertainty is continuously monitored by a
top-down uncertainty-monitoring neuronal population. Importantly, through an
excitatory feedback loop, decision uncertainty continuously affects the neuronal
integration dynamics, which occasionally triggers a change-of-mind in trials with high
uncertainty. Our model provides insights into the mechanism of changes-of-mind
observed in our experiment. Unlike the extensions of the drift-diffusion
model [7, 15, 16, 25] and previous attractor network models [32], our model does not rely
solely on post-decisional sensory evidence accumulation to induce changes-of-mind.
Importantly, the mentioned models were not designed to account for the situations
where no additional post-decision evidence is available after the initial decision. In
contrast, in our model, the final outcome of a trial is dynamically affected by decision
uncertainty monitored during the stimulus presentation. In trials with high levels of
uncertainty, strong excitatory feedback from the uncertainty-monitoring neuronal
population leads to a delayed initial response, due to the high competition between
sensorimotor populations (Figure 6, [28]). At the same time, this increased uncertainty
could lead to a change-of-mind (Figure 9, [28]). Through this mechanism, our neural
circuit model accounted for the observed positive relationship between initial response
time and changes-of-mind (Figure 8c,d). This finding was further supported by the
analysis of the probability of a change-of-mind as a function of uncertainty level
(Figure 9b). More specifically, our model predicted that in situations where no new
stimulus-related evidence could be sampled after the initial decision, changes-of-mind
are most likely to occur during trials with high levels of uncertainty. Future work could
test this by providing neural recordings of brain regions that encode decision
uncertainty [19,22] during changes-of-mind in a fixed-duration perceptual discrimination
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task.
The model proposed here is a variant of the previously developed model [28], which

was inspired by neurophysiological recordings from brain regions encoding decision
confidence or, reciprocally, decision uncertainty [19,22]. In this work, we have reduced
the uncertainty-monitoring module of the original model to lay bare its essential
functions. In addition to the similarity of the neural profile of our model’s
uncertainty-encoding population (Figure 6) to existing recordings [19,22], this reduced
model accounts for some of the main characteristics of decision uncertainty [22,29,31]
(Figure 7). It should be noted that this reduced implementation of decision uncertainty
could arguably be less neurobiologically plausible compared to the previous model, as
the latter involves a canonical cortical column structure — inhibitory-excitatory pair of
neural populations [33,34]. Importantly, we have not changed how the other (i.e.
sensorimotor and motor) modules are described, which can serve as further validation of
previous modelling work [28]. In particular, the sensorimotor module is based on a
previously developed mean-field model with biologically derived variables [30].
Therefore, the model can be tested in future studies using neurophysiological recordings
within similar experimental task paradigms to allow the distinguishing between different
models [35]. It should also be noted that such reductions of biophysical realisations of
accumulate-to-bound models [36] can be linked back to simpler models of decision
making [15,30,37–39].

Decision uncertainty or confidence is closely related to (decision) conflict monitoring.
Computational models of cognitive control have used conflict monitoring to account for
various behavioural aspects of decision uncertainty [40]. For instance, such models have
been shown to account for post-error slowing, attentional bias, error-related negativity,
error-prediction, and neuromodulatory processing [41–45]. In conflict monitoring
models, conflict is usually modelled by a dedicated conflict monitoring unit that takes
as an input the instantaneous activities of the competing (e.g. decision) units, with the
output being the multiplication of these activation rates. This representation accounts
for various signatures of conflict. Specifically, conflict typically increases with increasing
activities of the competing units, and conflict level is highest when competing units
reach their maximal activities. Unlike these conflict-monitoring models, which are
mainly based on abstract sigmoidal- or logistic-like activation (input-output) functions,
the original decision uncertainty module [28] is inspired by a canonical cortical
microcircuit model [33,34], which the current model is reduced from. Further, its
input-output function is represented by a simple threshold-linear model, i.e. neural
activity saturation is unnecessary. Importantly, the quantification of decision
uncertainty involves the more biologically plausible mechanism of summation of inputs
from presynaptic neurons [46], as compared to the multiplication of inputs in
conflict-monitoring models. Moreover, our model mechanistically relates the decision
uncertainty to continuous motor output dynamics.

Overall, our work provides a computational framework that explains
changes-of-mind in the absence of new post-decision evidence, from sensory integration
to uncertainty monitoring and motor output, by mechanistically linking decision
uncertainty and changes-of-mind. Taken together, our findings highlight the role of
top-down metacognitive processes in changes-of-mind.

Methods and Materials

Participants

Thirteen healthy adults (four male, nine female, 20 to 44 years old) were recruited to
participate in the experiment in exchange for €30. The data were collected in two
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locations: four participants performed the task in Galway (Ireland); three years later,
nine participants performed the same task in Dresden (Germany). We tested all results
for robustness by analyzing the data from these two groups separately. Since all the
results hold for both datasets, we analyze the two datasets together in this paper.

Data from two participants were excluded due to atypical proportion of
changes-of-mind (9% and 13%), resulting in N = 11 participants whose data were
analyzed further. Ten participants were right-handed, one was left-handed; all
participants had normal or corrected-to-normal vision. The study protocol was
approved by NUI Galway Research Ethics Committee.

Apparatus

Participants performed the task in a sitting position in front of a desktop computer
equipped with a 24 inch monitor (1920 by 1080 pixels). Mouse cursor coordinates were
sampled at 60 Hz during stimulus presentation and at 100 Hz on the response screen.
The mouse cursor speed was set to 50% in the Windows 7 mouse properties settings; the
“Enhance pointer precision” option was disabled. In four participants, eye movements
were recorded using an eye-tracker, but were not analyzed. The stimulus presentation
software was programmed in Python using PsychoPy [47] and PyGaze [48].

Task

Participants performed a perceptual decision-making task (Fig. 1). Each trial started
when a participant clicked the start button located at the bottom of the screen. After a
random delay (uniformly distributed over 700-1000ms), the RDK was presented for
fixed duration of 800 ms, followed by a screen with two response options. A participant
then moved the mouse cursor from the bottom of the screen to one of the top corners
and then clicked on a response area to indicate their choice. Immediately after that, the
feedback (green circle for correct responses, red for incorrect) was presented for 300 ms,
followed by a fixation cross for another 300 ms. Participants were instructed to respond
as fast and accurately as possible.

Stimuli and procedure

The random dot kinematogram (RDK) algorithm [23,24] was used for stimulus
presentation. The dots were presented in a 5° circular aperture (distance between the
monitor and the participant’s eyes was approximately 80cm). During each frame, 3 dots
were displayed. The monitor used for stimulus presentation has a refresh rate of 60 Hz.
This entails that the resulting dot density is 16.7 dots per deg2 per sec. The dot velocity
was set to 5°/sec. On each trial, the direction of the stimulus (left or right) was
determined randomly. The probability for each dot to move coherently on a given frame
was determined by the coherence parameter.

The experiment consisted of four sessions held on four different days over the span of
4 to 18 days. Each session included 600 trials, grouped into ten blocks of 60 trials. Each
block contained 10 trials for each of the six coherence levels (0, 0.032, 0.064, 0.128,
0.256, 0.512), randomly shuffled. In total, each participant completed 2400 trials, 400
for each coherence level.

Data analysis

A trial was labelled as a change-of-mind if a response trajectory deviated from the
(implicit) vertical centre line towards the unchosen option by more than 100 pixels (in
the x-direction). However, deviations which could have resulted from erratic movements
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in the early stages of response were ignored: if the threshold of 100 pixels in the
horizontal direction was crossed in the bottom 10% of the response area, the trial was
not labelled a change-of-mind. After 120 trials with more than one changes-of-mind
were excluded from all analyses, this resulted in 775 change-of-mind trials in total.

Response time was measured as the time between the stimulus offset and the
response onset. Response onset was determined as the onset of the first hand movement
resulting in a mouse cursor displacement greater than 100 pixels; therefore, small
movements resulting, e.g., from hand tremor did not affect RT measurement. In trials
where participants initiated the response before the stimulus offset, the response time
was considered to be negative. Overall, 30% of all trials had negative response time,
with 52% of all negative response times observed at two highest coherence levels.

For mixed-effects statistical models (Tables 2–3), R package lme4 was used. In all
models, random effects of participant were included to account for individual differences,
with the maximum random effects structure permitting model convergence. For testing
the hypothesis that changes-of-mind improve accuracy, the R implementation of the
exact binomial test (binom.test) was used.

A reduced neural circuit model of uncertainty

We used a simplified version of our previous neural circuit model of decision uncertainty
and change-of-mind [28], in which the dynamics of uncertainty-encoding is described
using one neural population (i.e. dynamical variable). The modelling of the
sensorimotor and motor (i.e. hand) populations was unchanged (see below). The
dynamics of the uncertainty-encoding neural population:

τmc
dyHU

dt
= [JV HU (HL +HR)− g]+ − yHU (1)

where [ ]+ denotes a threshold-linear input-output function. Synaptic coupling constant
between the uncertainty-encoding population and the sensorimotor neural populations
is denoted by JV HU . HL and HR denote the neuronal population firing rates of the
sensorimotor populations. At the beginning of a trial, some top-down inhibition is
activated (g = 1000 nA) and 600 ms after stimulus onset from. Further, g is reactivated
(with a value of 3000 nA) when the activity of one of the sensorimotor neural
populations reaches a threshold (42.5 Hz). The result is a phasic activity response of
the high uncertainty-encoding population that is reminiscent of recent neural recordings
from the prefrontal cortex and medial frontal cortex during error correction
post-decisional accumulation [10,19,22].

Uncertainty level quantification

Similar to our previous work [28], we used the maximum firing rate value of the
uncertainty neuronal as a decision uncertainty measurement. In the case of
trial-averaged measurements, we calculated the trial-averaged and SEM of these
maximal values for each coherence level. We then normalised these values using simple
scaling to bring them in the range of [0, 1]. This scaling can be described by:

X
′

=
X −Xmin

Xmax −Xmin
(2)

Classifying model outputs and change-of-mind

Response time is recorded in the model as the moment the activity of one the
sensorimotor populations reaches 42.5 Hz. In the simulation of the hand neuronal
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Parameter Description Value

τS Sensorimotor time constant 100ms
τh Motor time constant 50ms
tmc Uncertainty population time constant 150 ms
a Input-output function parameter 270 (V nC)-1

b Input-output function parameter 108 Hz
d Input-output function parameter 0.154 s
I0 External tonic input 0.3255 nA

JN, ii Self-excitation strength 0.248 nA
JN, ij Inhibition strength (sensorimotor) 0.0497 nA

µ0 Baseline stimulus input 30 Hz
JA, ext External input synaptic strength 0.00052 nA Hz-1

Jmc0 Uncertainty feedback strength 0.002
JV HU External input strength (uncertainty) 10 nA
JN,LR Inhibition strength (motor) 1 nA
JN,RL Inhibition strength (motor) 1 nA

Sth Sensorimotor module threshold 42.5 Hz
Hth Hand module threshold 17.4 Hz
GS Sensorimotor input-output gain 1.12 Hz

Table 4. Table of model parameter values. Parameters τS , a, b, d, I0, µ0, JA, ext were
directly adapted from [30]. Parameters τh , tmc , Jmc0, JN, ij , Hth were directly
adapted from [28], and parameters JV HU , JN,LR , JN,RL , GS , Sth, JN, ii were tuned to
account for the behavioural data.

population, the target is fixed at 42.5 Hz. A simulated trial is classified as a
change-of-mind if a reversal of dominance in firing rates between the two hand neuronal
population occurs. A threshold of 2 Hz was used for the absolute difference in
magnitude.

Mapping the activity of the hand neuronal populations onto the
X positional space

To reproduce the typical trial dynamics observed in our experiment, we used a simple
linear function to approximate the hand X position as a function of the neuronal firing
rate [28]. This approximation can be described as follows:

x = q(yLH − yRH) (3)

where q is some scaling factor. This scaling factor is determined as follows:

q = |Cpos|/Hth (4)

where Cpos denotes the X position of the choice target (760px). Hth is the hand target
threshold (17.4Hz).

Modelling the sensorimotor populations

We used a reduced spiking neural network model [49] described by two NMDA-mediated
synaptic gating variables (i.e. dynamical variables) [30]. These two variables can be
described by:

dSL

dt
= −SL

τs
+ (1− SL) γHL (xL , xR) (5)
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dSR

dt
= −SR

τs
+ (1− SR) γHR (xR , xL) (6)

where:
γ: A constant
τS : The synaptic gating time constant.
H : A nonlinear input-output function (see below).
The firing rates of sensorimotor neuronal populations can be described by:

Hi = GS(
axi − b

1− e−d(axi−b)
) (7)

xi = JN,iiSi − JN,ijSj + I0 + Ii + Jmc0yHU (8)

Ii = JA,ext µ0

(
1 ± ε

100%

)
(9)

where: a, b, d: Parameters for the input-output function fitted to a leaky
integrate-and-fire neuronal model [49].

I0: A constant denoting effective input bias.
c: Coherence level for a given trial.
JN, ii and JN, ij : Synaptic recurrent connections strength.
Ii: Effective stimulus input do population i.
µ0: The stimulus strength constant.
JA, ext: External synaptic coupling strength.
Jmc0: The strength of the excitatory feedback from the uncertainty-encoding

population.
GS : Input-output function gain.

Modelling the hand populations

We used a threshold linear function to model the action outputs via hand. We achieved
persistent neural activity for the hand populations via mutual inhibition to create a line
attractor model [50]. The dynamics of the two hand neuronal populations can be
described by:

τh
dyL
dt

= [HL − JN,LR yHR − g]+ − yHL (10)

τh
dyR
dt

= [HR − JN,LR yHL − g]+ − yHR (11)

where:
[ ]+: Threshold-linear input-output function.
HL and HR: Firing rates of the sensorimotor populations (see above).
JN,LR : Synaptic coupling strength between left and right neuronal populations (i.e.

effectively inhibitory connection).
g: Top-down inhibition that is deactivated when the neural activity of a

sensorimotor population reaches the response threshold.

Model simulation and analysis

The code to simulate the model (and analyse its outputs) was written in MATLAB. The
code was tested against one version of MATLAB (2018a, on a Mac OS X workstation).
The model parameters are summarised in Table 4. The model was simulated for 6000
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trials per condition, using the same task specifications outlines above (i.e. 800ms
fixed-duration). 3.4% of the trials were non-decision trials (i.e. target threshold was not
reached) and were discarded. We used XPPAUT [51] for phase-plane analysis and
parameter search. For within trial dynamics, we used a forward Euler-Maruyama
numerical integration scheme. Integration time step set to 0.5ms. Smaller time steps
did not affect our results.

Code and data availability

All code and data needed to evaluate or reproduce the figures and analysis described in
the paper are available online at: https://osf.io/y385t/. This includes the collected
data, and the code for stimulus presentation, model simulation, and data analysis.

Supporting Information Legends

S1 Appendix. Analysis of the extended drift-diffusion model.
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S1 Appendix

Analysis of the extended drift-diffusion model

In the extended drift-diffusion model (eDDM) developed in [1], the dynamics of
evidence accumulation can be described by:

dx = dt(kc+ µ0) +
√
dtσ (1)

where:
x: Dynamical (decision) variable.
c: Coherence level.
k, µ0: Free parameters that control the speed-accuracy trade-off
σ: A random variable sampled from a normal distribution, i.e. σ ∼ N (0, 1).

In the eDDM, the initial decision and decision time are determined by the
threshold B (or −B). However, after the initial decision, evidence accumulation
continues until threshold B∆ is reached for confirmation of the initial decision
or a change-of-mind. In particular, the post-decision accumulation process is
driven by late-incoming evidence (and noise fluctuations), with a change-of-
mind deadline of around 300ms. eDDM has been previously used to fit response
times (and choice accuracy) from change-of-mind trials in reaction-time tasks, in
which stimulus offset and response onset coincided [1,2]. The eDDM suggested,
consistent with the experimental data in such paradigms [1, 3], that change-of-
mind trials are most likely to occur during trials with faster response times.

To provide an insight into the eDDM predictions regarding change-of-mind
behaviour in the context of the current study, we simulated the eDDM with the
stimulus input kc+µ0 set to 0 immediately after the initial decision (using other
parameter values that are fitted to the data from Subject S in [1]). This setup
mimics the situations where no additional evidence is available after the initial
decisions. Because eDDM does not incorporate any additional assumptions
about other processes potentially inducing changes-of-mind [1], the post-decision
process in this setup is driven solely by noise fluctuations. Not surprisingly, we
found that in this setup, eDDM does not account for the observed change-
of-mind behaviour. Specifically, the majority of changes-of-mind in this case
were correct-to-error changes, with increasing frequency of changes-of-mind with
coherence level (Fig. 1a). Furthermore, the majority of change-of-mind trials at
high coherence levels had fast initial response times (Fig. 1b).
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Figure 1: Results of simulating eDDM in the scenario of stimulus discontinued
immediately after the initial decision. When the post-initiation process is driven
entirely by noise fluctuations, the majority of changes-of-mind are errors. (d)
Especially at high coherence levels (i.e. ≥ 0.256), the majority of changes-of-
mind occur in trials with fast initial response times (i.e., the first RT tertile).
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