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Abstract  23 

Recent studies have revealed that many cellular mRNAs contain the modified base m6A and have 24 

suggested that various stimuli can lead to changes in m6A. The most common method to map m6A and to 25 

predict changes in m6A between conditions is methylated RNA immunoprecipitation sequencing (MeRIP-26 

seq), through which methylated regions are detected as peaks in transcript coverage from 27 

immunoprecipitated RNA relative to input RNA. Here, we generated replicate controls and reanalyzed 28 

published MeRIP-seq data to estimate reproducibility across experiments. We found that m6A peak 29 

overlap in mRNAs varies from ~30 to 60% between studies, even in the same cell type. We then 30 

assessed statistical methods to detect changes in m6A peaks as distinct from changes in gene 31 

expression. However, we detected few changes under most conditions and were unable to detect 32 

consistent changes across studies using similar stimuli. Overall, our work identifies limits to MeRIP-seq 33 

reproducibility in the detection both of peaks and of peak changes and proposes improved approaches for 34 

analysis of peak changes. 35 
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Introduction 37 

Methylation at the N6 position in adenosine (m6A) is the most common internal modification in 38 

eukaryotic mRNA. A methyltransferase complex composed of METTL3, METTL14, WTAP, VIRMA, and 39 

other cofactors catalyzes methylation at DRACH/DRAC motifs, primarily in the last exon (1,2). Most m6A 40 

methylation occurs during transcription (3). The modification then affects mRNA metabolism through 41 

recognition by RNA-binding proteins that regulate processes including translation and mRNA degradation 42 

(4–9). However, whether m6A is lost and gained in response to various physiological changes remains 43 

contentious (3,10–15). To assess the evidence for proposed dynamic changes in m6A, a reliable and 44 

reproducible method to detect changes in methylation as distinct from changes in gene expression is 45 

necessary.  46 

 The first and most widely-used method to enable transcriptome-wide studies of m6A, MeRIP-seq 47 

or m6A-seq, involves the immunoprecipitation of m6A-modified RNA fragments followed by peak detection 48 

through comparison to background gene coverage (16,17). A second method has since been developed, 49 

miCLIP or m6A-CLIP, which involves crosslinking at the site of antibody binding to induce mutations 50 

during reverse transcription for single-nucleotide detection of methylated bases (2,18). MeRIP-seq is still 51 

more often used than miCLIP, despite less precise localization of m6A to peak regions of approximately 52 

50-200 base pairs that can contain multiple DRAC motifs, since it follows a simpler protocol, requires less 53 

starting material, and generally produces higher coverage of more transcripts. Antibodies for m6A can 54 

also detect a second base modification, N6,2′-O-dimethyladenosine (m6Am), found at a lower abundance 55 

than m6A and located at the 5′ ends of select transcripts (15,18). We thus refer to the base modifications 56 

detected through MeRIP-seq collectively as m6A(m), although most are likely m6A. As of late 2018, over 57 

fifty studies have used MeRIP-seq to detect m6A(m) in mammalian mRNA (Supplementary Table 1).  58 

 Although MeRIP-seq can reveal approximate sites of m6A(m), it cannot be used to quantitatively 59 

measure the fraction of transcript copies that are methylated (19). Therefore, studies of m6A variation in 60 

response to stimuli estimate differences at individual loci through changes in peak presence or peak 61 

height. Using these approaches, studies have reported changes to m6A with heat shock, microRNA 62 

expression, transcription factor expression, cancer, oxidative stress, human immunodeficiency virus (HIV) 63 

infection, Kaposi’s sarcoma herpesvirus (KSHV) infection, and Zika virus infection, including hundreds to 64 

thousands of changes in enrichment at specific sites (20–29). Statistical approaches to analysis have only 65 

recently been published and there have been no comprehensive evaluations of methods to detect 66 

changes in m6A based on MeRIP-seq data (30,31). Thus, while these studies could suggest that m6A is 67 

highly variable in response to diverse stimuli, they have applied inconsistent analysis methods to detect 68 

changes in m6A and often don’t control for differences in RNA expression or typical variability in peak 69 

heights between replicates. In some cases, these studies have reported m6A changes based on simple 70 

differences in peak count (24,26,27,32). However, others have applied statistical tests or thresholds for 71 

differences in immunoprecipitated (IP) over input fraction enrichment and visual analysis of coverage 72 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/657130doi: bioRxiv preprint 

https://doi.org/10.1101/657130
http://creativecommons.org/licenses/by/4.0/


	 	 	
	

 	 	
	

3 

plots, and have reported fewer m6A changes or suggested that m6A is a relatively stable mark (33,34). 73 

Since there is noise in MeRIP-seq, multiple replicates are necessary to estimate variance and statistically 74 

identify the effects of experimental intervention, as in RNA-seq (35–37). However, only one MeRIP-seq 75 

study to date has used more than three replicates per condition (34), while ten have used only one 76 

(17,20,32,33,38–43), suggesting that most studies may not have enough power to detect changes in 77 

m6A(m).  78 

To re-evaluate the evidence for m6A(m) changes under various conditions, we first examined the 79 

variability in m6A(m) detection across replicates, cell lines, and experiments using our own negative 80 

controls (12 replicates) as well as 24 published MeRIP-seq data sets. We then defined appropriate 81 

statistical methods to detect differences in IP enrichment using biological negative and positive controls 82 

for m6A changes. We found that these methods are limited by noise, including biological variability from 83 

changes in RNA expression and technical variability from immunoprecipitation and sequencing that limits 84 

reproducibility across studies. Our results suggest that the scale of statistically detectable m6A(m) changes 85 

in response to various stimuli is orders of magnitude lower than the scale of changes reported in many 86 

studies. However, we also found that the majority of sites could be missed when using only 2-3 replicates. 87 

We use our results to propose approaches to MeRIP-seq experimental design and analysis to improve 88 

reproducibility and more accurately measure differential regulation of m6A(m) in response to stimuli. These 89 

data emphasize the need for further research and alternative assays, for example recently developed 90 

endoribonuclease-based methods (44,45) or direct RNA nanopore sequencing (46), to resolve the extent 91 

to which m6A changes in response to specific conditions.   92 

 93 

Results 94 

 95 

Detection of peaks across replicates, experiments, and cell types 96 

 The first steps in MeRIP-seq data analysis are to align sequencing reads to the genome or 97 

transcriptome of origin and to identify peaks in transcript coverage in the IP fraction relative to the input 98 

control. Several methods have been developed for MeRIP-seq peak detection, including exomePeak, 99 

MeTPeak, MeTDiff, and bespoke scripts. Another method often used for MeRIP-seq peak detection is 100 

MACS2, which was originally designed to detect protein binding sites in DNA from chromatin 101 

immunoprecipitation sequencing (ChIP-seq). We compared m6A(m) peak detection by exomePeak, 102 

MeTPeak, MeTDiff, and MACS2 (31,47–49) in seven replicates of MeRIP-seq data obtained from mouse 103 

cortices under basal conditions (34), and in 12 replicates of MeRIP-seq data we generated from human 104 

liver Huh7 cells. The intersect between all tools tested was high and we saw minimal differences in DRAC 105 

motif enrichment (Supplementary Figure 1a). Since MACS2 is the most commonly used tool and was 106 

previously used to compare MeRIP-seq experimental methods (42), we used MACS2 for the remainder of 107 

our analyses.  108 
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We next defined the threshold of detection for peaks in MeRIP-seq data in terms of coverage. For 109 

m6A(m) peak detection, a transcript must be sufficiently expressed for enrichment by m6A(m) antibody and 110 

adequate sequencing coverage in both the IP and input fractions. Because previous reports have 111 

suggested that m6A(m) presence does not decrease with expression level (9), we assume that the 112 

detection of fewer peaks as read counts at a gene or peak decrease indicates inadequate coverage. To 113 

estimate the level of coverage necessary for peak detection, we analyzed the percent of genes with at 114 

least one, two, or three peaks relative to mean input transcript coverage in both the mouse cortex and 115 

Huh7 cell data (Figure 1a). Based on the upper shoulders of the sigmoidal curves as the percent of 116 

genes with peaks begins to plateau, we estimate that gene coverage of approximately 10-50X is 117 

necessary to avoid missing peaks based on insufficient coverage. Input RNA-seq coverage of peak 118 

regions alone supports a similar threshold; few peaks are detected with median input read counts below 119 

10 across replicates (Supplementary Figure 1b). 120 

 To evaluate the reproducibility of MeRIP-seq data, we next examined the consistency of m6A(m) 121 

peak calling between replicates. Previous studies have reported that peak overlap between replicates is 122 

approximately 80% (9,16,50,51). Similarly, we found that between two replicates, log2 enrichment of IP 123 

over input reads at detected peaks showed a Pearson correlation of approximately 0.8 to 0.86 124 

(Supplementary Figure 1c, top). A single replicate captured a median of 78% of the peaks found in 125 

seven replicates of mouse cortex data and 67% of peaks found in twelve replicates of Huh7 cell data. The 126 

number of detected peaks increased log-linearly with the addition of more replicates, such that with three 127 

replicates, 84-92% of the peaks found with 7-12 replicates were detected (Figure 1b, top). Conversely, 128 

the number of peaks in common across replicates decreased as the number of replicates increased, such 129 

that while ~80% of peaks were detected in at least two replicates, only ~60% were detected in six 130 

replicates for both data sets and ~30% in all twelve replicates of Huh7 cell data (Figure 1b, bottom). 131 

Detection of peaks in more replicates did not increase DRAC motif enrichment (Supplementary Figure 132 

1c, bottom). These results suggest that many m6A(m) sites may be missed in studies that use one to three 133 

replicates, and that increasing replicates could enable detection of more peaks. However, not all peaks 134 

correspond to true m6A(m) sites. A recent reanalysis found that at least one published data set lacked 135 

enrichment for the canonical DRAC motif under MeRIP-seq peaks, suggesting a high ratio of false to true 136 

positives (3).  137 
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The number of peaks detected across studies varies. Given that coverage affects peak detection, 138 

we hypothesized that variation in sequencing depth could contribute to differences in peak count. Zeng et 139 

al. (2018) reported that peak count begins to saturate by around 20 million reads by subsampling data 140 
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Figure 1: Thresholds and reproducibility of peak detection. a) m6A(m) site detection in MeRIP-seq data from mouse cortex (left) and 
human liver cells (Huh7, right) shows saturation of peak detection as transcript coverage approaches 10-50X for replicates at basal 
conditions, with peaks merged from all replicates. b) The total number of peaks captured increases with more replicates, with single 
replicates capturing a median of 67-79% of total peaks depending on study. Boxes span the 1st to 3rd quartiles of distributions for random 
subsamples of replicates, with lines indicating the median number of peaks, and whiskers showing the minimum and maximum points 
within ±1.5x the interquartile distance from the boxes. Jittered points show results for each random subsample (a total of 6 subsamples 
per replicate number for the mouse cortex data and 12 for the Huh7 data). c) Peak detection between studies that used the same cell type 
shows variable overlap. Overlap was calculated as the percent of peaks detected in Experiment 1 with an overlap of ≥ 1 base pair with 
peaks from Experiment 2. d) Peak detection across tissue and cell types shows samples from the same study cluster better together than 
samples from the same tissue. Studies used in (c) and (d) are described in Supplementary Table 2.  
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within individual studies(42). However, we found that there is no positive correlation between peak count 141 

and input or IP sequencing depth across data sets from different published studies, each of which had 3-142 

81M reads per replicate (input Pearson’s R = -0.37, p = 0.015; IP Pearson’s R = -0.18, p = 0.24) 143 

(Supplementary Table 2, Supplementary Figure 1d). This implies that other experimental factors 144 

contribute to the variability of peak counts across studies. 145 

 We next analyzed the overlap of peaks among studies and found similar inconsistency in peak 146 

localization on transcripts. Within four commonly used cell types, the percent of peaks detected in one 147 

experiment that were also detected in a second varied among pairs of studies from as low as 2% of peaks 148 

to as high as 90%, filtering for transcripts expressed above a mean of 10X input coverage in both (Figure 149 

1c, there were insufficient shared transcripts at 50X for most combinations to use that threshold). In fact, 150 

peaks showed higher overlap within different cell types from the same study than within the same cell 151 

type from different studies, suggesting that MeRIP-seq data is prone to strong batch effects (Figure 1d). 152 

We were unable to identify a link between peaks called and differences among experimental protocols 153 

used (summarized in Supplementary Table 2). Overall, most percent overlaps of m6A(m) peaks fell 154 

between ~30% (1st quartile) and ~60% (3rd quartile). These results thus suggest that multiple labs running 155 

MeRIP-seq on the same cell type will not detect the same m6A(m) sites.  156 

 157 

Detection of changes in peaks between conditions 158 

Following m6A(m) peak detection, many studies seek to compare the expression of peaks between 159 

two conditions. Looking at plots of IP and input gene coverage under different conditions can help 160 

evaluate the evidence for peak changes (33), however, statistical or heuristic methods are necessary to 161 

narrow down a list of candidate sites to plot. Several tools used for statistical analysis by the studies in 162 

Supplementary Table 1 or for other types of RNA IP sequencing assays model peak counts using either 163 

(a) the Poisson distribution, in which the variance of a measure (here, read counts) is assumed to be 164 

equal to the mean (MeTDiff), or (b) the negative binomial distribution, in which a second parameter allows 165 

for independent adjustment of mean and variance (QNB and two implementations of a generalized linear 166 

model approach using DESeq2 or edgeR, Table 1) (30,31,52–54). In the mouse cortex and Huh7 cell 167 

data, we found that, similar to RNA-seq data (24,53,55), the variance in read counts under peaks 168 

exceeded their mean, indicative of overdispersion (Supplementary Figure 2a). The log likelihood (the 169 

probability of an observation given a distribution with known parameters) for our sample also fell within 170 

the distribution of expected log likelihoods for the negative binomial distribution (bottom) but not the 171 

Poisson distribution (top) (Figure 2a). Thus, the negative binomial distribution captures the mean-172 

variance relationship in MeRIP-seq data, suggesting that tools that account for overdispersion better 173 

model the distribution of read counts at m6A(m) peaks than tools that do not.  174 

 175 

 176 
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Table 1: Statistical methods for the detection of peak changes 177 

Method Read count distribution Publication 

MeTDiff Poisson Cui et al. (2018) 

Quad-negative binomial (QNB) Negative binomial Liu et al. (2017) 

GLM (DESeq2) Negative binomial based on Park et al. (2014) 

method for HITS-CLIP GLM (edgeR) Negative binomial 
 178 

We next defined positive and negative controls to evaluate tool performance for detection of 179 

changes in m6A(m) peaks. Past evaluations of methods have used data sets in which methylation 180 

machinery genes or the methyl donor were disrupted compared to baseline conditions as positive 181 

controls, and have simulated negative controls by randomly swapping labels in the positive controls 182 

(30,31). However, swapping labels for conditions that may feature differences in gene expression in 183 

addition to m6A levels could unrealistically increase variance in read counts within groups. Therefore, we 184 

instead used the two data sets from mouse cortex and Huh7 cells, which each comprised many replicates 185 

at baseline conditions (n=7 and n=12, respectively), as negative controls. We randomly divided the 186 

mouse cortex data into two groups of three replicates for comparison and divided the Huh7 replicates by 187 

lab of incubation, which did not affect sample clustering (Supplementary Figure 2b). We would expect to 188 

see minimal changes in IP enrichment at m6A peaks between groups for our negative controls, whereas 189 

our positive controls, which featured genetic or chemical interference with the m6A machinery, should 190 

show discernible differences in peaks (summarized in Supplementary Table 3).  191 

When we compared the negative and positive controls, we found that the percent of peak 192 

changes called below a p-value threshold of 0.05 were similar (Figure 2b). With all tools except MeTDiff, 193 

a knockout of Mettl3 showed the largest effects on m6A (56), while fewer significant peaks in other 194 

positive controls suggested variable effects of the positive control conditions on m6A(m), possibly related to 195 

knockdown or overexpression efficiency (7,33,57–61). In the absence of true differences between groups, 196 

p-value distributions should be uniform for well-calibrated statistical tests, meaning that ~5% of peaks 197 

should have p-values < 0.05 for the negative controls. MeTDiff reported an excess number of sites with p-198 

values below 0.05 (Supplementary Figure 2c) and identified a higher percentage of sites as differentially 199 

methylated in the mouse cortex negative control data set than in all but two positive controls (Figure 2b). 200 

By contrast, the generalized linear models (GLMs) and QNB showed uniform to conservatively shifted p-201 

value distributions, with differences between the mouse cortex and Huh7 data sets (Supplementary 202 

Figure 2c), suggesting fewer false positives than MeTDiff.  203 

 204 

 205 

 206 
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To ensure significant peaks detected by each of the tools reflected changes in IP enrichment 207 

independent of differential gene expression, we measured the correlation between changes in IP read 208 

counts at peak sites and changes in input read counts across their encompassing genes. For significant 209 

peaks (FDR-adjusted p-value < 0.05) from the positive controls, correlation between log2 fold change in 210 
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Figure 2: Analysis of methods to detect peak changes disproportional to gene expression changes. a) A comparison 
of Poisson (above) and negative binomial (below) models for read counts under peaks. The negative binomial mean log 
likelihood of the sample data fell within the 63rd and 91st percentiles of 500 simulations for mouse cortex and Huh7 cell data, 
respectively, while the Poisson model failed to capture the sample distributions. b) The percent of sites below an unadjusted p-
value threshold of 0.05 for different methods (described in Table 1) to detect differential methylation in negative controls 
between two groups at baseline conditions and positive controls in which methylation processes were disrupted with respect to 
baseline conditions (Supplementary Table 3). The line at 5% indicates the expected proportion of sites given a uniform p-
value distribution (see Supplementary Figure 2c), while colours indicate negative (orange) and positive (purple) control 
experiments. c) The correlation between change in gene expression and change in peak expression between conditions for 
sites identified as differentially methylated in the eight positive control experiments. Pearson’s R = 0.22, 0.20, 0.53, and 0.19 
for edgeR, DESeq2, MeTDiff, and QNB, respectively, with p = 7.0E-4, 0.10, 1.1E-71, and 2.9E-21. d) Coverage plots showing 
changes in peak expression are proportional to changes in gene expression for genes identified using MeTDiff as less 

methylated after two hours of treatment using an activin-NODAL inhibitor, SB431542 (SB), than with incubation in the presence 
of activin by Bertero et al. (2018). Lines show the mean coverage across three replicates, while shading shows the standard 
deviation. Peaks detected as significantly changed are highlighted in yellow. Coding sequences are shown in grey. e) The 
intersect and union of peaks with p < 0.05 from DESeq2, edgeR, and QNB from (b), coloured as in (b). 
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peak IP and gene input read counts was low for the GLMs and QNB (Pearson’s R = 0.18 to 0.21, 2.9E-21 211 

< p < 0.1) but reached 0.53 (p = 2.3E-74) for MeTDiff (Figure 2c). The higher correlation for MeTDiff was 212 

driven by peaks with proportional changes in IP and input levels, which suggests that MeTDiff often 213 

detects differential expression of methylated genes rather than differential methylation and is therefore of 214 

relevance for published studies that have used MeTDiff (22,62). Plotting coverage for genes reported as 215 

differentially methylated in one of these studies with the y-axis scaled separately per condition confirmed 216 

that changes in m6A identified by MeTDiff were proportional to changes in gene expression (Figure 2d) 217 

(22). Given these results, QNB or the GLM implementations are better methods than MeTDiff to detect 218 

differential methylation. Taking the intersect of significant peaks for the GLMs and QNB may help 219 

determine the most probable sites, while taking the union of predictions provides a less conservative 220 

approach to selecting sites for further validation (Figure 2e). However, there were still significant peaks 221 

for which the difference between peak log2 fold change and gene log2 fold change was close to zero, 222 

particularly with QNB (Supplementary Figure 2d). For the remainder of our analyses, we therefore 223 

added a filter to the combined predictions from QNB and the two GLMs for difference in peak and gene 224 

log2 fold change ≥ 1, with an additional filter where noted for peak read counts ≥ 10 across all replicates 225 

and conditions to ensure sufficient coverage for peak detection.  226 

 227 

Reanalyzing peak changes between conditions 228 

 We next estimated the scale of statistically detectable peak changes under various conditions 229 

using our approaches and compared these results to previously reported estimates of these changes 230 

(Figure 3a, Supplementary Table 4). We identified fewer peaks as differentially methylated than 231 

originally reported under most conditions, with zero to hundreds of peaks significantly changed 232 

(depending on experiment and method), versus hundreds to over ten thousand described in publications 233 

(22–26,34,59,62–66). Notably, knockdown of Zc3h13 did appear to disrupt m6A(m), suggesting the gene 234 

does participate in methylation as recently suggested (64). Another study reported that activin treatment 235 

of human pluripotent stem cells led to differential methylation of genes that encode pluripotency factors 236 

(22). However, our reanalysis found few peak changes that passed our filters for significance, fold 237 

change, and expression (minimum input read count across peaks ≥ 10) and no enrichment for 238 

pluripotency factors among affected genes. Without the thresholds for fold change and expression, the 239 

adjusted p-value for enrichment of the KEGG pathway “signaling pathways regulating pluripotency of 240 

stem cells” dropped to 0.15 based on three genes, LEFTY2, FZD28, and FGFR3 (Supplementary 241 

Figure 3a). Interestingly, the minimum read threshold made a particularly dramatic difference in the case 242 

of a recent study that looked at the effects of knocking down the histone methyltransferase SETD2 on 243 

m6A in mRNA, with 2064/2065 sites predicted by QNB falling below that threshold due to low input 244 

coverage in the first and second replicates (Supplementary Figure 3b-e) (65). We could not compare 245 

our approach to results reported by Su et al. (2018), who found 6,024 peaks changed with R2HG 246 
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treatment, Zeng et al. (2018), who found 465-599 peaks changed between tumour samples, or Ma et al. 247 

(2018), who found 12,452 peaks were gained and 11,192 lost between P7 and P20 mouse cerebella, as 248 

each relied on a single replicate per condition (40–42).  249 

Multiple studies have investigated m6A(m) in the context of heat shock, HIV infection, KSHV 250 

infection, and dsDNA treatment or human cytomegalovirus (HCMV) infection (Supplementary Table 5). 251 

Since each step in MeRIP-seq analysis risks introducing false negatives, we cannot rule out consistent 252 

changes between studies that used similar experimental interventions based on statistical detection 253 

alone. Therefore, we plotted coverage for specific genes reported as differentially methylated to evaluate 254 

reproducibility across these studies. Zhou, et al. (2015) reported 5′ UTR methylation of Hspa1a with heat 255 

shock (20). Coverage was too low for untreated controls to determine if Hspa1a was newly methylated or 256 

newly expressed with heat shock based on our alignment of their data using STAR (67). We were also 257 

unable to detect a change in methylation of HSPA1A using data from other heat shock studies, including 258 

a new data set from a B-cell lymphoma cell line and a published miCLIP data set, although coverage was 259 

again low (Figure 3b) (4). Lichinchi, et al. (2016) reported that 56 genes showed increased methylation 260 

with HIV infection in MT4 T-cells, with enrichment for genes involved in viral gene expression (25). 261 

Specific genes, for example PSIP1, in which we also detected a peak using MACS2 and see a change in 262 

the peak when plotting coverage using the data from Lichinchi et al. (2016), did not show the same 263 

changes in data from two other CD4+ cell types, primary CD4+ cells and Jurkat cells (Figure 3c) (68). Two 264 

other studies both used MeRIP-seq to detect m6A in IFNB1 induced through dsDNA treatment or infection 265 

by the dsDNA virus HCMV (69,70). The different treatments, time points and use of a fibroblast cell line 266 

versus primary foreskin fibroblasts make it difficult to compare m6A(m) changes between the two 267 

experiments. Nevertheless, using QNB and the GLM approaches, we found five peaks in three genes 268 

(AKAP8, SUN2, and TMEM140) that showed significant changes both after 12 h of dsDNA treatment 269 

compared to untreated controls (69) and after 6 h post-HCMV infection compared to 72 h, when interferon 270 

levels have declined (70) (Figure 3d). Overall, we were unable to detect the same changes in m6A(m) 271 

across studies of heat shock or HIV and few common changes in the response to dsDNA, but cell line-272 

specific differences in m6A(m) regulation and differences in experimental protocols could account for some 273 

of the variability among these studies.  274 

While we did not have MeRIP-seq data for two studies from exactly the same conditions and cell 275 

lines to compare, two studies both used cell lines derived from iSLK to study the effects of KSHV on host 276 

m6A (27,28). Both suggested that KSHV infection could decrease the number of m6A sites in host 277 

transcripts. Hesser et al. (2018) found that lytic KSHV infection decreased the number of peaks on host 278 

transcripts by >25%; Tan et al. (2018) suggested a loss of 17-59% of peaks in two different cell types, but 279 

that m6A(m) peak fold enrichment showed better clustering by cell type than by infection status. Neither 280 

discussed specific genes that showed differential methylation with lytic infection. For our comparison of 281 

m6A(m) peak changes in these data sets, we identified probable changes in peaks based on statistical 282 
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significance using QNB or the GLMs with log2 fold change difference between peaks and genes of ≥1. We 283 

detected 80 peak changes in the data from Hesser et al. (2018) and 18 in the data from Tan et al. (2018) 284 

but found no peaks that changed in both iSLK data sets with lytic KSHV infection.   285 
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Figure 3: Changes in peaks between conditions. a) Detected m6A(m) changes in ten published data sets that measured 
m6A(m) peak changes between two conditions (Supplementary Table 4). The number of peaks detected as changed in the 
original published analyses are compared to the number of peaks with FDR-adjusted p-values < 0.05 in our reanalysis using 
DESeq2, edgeR, or QNB, and taking the union of results from these three tools with additional filters for log2 fold difference in 
peak and gene changes of ≥1 and peak read counts ≥10 across all replicates and conditions (“filtered”). b) Gene coverage 
plots for Hspa1a in mouse embryonic fibroblasts (MEFs) and HSPA1A in human cells (HepG2 and BCL) before and after heat 
shock. Input coverage is shown in black and IP coverage in raspberry, with putative m6A peaks changed highlighted in yellow 
and marked by arrows. miCLIP coverage for an experiment in HepG2 cells is shown in orange. c) Coverage plots for PSIP1, 
which was reported to have a change in 5′ UTR m6A with HIV infection by Lichinchi et al (2016). d) Coverage plots for SUN2, 
in which we detected changes in m6A with HCMV infection and dsDNA treatment suggesting a possible increase in methylation 
under higher interferon conditions. Lines in coverage plots (b-d) show the mean across all replicates for each experiment, 
while shading shows the standard deviation. Coding sequences are shown in grey. 
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MeRIP-RT-qPCR validation 287 

Although statistical approaches revealed fewer changes in m6A(m) with various stimuli than 288 

published estimates, and we were unable to confirm changes in m6A(m) methylation of specific genes 289 

across studies of similar conditions, many of the studies we looked at do include additional validation of 290 

m6A(m) changes from MeRIP-seq using MeRIP-RT-qPCR. Recently it was shown that MeRIP-RT-qPCR 291 

can capture differences in m6A:A ratios at specific sites (34), but it is unknown how MeRIP-RT-qPCR is 292 

affected by changes in gene expression. To test this, we ran MeRIP-RT-qPCR on in vitro transcribed RNA 293 

oligonucleotides that lacked or contained m6A spiked into total RNA extracted from Huh7 cells 294 

(Supplementary Table 6). We found that MeRIP-RT-qPCR was able to detect the direction of change in 295 

m6A levels at different spike-in concentrations (Figure 4a-b). However, technical variation could also lead 296 

to spuriously significant differences between two dilutions of in vitro controls with the same ratio of m6A:A. 297 

For example, a comparison of m6A enrichment between 30% methylated spike-ins at 0.1 fmol and 1 fmol 298 

returned a p-value of 0.004 (unpaired Student’s t-test).  299 

We next assessed the correlation between m6A enrichment observed using MeRIP-seq and 300 

MeRIP-RT-qPCR using data from our recent work on changes in m6A in Huh7 cells following infection by 301 

different viruses. For those experiments, we again selected peaks that change based on results from 302 

QNB and the GLM approaches. We found that the magnitude of changes in common among viruses 303 

correlated between MeRIP-seq and MeRIP-RT-qPCR, both across peaks (Pearson’s R = 0.57, p = 3.7E-304 

6) and within single peaks across viruses (13 out of 19 peaks showed positive correlations, four of which 305 

had p-values < 0.05 with three data points) (Figure 4c, Supplementary Figure 4). Given the correlation 306 

we found between MeRIP-seq and MeRIP-RT-qPCR, it is unclear why changes in IP over input 307 

sequencing reads are undetectable at the peaks reported by Bertero et al. (2018) and Huang et al. (2019) 308 

but differences in peaks were successfully validated using MeRIP-RT-qPCR (22,65). While MeRIP-RT-309 

qPCR can be used as an initial method of validation for predicted peak changes, additional methods are 310 

necessary to confirm quantitative differences in m6A levels and to resolve points where the assays do not 311 

agree.  312 
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We next used our peaks validated using MeRIP-RT-qPCR to estimate the number of replicates 313 

necessary for detection of changes with either the GLM or QNB methods. Using a permutation test, we 314 

downsampled infected and uninfected replicates and reran statistical detection of changes. We found that 315 

approximately 6-9 replicates were necessary for consistent detection (in at least 50% of subsamples) of 316 
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Figure 4: MeRIP-RT-qPCR validation and replicates necessary for the detection of peak changes. a) Relative 
enrichment of the indicated amounts of an in vitro transcribed standard containing unmodified A or m6A, as measured by 
MeRIP-RT-qPCR. Data are shown for two independent replicates of three technical replicates each as IP enrichment over 
input relative to pulldown of a positive control spike-in, with the 0.1 fmol (0.01 m6A: 0.09 A) sample normalized to 1. Bars 
represent mean ± SEM of two independent replicates. *** p ≤ 0.005 by unpaired Student’s t-test. b) Linear regression of 
relative m6A enrichment from (a). Points and error bars mark mean ± SEM of two independent replicates. c) Change in 
MeRIP-RT-qPCR vs. MeRIP-seq enrichment for peaks detected as significantly differentially expressed with infection of Huh7 
cells by dengue virus, Zika virus, and hepatitis C virus. d) Number of replicates of infected vs. uninfected cells needed to 
detect the peaks in (c). Replicates were randomly subsampled 10 times to calculate the fraction of subsamples in which 
peaks were called as significant by the GLMs or QNB.  Boxes span the 1st to 3rd quartiles, with medians indicated. Whiskers 
show the minimum and maximum points within ±1.5x the interquartile distance from the boxes. Results for each subsample of 
replicates are shown as jittered points. 
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most peak changes (Figure 4d), suggesting that almost all published MeRIP-seq studies to date are 317 

underpowered.  318 

 319 

Discussion 320 

In the seven years since MeRIP-/m6A-seq was first published (16,17), many studies have used 321 

these methods to examine the function of m6A, its distribution along mRNA transcripts, and how it might 322 

be regulated under various conditions. While 35 out of 64 MeRIP- and miCLIP-seq papers we surveyed 323 

(Supplementary Table 1) refer to m6A as “dynamic”, and, by contrast, only two describe the modification 324 

as “static”, the literature is unclear on what is meant by the word “dynamic”. There is mixed evidence as to 325 

whether m6A is reversible through demethylation by FTO and ALKBH5 (66,71–73). While m6A does not 326 

appear to change over the course of an mRNA’s lifetime at steady-state (3), whether it changes in 327 

response to a particular stimulus and at what point is less clear. Some studies have suggested that m6A 328 

may be modulated through changes in methyltransferase and demethylase expression, producing 329 

consistent directions of change across transcripts (8,23,34), through alternative mechanisms involving 330 

microRNA, transcription factors, promoters, or histone marks (21,22,62,65,74), or through indeterminate 331 

mechanisms (17,20,25–28,50). However, based on our reanalysis of available MeRIP-seq data, there is 332 

still only meagre support for widespread changes in m6A independent of changes in the expression of 333 

methylation machinery (e.g. increases or decreases in METTL3 expression). 334 

In particular, replication of peaks and changes in peaks across studies is limited. As with other 335 

RNA IP-based methods, MeRIP-seq data contains noise, owing to technical and biological variation (75). 336 

In fact, while peak overlaps reach ~80% between replicates of the same study, they decrease to a median 337 

of 45% between studies, most of which use 2-3 replicates each (Figure 1). Given that the detection of 338 

peaks is so variable and that peak heights differ among replicates, it is perhaps not surprising that peak 339 

changes have yet to be reproduced between multiple studies of similar conditions. Indeed, variability in 340 

MeRIP-seq could also mask differences in m6A regulation among cell types, which have been described 341 

in mouse brains (34) and in cell lines exposed to KSHV (28). To distinguish biological and technical 342 

variation, it will therefore be particularly important to test if multiple groups using the same cell line and 343 

conditions can better reproduce changes in m6A.  344 

Disparities in the methods used to detect changes in m6A(m) peaks also play a role in differing 345 

conclusions among studies. Here, we analyzed four statistical methods to detect changes in peaks and 346 

found that three of these methods showed uniform or conservatively shifted p-value distributions and were 347 

able to identify changes in m6A(m) independent of changes in gene expression. We therefore suggest that 348 

these statistical methods, in combination with filters for input levels in both conditions and the difference in 349 

log2 fold change between peaks and genes, can be used to identify candidate m6A(m) sites from MeRIP-350 

seq data for further analysis and validation (Figure 5). Based on our results, we do not recommend 351 

MeTDiff for the detection of peak changes as it does not control well for differences in gene expression 352 
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(Figure 2). Similar to others (33), we found that plotting predicted m6A changes was invaluable with 353 

appropriate scaling for gene coverage to reveal changes proportional to gene expression. In addition, 354 

plotting the standard deviation in transcript coverage can help assess typical variation in peak height 355 

among replicates. We note that both differential methylation of a gene and methylation of a gene that is 356 

differentially expressed could be important, but they should not be conflated when considering the role of 357 

m6A in transcript regulation. 358 

 359 

The extent to which m6A changes on particular transcripts and whether it changes in binary 360 

presence/absence or in degree is unclear. Although we found that MeRIP-RT-qPCR could detect 361 

differences in in vitro transcribed RNA methylation and that these changes correlated with differences in 362 

MeRIP-seq enrichment, neither MeRIP-seq nor MeRIP-RT-qPCR can reveal the precise fraction of 363 

transcript copies modified by m6A. In general, antibody-based methods are subject to biases, including 364 

from differences in binding efficiencies based on RNA structure and motif preferences (76). There is an 365 

oft-cited but little used antibody-independent method for site-specific quantification of m6A, site-specific 366 

cleavage and radioactive-labeling followed by ligation-assisted extraction and thin-layer chromatography 367 

(SCARLET) (19). However, methods that can directly detect and quantify m6A over the transcriptome are 368 

still needed (e.g. direct RNA sequencing, which has not yet been shown to accurately detect m6A across 369 

a cellular transcriptome (46)). A recently developed endoribonuclease-based approach is promising but 370 

limited to sites within DRAC motifs ending in ACA, which comprise only a third of known m6A sites 371 

Align reads to genome

Call peaks

(MACS2, exomePeak, 

MeTPeak, MeTDiff)

edgeR GLMDESeq2 GLM QNB

Consider all significant

results (adjusted p < 0.05)

Filter for |peak IP log2FC - gene 

input log2FC| ≥ 1

(and for peak read count ≥ 10)

Plot gene IP and input 

coverage, 

while scaling for differences in 

expression between conditions

Figure 5: Proposed approach to identify 

candidates for m6A(m) changes for further 

validation using MeRIP-seq data. 
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(44,45). Thus, endoribonuclease digestion specific to unmodified strands may enable quantitative 372 

analyses of changes in m6A:A ratios at ACA motif sites (44), but for now, site-specific SCARLET is the 373 

only option to biochemically validate proposed changes in m6A at other motifs.  374 

 375 

Conclusions 376 

Our work reveals the limits of MeRIP-seq reproducibility for the detection of m6A(m) and in 377 

particular suggests caution when using MeRIP-seq for the detection of changes in m6A(m). To increase 378 

confidence in predicted changes in m6A(m), we propose statistical approaches that account for differences 379 

in gene expression between conditions and variability among replicates. These methods can be used to 380 

gain insight into the regulation and function of m6A(m) and to predict specific sites for validation before the 381 

development of high-throughput alternatives to MeRIP-seq, and similar strategies may be applicable to 382 

other types of RNA sequencing assay. 383 

 384 

Methods 385 

New MeRIP-seq data 386 

- Huh7 data 387 

Total RNA was extracted from Huh7 cells using Trizol (Thermo-Fisher). mRNA was purified from 200 μg 388 

total RNA using the Dynabeads mRNA purification kit (Thermo-Fisher) and concentrated by ethanol 389 

precipitation. Purified mRNA was fragmented using the RNA Fragmentation Reagent (Thermo-Fisher) for 390 

15 minutes followed by ethanol precipitation. Then, MeRIP was performed using EpiMark N6-391 

methyladenosine Enrichment kit (NEB). 25 μL Protein G Dynabeads (Thermo-Fisher) per sample were 392 

washed three times in MeRIP buffer (150 mM NaCl, 10 mM Tris-HCl, pH 7.5, 0.1% NP-40) and incubated 393 

with 1 μL anti-m6A antibody (NEB) for 2 hours at 4°C with rotation. After washing three times, anti-m6A 394 

conjugated beads were incubated with purified mRNA with rotation at 4°C overnight in 300 μL MeRIP 395 

buffer with 1 μL RNAse inhibitor (recombinant RNasein; Promega). Beads were then washed twice with 396 

500 μL MeRIP buffer, twice with low salt wash buffer (50 mM NaCl, 10 mM Tris-HCl, pH 7.5, 0.1% NP-397 

40), twice with high salt wash buffer (500 mM NaCl, 10 mM Tris-HCl, pH 7.5, 0.1% NP-40), and once 398 

again with MeRIP buffer. m6A-modified RNA was eluted twice in 100 μL MeRIP buffer containing 5mM 399 

m6A salt (Santa Cruz Biotechnology) for 30 minutes at 4°C with rotation and concentrated by ethanol 400 

precipitation. RNA-seq libraries were prepared from eluate and the 10% of RNA set aside as input using 401 

the TruSeq mRNA library prep kit (Illumina) and checked for fragment length using the Agilent 2100 402 

Bioanalyzer. Single-end 50 base pair reads were sequenced on an Illumina HiSeq 2500. 403 

- Heat shock 404 

Early passage OCI-Ly1 diffuse large B-cell lymphoma cells were grown in Iscove’s modified Eagle 405 

Medium (IMDM) with 10% fetal bovine serum (FBS). OCI-Ly1 cells were obtained from the Ontario 406 

Cancer Institute and regularly tested for Mycoplasma contamination by PCR and identified by single 407 
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nucleotide polymorphism. Cells were maintained with 1% penicillin/streptomycin in a 37°C, 5% CO2, 408 

humidified incubator. In these growing conditions, heat shocked cells were exposed to 43 °C for 1 hour, 409 

followed by 1 hour of recovery at 37°C while control cells were maintained at 37°C. Following treatment, 410 

cells were processed at 4°C to obtain total cell lysates. Lysates were immunoprecipitated for m6A(m) using 411 

Synaptic Systems antibody (SYSY 202 003) following the protocol described in Meyer, et al (2012) and 412 

sequenced on an Illumina HiSeq 2500 (16).  413 

 414 

Read processing 415 

Reads were trimmed using Trimmomatic (77) and aligned to the human genome (hg38) or the mouse 416 

genome (mm10), as appropriate, using STAR (67).  417 

 418 

Peak detection and comparison 419 

IP over input peaks were called using MACS2 (49). Transcript coverage was estimated using Kallisto (78) 420 

with an index construct 31mers, except for the Schwartz et al (2014) data set, where the reads were too 421 

short and an alternative index based on 29mers was constructed (33). For Figure 1b, the full union of 422 

unique peaks was taken and the percent of that set detected in single replicates calculated. Intersects 423 

between peaks that overlapped for transcripts with ≥10X mean coverage in both samples were taken 424 

using bedtools (79) for Figure 1c-d, allowing a generous minimum of 1 overlapping base. Heatmaps for 425 

peak overlaps were generated using the ComplexHeatmap package in R (80). MeRIP-seq data sets in 426 

Figure 1d included those for human cell lines in Figure 1c, other data sets from the same studies and 427 

any data sets that shared the same cell lines, and other data sets that looked at multiple human cell 428 

types. We considered only data sets from baseline conditions in Figure 1 (untreated cells and knockdown 429 

controls).  430 

 431 

Poisson and negative binomial fits  432 

Poisson and negative binomial models were fit to input and IP read counts at peaks using maximum 433 

likelihood estimation. Simulated read counts were generated with Poisson or negative binomial 434 

distributions based on estimated parameters from the sample, with 500 random generations per model. 435 

The log likelihood of seeing read counts from the sample and the simulations given the model parameters 436 

was then calculated and the mean taken across all peaks.  437 

 438 

Peak change detection and generalized linear models 439 

Generalized linear models to detect changes in IP coverage while controlling for differences in input 440 

coverage were implemented based on a method previously applied to HITS-CLIP data (54). Full and 441 

reduced models were constructed as follows:  442 

 443 
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log μij = βi
0 + βi

IPXj
IP + βi

STIMXj
STIM + βi

STIM:IPXj
STIM:IP 444 

log μij = βi
0 + βi

IPXj
IP + βi

STIMXj
STIM 445 

 446 

Where μij is the expected read count for peak i in sample j, modelled as a negative binomial distribution, 447 

Xj
IP = 1 for IP samples and 0 for input samples, and Xj

STIM = 1 for samples under the experimental 448 

intervention and 0 for control samples.  449 

 450 

Statistical significance was then assessed using a chi-squared test (df=1) for the difference in deviances 451 

between the full and reduced models, with the null hypothesis that the interaction term (βi
STIM:IP) for 452 

differential antibody enrichment driven by the experimental intervention is zero. The likelihood ratio test 453 

was implemented through DESeq2 (52) and edgeR (53), two programs developed for RNA-seq analysis 454 

that differ in how they filter data and in how they estimate dispersions for negative binomial distributions. 455 

Generalized linear models implemented through edgeR included a term for the normalized library size of 456 

sample j.  457 

 458 

QNB was run as suggested for experiments with biological replicates, where each IP and input variable 459 

(“ip1”, etc.) consisted of a matrix of peak counts for either condition 1 or condition 2: 460 

> qnbtest(ip1, ip2, input1, input2, mode="per-condition") 461 

 462 

We extracted functions from MeTDiff so that we could supply our own peaks and thus control for 463 

differences in peak detection among tools. The main post-peak calling function, diff.call.module, was run 464 

as follows using the same count matrices as for QNB: 465 

>  diff.call.module(ip1, input1, ip2, input2) 466 

 467 

Gene and peak expression changes were estimated as log2 fold changes from DESeq2 based on 468 

differences in input read counts aligned to genes and IP read counts aligned to peaks, respectively, and 469 

the change in peak relative to gene enrichment was calculated as the absolute difference in log2 fold 470 

change between those values.  471 

 472 

Comparison to published studies 473 

We selected data sets for reanalysis in Figure 3a based on the availability of ≥ 2 replicates and a 474 

published estimate of the number of m6A changes between two conditions. The sources for published 475 

estimates of m6A peak changes included in our comparison are listed in Supplementary Table 4. 476 

Significant (FDR-adjusted p < 0.05) peaks were considered for DESeq2, edgeR, and QNB, run as 477 

described above. We also considered a filtered set of peaks derived from the union of significant peaks 478 

from the three tools with additional filters for location within exons, |log2 fold change between peak IP and 479 
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gene input| ≥ 1, and a minimum peak read count of 10 across replicates and conditions. We used 480 

gProfiler to calculate enrichment of functional categories using a hypergeometric test (81).  481 

 482 

In Figure 3b-c, we selected Hspa1a/HSPA1A as our representative gene for heat shock because it was 483 

the primary example cited by Zhou et al. (2015) and Meyer et al. (2015) (4,20). For HIV, we selected 484 

PSIP1 because it was among the 56 genes reported by Lichinchi et al. (2016a) (25), it plays a known role 485 

in HIV infection, and we detected a peak in the gene using MACS2.  486 

 487 

For KSHV, we compared significant results (adjusted p < 0.05) from QNB and GLMs (DESeq2 and 488 

edgeR), with additional filtering for |peak IP – gene input log2 fold change| ≥ 1 (lowering this threshold to 489 

0.5 did not change results), for data from Hesser et al. (2018) (27) in lytic vs. latent iSLK.219 cells and 490 

data from Tan et al. (2018) (28) in lytic vs. latent iSLK BAC16 cells. We used the same approach to 491 

compare data from Rubio et al. (2018) and Winkler et al. (2019) (69,70) for response to dsDNA. Data sets 492 

used for site-specific comparisons are summarized in Supplementary Table 5. 493 

 494 

Gene coverage was plotted using CovFuzze (https://github.com/al-mcintyre/CovFuzze), which 495 

summarizes mean and standard deviation in coverage across available replicates.   496 

 497 

Spike-in controls and MeRIP-RT-qPCR 498 

In vitro transcribed (IVT) controls were provided by the Jaffrey Lab and consisted of 1001 base long RNA 499 

sequences with three adenines in GAC motifs (Supplementary Table 6) either fully methylated or 500 

unmethylated. m6A and A controls were mixed in various ratios (1:9, 3:7, and 9:1) that approximate the 501 

variation in m6A levels detected by SCARLET (m6A levels at specific sites have been reported to vary 502 

from 6-80% of transcripts (19)). Modified and unmodified standards were mixed at the indicated ratios to 503 

yield a final quantity of 0.1 fmol, 1 fmol, and 10 fmol. Mixed RNA standards were added to 30 μg total 504 

RNA from Huh7 cells, along with 0.1 fmol of positive (m6A-modified Gaussia luciferase RNA, “GLuc”) and 505 

negative control (unmodified Cypridina luciferase, “CLuc”) spike-in RNA provided with the N6-506 

methyladenosine Enrichment kit (EpiMark). Following MeRIP as described above, cDNA was synthesized 507 

from eluate and input samples using the iScript cDNA synthesis kit (Bio-Rad), and RT-qPCR was 508 

performed on a QuantStudio Flex 6 instrument. Data was analyzed as a percent of input of the spike-in 509 

RNA in each condition relative to that of the provided positive control spike-in. Primers used for RT-qPCR 510 

were:  511 

IVT_Std_F: TGCCTTTTCTTTCGGTTGCG 512 

IVT_Std_R: CAAACACAAGAAGGCACGGG 513 

GLuc_F: CGACATTCCTGAGATTCCTGG 514 

GLuc_R: TTGAGCAGGTCAGAACACTG 515 
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CLuc_F: GCTTCAACATCACCGTCATTG 516 

CLuc_R: CACAGAGGCCAGAGATCATTC   517 

 518 

Cell culture and infection (data used for MeRIP-RT-qPCR experiments) 519 

Huh7 cells were grown in DMEM (Mediatech) supplemented with 10% fetal bovine serum (HyClone), 2.5 520 

mM HEPES, and 1X non-essential amino acids (Thermo-Fisher). The identity of the Huh7 cell lines was 521 

verified using the Promega GenePrint STR kit (DNA Analysis Facility, Duke University), and cells were 522 

verified as mycoplasma free by the LookOut Mycoplasma PCR detection kit (Sigma). Infectious stocks of 523 

a cell culture-adapted strain of genotype 2A JFH1 HCV were generated and titered on Huh7.5 cells by 524 

focus-forming assay (FFA), as described (82). Dengue virus (DENV2-NGC), West Nile virus (WNV-525 

NY2000), and Zika virus (ZIKV-PRVABC59) viral stocks were generated in C6/36 cells and titered on 526 

Vero cells as described (82). All viral infections were performed at a multiplicity of infection of 1 for 48 527 

hours. 528 

 529 

Availability of Data and Materials 530 

MeRIP-seq data for the Huh7 negative controls is available in the GEO repository, under accession 531 

number GSE130891. MeRIP-seq data for heat shock in B-cell lymphoma is available under accession 532 

number GSE130892. Accession numbers for all other data sets reanalyzed in the study are included in 533 

Supplementary Tables 1-5. Scripts used for analyses are available at https://github.com/al-534 

mcintyre/merip_reanalysis_scripts.  535 
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