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 2 

ABSTRACT 15 

Small non-coding RNAs (sRNAs) are key regulators of bacterial gene expression. Through 16 

complementary base pairing, sRNAs affect messenger RNA stability and translation efficiency. 17 

Here, we describe a network inference approach designed to identify sRNA-mediated regulation 18 

of transcript levels. We use existing transcriptional datasets and prior knowledge to infer sRNA 19 

regulons using our network inference tool, the Inferelator. This approach produces genome-wide 20 

gene regulatory networks that include contributions by both transcription factors and sRNAs. We 21 

show the benefits of estimating and incorporating sRNA activities into network inference 22 

pipelines. We comprehensively assess the accuracy of inferred sRNA regulons using available 23 

experimental data. We uncover 30 novel experimentally supported sRNA-mRNA interactions in 24 

Escherichia coli, outperforming previous network-based efforts. Our findings expand the role of 25 

sRNAs in the regulation of chemotaxis, oxidation-reduction processes, galactose intake, and 26 

generation of pyruvate. Additionally, our pipeline complements sequence-based sRNA-mRNA 27 

interaction prediction methods by adding a data-driven filtering step. Finally, we show the 28 

general applicability of our approach by identifying novel, experimentally supported, sRNA-29 

mRNA interactions in Pseudomonas aeruginosa and Bacillus subtilis. Overall, our strategy 30 

generates novel insights into the functional implications of sRNA regulation in multiple bacterial 31 

species. 32 
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IMPORTANCE 34 

Individual bacterial genomes can have dozens of small non-coding RNAs with largely unexplored 35 

regulatory functions. Although bacterial sRNAs influence a wide range of biological processes, 36 

including antibiotic resistance and pathogenicity, our current understanding of sRNA-mediated 37 

regulation is far from complete. Most of the available information is restricted to a few well-38 

studied bacterial species; and even in those species, only partial sets of sRNA targets have been 39 

characterized in detail. To close this information gap, we developed a computational strategy 40 

that takes advantage of available transcriptional data and knowledge about validated and 41 

putative sRNA-mRNA interactions. Our approach facilitates the identification of experimentally 42 

supported novel interactions while filtering out false positives. Due to its data-driven nature, our 43 

method emerges as an ideal strategy to identify biologically relevant interactions among lists of 44 

candidate sRNA-target pairs predicted in silico from sequence analysis or derived from sRNA-45 

mRNA binding experiments. 46 
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INTRODUCTION 48 

Although bacterial gene regulation has been primarily investigated at the transcription level, 49 

recent studies have confirmed the importance of small non-coding RNAs (sRNAs) as post-50 

transcriptional regulators (1–5). Via complementary base pairing to their targets,  bacterial sRNAs 51 

regulate transcript processing, stability and translation into proteins (3–5). sRNA binding 52 

promotes conformational changes in mRNA secondary structure thus modulating recognition by 53 

molecular complexes such as ribosomes and ribonucleases (3). Chromosome-encoded sRNAs can 54 

be classified as either trans-encoded (when they regulate genes regardless of their chromosomal 55 

location)  or cis-encoded (when they solely regulate the expression of adjacent genes)  (3, 6). 56 

Here, we focus on trans-encoded sRNAs affecting mRNA stability. Importantly, the list of sRNA-57 

controlled cellular functions is broad (ranging from metabolism to virulence) and is continuously 58 

expanding with the analysis of new microbial species (5, 7). Because transcription factors (TFs) 59 

and sRNAs can share targets or even regulate each other (7), a comprehensive characterization 60 

of any bacterial gene regulatory network must incorporate both types of regulators (as has been 61 

explored for regulatory networks in eukaryotes) (8). 62 

 63 

The role of trans-encoded sRNAs has been mainly investigated in Gram-negative bacteria (5). 64 

Escherichia coli is currently the bacterial species with the highest number of experimentally 65 

supported sRNA-mRNA interactions (102 known interactions according to Pain et al., 2015) (9). 66 

This set contains 22 sRNAs with at least one experimentally supported target (9); however, this 67 

is only a fraction of the array of potential regulatory RNAs encoded in the E.coli genome (10, 11). 68 

The number of characterized sRNA targets is unevenly distributed as only eight out of 22 sRNA 69 
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regulons contain five or more members. Accurate and comprehensive detection of sRNA-mRNA 70 

interactions is challenging. The outcome of transcriptomics and proteomics experiments is highly 71 

dependent on the proper selection of conditions in which sRNAs are regulatory active (12), 72 

further complicating experimental designs. Moreover, computational methods (based on 73 

genome sequence and hybridization energy) predicting sRNA-mRNA interactions are fast and 74 

inexpensive but have a high false positive rate and may fail to recall known targets (5, 9). 75 

 76 

Network inference methods have been implemented to study sRNA-mediated regulation. Modi 77 

and collaborators used Context Likelihood of Relatedness (CLR) on transcriptional profiles of 78 

sRNAs and genes to infer an E. coli sRNA regulatory network (13, 14).  Modi et al. correctly 79 

predicted lrp, encoding a global transcriptional regulator, as a target of the GcvB sRNA. A second 80 

study exploited gene co-regulation to infer another E. coli sRNA network (15). In both studies, 81 

the recall of known sRNA-mRNA interactions was limited and the accuracy of novel predictions 82 

was not systematically evaluated (15).  83 

 84 

We hypothesize that, contrary to what was assumed in previous sRNA network inference 85 

strategies, sRNA levels might not be an adequate proxy for their regulatory activity in large 86 

transcriptomic datasets. In multiple species, RNA chaperones (such as Hfq in E. coli) promotes 87 

the interaction between sRNAs and their target mRNAs (4, 5, 16). Moreover, ribonucleases may 88 

be required to activate sRNAs by processing (e.g. RoxS, a Bacillus subtilis sRNA, only interacts 89 

with the sucCD mRNA after it has been truncated by RNase Y) (17).  Furthermore, the regulatory 90 

contribution of a sRNA becomes negligible when the concentration of its targets significantly 91 
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exceeds its own (18, 19). In this work, we address the complexity of sRNA-mediated regulation 92 

by estimating sRNA regulatory activities from transcriptional profiles of their known and 93 

candidate targets. We then use the estimated sRNA activities as input to our network inference 94 

tool to generate models of gene regulation for four bacterial species. We show, with substantial 95 

experimental support from independent studies, that our pipeline outperforms previous 96 

network-oriented efforts, detects novel sRNA-mRNA interactions, and complements RNA-RNA 97 

interaction prediction methods by discriminating between true and false targets. This work 98 

illustrates how our computational strategy can help researchers selecting candidate interactions 99 

for experimental validation while focusing on the most likely sRNA targets.  100 

  101 
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RESULTS AND DISCUSSION 102 

We inferred bacterial sRNA regulons from transcriptomics data using either the Inferelator (20), 103 

our network inference tool, or CLR, an alternative algorithm (13, 21). Because our approach 104 

mines transcriptomics data, it is designed to identify sRNA-mRNA interactions that change mRNA 105 

stability (those that only modify translational efficiency would likely be overlooked). A set of 106 

experimentally supported sRNA-mRNA interactions (also referred to as sRNAs priors) was used 107 

for estimating sRNA regulatory activities (see below). We used E. coli data to benchmark our 108 

pipeline and restricted our analysis to eight sRNAs with experimentally supported targets (Table 109 

1). We repeated this strategy with B. subtilis, Staphylococcus aureus and Pseudomonas 110 

aeruginosa. sRNA priors used for estimating sRNA activities are listed in Table S1. We relied on 111 

publicly available experimental data for assessing the accuracy of the inferred sRNA regulons.  112 

 113 

sRNA transcript level is not a good proxy for regulatory activity in a network inference context. 114 

The transcriptional profiles of sRNAs have commonly been used as proxies for their regulatory 115 

activities (14, 15). However, we suspected that a sRNA transcriptional profile would not typically 116 

match its regulatory activity due to the contributions of factors (such as RNA chaperones, 117 

ribonucleases, RNA sponges, target mRNA concentration) that influence the outcome of sRNA-118 

mediated regulation. An analogous observation has been made for TFs, where TF activity can be 119 

modulated by post-translational modifications such as phosphorylation or the presence of co-120 

factors (22, 23). To examine the relation between the transcription level of a sRNA and its 121 

regulatory activity in E. coli, we plotted the transcriptional profile of several sRNAs against the 122 

average transcription profile of their experimentally supported targets (Fig. 1A-B & Fig. S1 A-E). 123 
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In agreement with our expectations, sRNA transcript levels exhibited only a weak linear relation 124 

with their targets (left panels). This observation holds true for other species (Fig. S1 F-G). For 125 

instance, we observed similar patterns for two regulators of the iron-sparing response, FsrA in B. 126 

subtilis and S596 in S. aureus, functional analogs of E. coli RyhB (24–26). These findings support 127 

the notion that transcript levels are often a sub-optimal proxy for sRNA regulatory activity in the 128 

context of network inference.  129 

 130 

Estimating sRNA regulatory activity  131 

To estimate sRNA regulatory activity (SRA), we used the transcription profiles of their 132 

experimentally supported targets. Conceptually, this is analogous to relying on a reporter gene 133 

to measure the activity of a given sRNA, with the distinction that every presumed target of the 134 

sRNA is considered in the estimation (27). We have successfully used a similar approach to 135 

estimate the activities of TFs and thereby expanded the transcriptional network model of B. 136 

subtilis (27). We checked the relation between estimated SRAs and the transcription profile of 137 

their priors (Fig. 1A-B & Fig. S1 A-E; right panels). We observed, as expected based on our 138 

previous work (27), a stronger linear relationship between genes and their known sRNA 139 

regulators than with raw sRNA transcript levels. We noted the same trend for functionally related 140 

sRNAs in B. subtilis and S. aureus (Fig. S1 E-G). Additionally, significantly stronger anti-correlation 141 

(expected due to the repressive nature of sRNA-mRNA interactions used as priors) were found 142 

between sRNAs activities and their targets compared to correlations between corresponding 143 

sRNA transcript levels and their targets (Fig. 1C). 144 

 145 
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The better correlation between sRNA activity and transcriptional profile of sRNA targets led us to 146 

incorporate SRAs into our inference pipeline in the same manner we did for TFs. Importantly, 147 

estimated SRAs can be used for network inference even when the transcriptomic dataset does 148 

not contain information about sRNAs of interest, as frequently observed for microarrays-149 

collected datasets. One example is shown in Fig. 1D.  Despite the absence of FnrS in the 150 

transcriptomic dataset, its activity was estimated using ten priors. In our workflow, the only 151 

requirement for including a sRNA as potential regulator is a set of experimentally supported or 152 

candidate targets, whose transcriptional profiles are available in the analyzed transcriptomics 153 

dataset.   154 

 155 

General strategy 156 

Our network inference pipeline is illustrated in Fig. 2. First, we used a transcriptomics dataset 157 

(from the Many Microbe Microarrays database (28) or any equivalent repository) and a set of 158 

experimentally supported TF-gene and sRNA-mRNA interactions (from RegulonDB (29), 159 

RegPrecise (30), or equivalent), referred to here as the prior network, to estimate the regulatory 160 

activities of TFs (TFAs) and sRNAs (SRAs). Next, we used the estimated activities (TFAs and SRAs), 161 

the transcriptomics dataset, and the prior network to simultaneously infer the TF-controlled 162 

network and the sRNA-controlled network using Bayesian regression with the Inferelator (see 163 

methods)(20, 27). Interactions not included in the prior network were considered novel. Inclusion 164 

of a prior transcriptional network, which is much larger than the prior sRNA network, allowed us 165 

to define thresholds (calibrated using desired precision values) for selecting the interactions that 166 

should be kept in the final networks.  Inclusion of TFs also prevented model over-fitting due to 167 
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an incomplete set of regulators and interactions to explore. Additionally, the simultaneous 168 

inference of the transcriptional and post-transcriptional networks enabled us to study 169 

connections between the two regulatory layers.  170 

 171 

Our strategy improves performance, recovers known interactions and predicts novel sRNA-172 

mRNA interactions. 173 

We compared the performance of the Inferelator (using a Bayesian Best Subset Regression-BSSR) 174 

and mixed-CLR, with and without incorporating sRNA activities (SRA). For each method, the 175 

number of predicted mRNA targets per sRNA versus the number of predicted targets with 176 

experimental support is shown in Fig. 3A. Importantly, genes used as priors for sRNA activity 177 

estimation were removed from the set of predicted targets because they tend to occupy high 178 

positions in the predictions ranking. FnrS was not considered in this analysis because its 179 

transcriptional profile was missing from the transcriptomic dataset. Thus, it cannot be included 180 

as a regulator in methods that use transcriptional profiles as proxy for activity. We deemed a 181 

predicted target to be experimentally supported if it was differentially expressed in 182 

transcriptional profiling experiments overexpressing or deleting its putative sRNA regulator 183 

(according to the criteria established in the corresponding publication, except for Spf, see 184 

methods). Additionally, a sRNA-mRNA interaction was considered experimentally supported 185 

when the predicted target was part of an operon that contains differentially expressed genes. 186 

For RyhB, available ribosome profiling data was also considered in evaluating experimental 187 

support (31). The sets of candidate sRNA targets identified with transcriptomic experiments 188 

contain genes whose expression is (directly or indirectly) affected by the sRNA of interest. 189 
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Therefore, the rank of differentially expressed genes in the list of predicted sRNA targets informs 190 

about the performance of our strategy (10). We ranked sRNA-mRNA interactions based on the 191 

confidence score computed by the Inferelator (see methods). When we analyzed the top 20 192 

predictions per sRNA (for the seven E. coli sRNAs that were considered), we observed that among 193 

the 140 predictions made by the Inferelator with sRNA activities (Inferelator.SRA), 28 were 194 

experimentally supported (25 for mixed-CLR). By contrast, the Inferelator without sRNA activities 195 

only predicted eight experimentally supported targets (four for mixed-CLR). Inferelator.SRA 196 

performed best for Spf (ten supported targets in the top 20 predictions) and GcvB (nine 197 

supported targets). There was at least one supported target for all sRNAs except RybB and MicA. 198 

In general, we observed that incorporation of sRNA activities consistently improved the detection 199 

power of both network inference tools [in Fig. 3A: green and blue lines (with SRAs) vs. purple and 200 

orange lines (without SRAs)]. 201 

 202 

 The inferred E. coli sRNA network from the Inferelator run with sRNA activities (BBSR.SRA) 203 

described above is shown in Fig. 3B.  Limited overlap was observed between the inferred sRNA 204 

network and the TF network. Only 19% of sRNA-regulated genes were predicted as targets of one 205 

or more TFs. Despite 41% of genes having two or more regulators in the prior network, expression 206 

of most genes was explained as the function of a single regulator’s activity (either a TF or a sRNA). 207 

We found multiple cases in which the regulatory influence of a sRNA surpassed the estimated 208 

influence of several TFs targeting the same gene. For example, according to the prior network, 209 

marA is regulated by five TFs (AcrR, CpxR, Fis, Rob, SoxS) and one sRNA (FnrS). Only the 210 

interactions between marA and AcrR and FnrS were recalled into the final model. For genes 211 
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predicted to be regulated by both TFs and sRNAs in the inferred network (sdhA, ompC, cysC, 212 

among other targets), TFs were commonly the most influential regulator. In fact, we observed 213 

that on average the influence of sRNAs on expression of their targets is subtler than the one 214 

exerted by TFs (Fig. 3C). This finding is in agreement with the view of sRNAs as fine tuners of gene 215 

expression (3). When we inferred an alternative model (with an Inferelator run in which sRNAs 216 

were not considered as potential regulators), 90% of the genes exclusively regulated by sRNAs in 217 

our original network (Fig. 3B) lacked regulatory hypotheses (data not shown). This finding 218 

underscores the importance of sRNAs for fine tuning of gene expression, and it demonstrates 219 

that inclusion of sRNAs as regulators expands the models of gene regulation in bacteria. 220 

 221 

The accuracy of inferred sRNA regulons was assessed using experimental data from previously 222 

published studies (including transcriptional profiling, ribosome profiling, and sRNA-mRNA 223 

binding data). Experimental support for novel targets and entire sRNA regulons inferred with our 224 

strategy is shown in Fig. 3D. Thirty-eight sRNA-mRNA interactions from the prior network were 225 

included in the final model (for a total recall of 0.51). The average recall per sRNA regulon was 226 

0.55 and the highest recall (1.0) was obtained for CyaR. In addition to the recovered priors, the 227 

inferred sRNA network contained 61 novel interactions. 29 out of these 61 novel predictions 228 

(0.48) were experimentally supported. Per regulon, the average experimental support for novel 229 

predictions was 0.47, which increased to 0.71 when considering both novel predictions and 230 

recovered priors. The limited increase in size for some sRNA regulons is consistent with previous 231 

observations that regulators with the lowest number of priors tend to have the lowest number 232 

of novel predictions because regulator’s activity cannot be estimated with precision (27). Failure 233 
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to recall MicA targets is likely a consequence of the weak correlation between estimated MicA 234 

activity and the transcription profiles of its known targets (Fig. S1C). In future applications, the 235 

detection power of our pipeline will be improved by expanding the set of priors (for example, by 236 

including every gene differentially expressed in transcriptional profiling experiments). In the 237 

above analysis, we intentionally left out some of the potential sRNA targets to estimate the 238 

accuracy of our pipeline. In conclusion, integration of estimated sRNA activities in the network 239 

inference procedure greatly improves the ability to detect additional experimentally supported 240 

sRNA-mRNA interactions. 241 

 242 

Robustness to incorrect prior information. 243 

We originally tested our approach with a set of priors that only included experimentally 244 

supported sRNA-mRNA interactions. However, in a more realistic scenario, researchers may 245 

compile priors from heterogenous sources, and a mix of true and false interactions is expected. 246 

Previously, we showed that the Inferelator is robust to noisy priors (up to 1:10 ratio of true: false 247 

priors) (27). To confirm this result in the context of sRNAs, we assessed the robustness of our 248 

pipeline in terms of the experimental support of priors included in the final models. We added 249 

different amounts of false interactions to the sRNA priors and ran the pipeline with those noisy 250 

priors. We found that our method efficiently distinguishes true from false interactions (Fig. 3E). 251 

Specifically, we determined how many priors recovered as putative targets were experimentally 252 

supported. Although the total number of recovered priors is lower than in the original run 253 

without false priors (Fig. S2), the proportion of recovered priors with experimental support still 254 
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exceeded the ratio expected from a random selection (gray stars in Fig 3E). This finding suggests 255 

that our pipeline successfully filters out priors not supported by the transcriptional data (20, 27). 256 

 257 

Combining sequence-based predictions of mRNA-sRNA interactions with transcriptomics data 258 

using the Inferelator  259 

We showed above that the Inferelator is robust to the presence of false negatives and positives 260 

in the network priors (Fig. 3), so we exploited this property to separate true from false positives 261 

among sRNA-mRNA interactions that were predicted computationally.  The strategy described 262 

below combines a sequence-based prediction step with a transcriptional data-driven filtering 263 

step (Fig. 4A). For any sRNA of interest, we first build a set of priors using a sRNA-mRNA 264 

interaction prediction method. Then, we run the Inferelator and recover the most likely targets 265 

of that sRNA.  We chose CopraRNA (32) for the assembly of the sRNAs priors because it is a state 266 

of the art RNA-RNA interaction prediction method (9). It also offers an excellent framework to 267 

evaluate the potential of our method. A standard CopraRNA output contains 100 predictions 268 

(ranked by the associated p-values). CopraRNA performs a functional enrichment analysis among 269 

predicted targets. There is, however, no standard strategy to select which putative interactions 270 

should be investigated further. Any CopraRNA output will most likely include false positives that 271 

cannot easily be discarded. Therefore, our pipeline helps in selecting the most biologically 272 

relevant interactions among CopraRNA predictions.  273 

 274 

We focused our analysis on the CopraRNA predictions for RyhB, GcvB and Spf. These sRNAs 275 

regulate different cellular processes and transcriptional profiling data indicate that each may 276 
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directly or indirectly regulate dozens of genes. We hypothesized that if we used CopraRNA 277 

predictions as priors, our downstream activity estimation and network inference method would 278 

further distinguish between true and false positives and thus detect novel interactions. From the 279 

available transcriptional profiling data, we estimated that about 25% of the CopraRNA 280 

predictions are experimentally supported (i.e. differentially expressed when expression of the 281 

corresponding sRNA is perturbed or detection of physical interaction between sRNA and 282 

predicted targets; Table S2). To avoid a bias in our analyses, we compared five filtering strategies 283 

to reduce the proportion of unsupported priors in the initial set of CopraRNA predictions (Table 284 

S2). For each sRNA, we ran our pipeline using the following sets of priors: i) the full set of 285 

CopraRNA predictions. ii) targets with p-values ≤ 0.01. iii) targets associated with enriched 286 

functional terms. iv) the intersection of (ii) and (iii). v) the union of (ii) and (iii). vi) the union of 287 

the top 15 targets based on p-value (suggested in the original CopraRNA paper) and (iv). 288 

Experimental support rate of generated priors ranges from 0.17 to 0.73. 289 

 290 

Initially, we compared the experimental support rates of the multiple sets of CopraRNA priors 291 

(generated with the above filtering strategies) to the inferred sRNA regulons. We observed that, 292 

in general, running the Inferelator dramatically shrank the initial set of priors (Table S2), while 293 

the experimental support rate increased significantly (Fig. 4B). This result supports the 294 

hypothesis that our method filters out false priors. Remarkably, we identified 26 sRNA-mRNAs 295 

predicted interactions that are most likely true additions to the corresponding E. coli sRNA 296 

regulons (Table 2). Each of the sRNA-mRNA interactions is supported by the transcriptional 297 

compendium analyzed with our network inference strategy, and independent experimental data 298 
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(physical binding, transcriptional profiling or validation in a closely related species such as 299 

Salmonella). For example, the RyhB-cheY interaction is supported by the physical interaction 300 

between RyhB and cheY in E. coli and significant up-regulation of cheY in a Salmonella strain 301 

missing one of its two RyhB genes (10, 33). Another interesting target of E. coli RyhB is mrp. This 302 

interaction is supported by: 1) physical interaction between RyhB and mrp in E. coli (10); 2) 303 

increased translation rate of mrp in a RyhB deletion E. coli strain (31); and 3) the fact that mrp 304 

encodes an iron binding protein, which is consistent with the well-known role of RyhB in the iron 305 

sparing response (24). Therefore, the interactions listed in Table 2 constitute a promising starting 306 

point for future experimental validation efforts. 307 

 308 

Among the six sets of priors that we tested for RyhB, the one containing 38 genes associated with 309 

enriched functional terms gave the best results (Fig. 4C). Not only were all six priors included in 310 

the inferred network experimentally supported, but nine additional targets were predicted. Four 311 

out of the nine novel predictions had experimental support. Two additional targets (sucB and 312 

sucD) are in the same operon as sucA, one of the novel targets supported by binding data. Thus, 313 

the inferred RyhB regulon has a 0.67 accuracy (i.e. 10 out of 15 predicted targets are 314 

experimentally supported). The novel predictions (not present in the priors) included genes 315 

involved in respiration (nuoA and nuoE) and the citric acid (TCA) cycle (sucA-sucB-sucD), two 316 

cellular processes already associated with RyhB.  317 

 318 

The five largest sRNA regulons inferred using CopraRNA-derived priors were for GcvB. Each of 319 

these GcvB regulons had 46 or more predicted targets (Table S2). This large size agrees with the 320 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/657478doi: bioRxiv preprint 

https://doi.org/10.1101/657478


 17 

global regulatory role of GcvB (34). Fig. 4D shows the inferred GcvB regulon when CopraRNA 321 

predictions with p-value ≤ 0.01 were used as priors. Eleven priors (out of 46) were recovered as 322 

putative targets in the inferred network. Nine out of those eleven priors had experimental 323 

support. In addition, 39 genes were predicted as novel targets. Although some of the novel 324 

predictions for GcvB lacked experimental support (23 out of 39), we identified multiple novel 325 

targets that show the potential of our approach. For instance, nlpA (validated as a GcvB target in 326 

2018) (34) was predicted as a novel GcvB target. In fact, nlpA was predicted as a GcvB target in 327 

five of the six inferred GcvB regulons. Additionally, asd, hisJ, hisQ, hcxB and dcyD were novel 328 

predictions supported by physical binding data (10). The interaction between GcvB and dcyD  was 329 

experimentally validated in Salmonella (35). hisJ and hisQ are in the same operon as argT, a 330 

known GcvB target included in the prior set. Four members of the dpp operon, involved in 331 

peptide transport (36) were predicted as additional GcvB targets; however, dppA, the first gene 332 

in the operon, was present among the priors. The inferred GcvB regulon included other six genes 333 

that belong to operons with known GcvB targets but lacked experimental support (dotted lines 334 

in Fig. 4D).  335 

 336 

Predictions for Spf illustrate the performance of our method when a set of genes with low 337 

experimental support rate is used as priors. Spf had the lowest experimental support rate in each 338 

of the six versions of CopraRNA-derived priors (Table S2). Fig 4E shows the Spf regulon inferred 339 

using as priors the 23 genes predicted as Spf targets by CopraRNA with a p-value ≤0.01 and 340 

associated with enriched terms. Only eight of these 23 priors were experimentally supported. 341 

Yet, four out of the six recovered priors had experimental support. One of the novel targets was 342 
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sthA, an experimentally validated target of Spf (37). An interesting prediction for Spf was mdh. 343 

The Spf-mdh interaction is supported by physical binding data and it is in line with the role of Spf 344 

in carbon metabolism (10, 37). 345 

 346 

Expanding the partially characterized sRNA regulons for GcvB, Spf, PrrF and FsrA 347 

Here, we describe four examples to highlight how our pipeline successfully identified 15 novel 348 

sRNA-mRNA interactions with experimental support in E. coli, P. aeruginosa and B. subtilis. The 349 

predicted E. coli Spf regulon (from the inferred sRNA network in Fig. 3) is shown in Fig. 5A. Spf 350 

mainly controls genes associated with sugar metabolism and transport (37). Four (out of 12) 351 

priors were recovered as targets. Five additional targets were predicted, including maeB, which 352 

encodes a NADP-dependent malate dehydrogenase that converts malate into pyruvate (38). 353 

Originally, this gene was not reported as differentially expressed in a spf over-expressing strain 354 

(37). However, when we reanalyzed the transcriptional data with a Bayesian t-test, we found that 355 

maeB was significantly down-regulated in the over-expression strain. Moreover, a physical 356 

interaction between Spf and maeB mRNA was recently reported by Melamed et al (10). We 357 

conclude that maeB is a true novel Spf target. The NAD-dependent malate dehydrogenase of E. 358 

coli, maeA, is a known Spf target (37, 38). Interaction of Spf with maeB and maeA (located in 359 

independent transcriptional units) indicates that Spf can completely block the generation of 360 

pyruvate from malate by repressing both types of malate dehydrogenases. Another novel 361 

predicted target for Spf was the mgl operon. mglB encodes a galactose ABC transporter (39) and 362 

it was significantly down-regulated in the spf over-expressing strain (exclusively detected in our 363 

analysis). mglB is predicted as a Spf target by CopraRNA (Fig. 4E) and the Spf-mglB interaction 364 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/657478doi: bioRxiv preprint 

https://doi.org/10.1101/657478


 19 

was recently validated in S. enterica  (40). Considering that E. coli and S. enterica are 365 

phylogenetically close, we conclude that the mgl operon is also a true Spf target in E. coli. This 366 

implies that Spf represses galactose metabolism (through the repression of members of the gal 367 

operon) (41) and transport of galactose into the cell (by repressing the mgl operon). The fifth 368 

novel Spf target was sdhA. This prediction is supported by the validated interaction between Spf 369 

and sdhC, the first gene of the sdh operon (42). Desnoyers and Massé found that Spf primarily 370 

regulates the sdh operon at the translational level. Thus, the inclusion of the Spf-sdh interaction 371 

in our model indicates either that our approach can detect interactions producing subtle changes 372 

in mRNA stability (indeed, Desnoyers et al. observed degradation of the sdh mRNA 30 mins after 373 

Spf induction) or that Spf induces a faster degradation of the sdh polycistronic mRNA in a still 374 

unidentified condition. Overall, we found that all five of the Spf novel targets were experimentally 375 

supported.  376 

 377 

The inferred E. coli GcvB regulon, using the compiled set of experimentally supported sRNA 378 

priors, is shown in Fig. 5B. Our model expands the role of GcvB in the regulation of amino acid 379 

biosynthesis and transport. Six (out of nine) priors were recovered as GcvB targets and 27 380 

additional targets were predicted. Ten of the novel targets (not included in the prior sRNA 381 

network) were supported by transcriptional profiling data. Among these novel targets, several 382 

have been validated, i.e. serA [validated in S. enterica (34, 35)]; three members of the dpp operon 383 

(dppA, dppB, dppC) (43); four members of the livKHMGF operon (livF, livH, livM and livK), and 384 

two members of the argT-hisJQMP operon (hisJ and hisQ). The set of novel GcvB targets has 385 

significant experimental support from physical binding data (10) (12 out 27 new targets, for a 386 
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hyper-geometric test p-value= 2.7 x 10-11). Notably, there were five novel targets (asd, kgtP, nlpA, 387 

pheL, yhjE) not supported by transcriptomics data, but detected in vivo by Margalit and 388 

collaborators as physically interacting with GcvB (10). Two predicted GcvB targets (thrC and cysC) 389 

were indirectly supported by binding data (10). GcvB interacts with thrL (10), the leader peptide 390 

sequence of the thr operon that contains thrC. GcvB physically interacts with cysB (10), encoding 391 

the transcriptional regulator of cysC. To the best of our knowledge, assigning to the GcvB regulon 392 

asd (also predicted as a target when CopraRNA-derived priors were used), and kgtP, which 393 

respectively encode an aspartate-semialdehyde dehydrogenase and an α-ketoglutarate H+ 394 

symporter (44, 45), is only supported by our model and physical binding data collected in (10). 395 

One of the main challenges of new technologies capturing physical binding between sRNAs and 396 

mRNAs [e.g. RNA Interaction by ligation and Sequencing (10), in vivo UV crosslinking with RNA 397 

deep sequencing (40), MS2-Affinity Purification coupled with RNA Sequencing (34)] is to identify 398 

whether those interactions do actually influence mRNA stability and translation rate (10). Thus, 399 

our approach constitutes a complementary tool to identify which interactions, among the 400 

hundreds of detected binding events, have functional relevance.  401 

 402 

PrrF1 and PrrF2 are two iron-responsive sRNAs of P. aeruginosa and function as analogs of E. coli 403 

RyhB (46). Both sRNAs are transcriptionally repressed by Fur under iron rich conditions (46). PrrF1 404 

and PrrF2 are almost identical at the sequence level and are adjacent on the P. aeruginosa 405 

chromosome. Thus, they were considered as a single regulator (PrrF) in our analysis. The 406 

predicted PrrF regulon is shown in Fig. 5C.  All eleven priors were recalled in the final model and 407 

the inferred PrrF regulon included 10 novel targets. Five genes (antR, catA, catC, PA2682 and 408 
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sdhC) were significantly up-regulated in a wild-type P. aeruginosa strain grown in iron rich 409 

medium (compared to the WT grown under iron poor conditions, i.e. when PrrF is active) and in 410 

the double prrF1-prrF2 deletion mutant (compared to the WT strain) (46). We considered those 411 

five targets to be experimentally supported. Independent regulation of antR and its target 412 

antABC operon was validated in (47). sdhC can also be considered a validated target per (46). 413 

gltA, which encodes an enzyme involved in the TCA cycle, was significantly up-regulated in the 414 

WT strain grown in iron rich medium vs. the iron poor condition (47). Since PrrFs are repressed 415 

at high iron concentrations, the observed up-regulation of gltA supports our prediction. 416 

Moreover, gltA is a known target of FsrA (a functional analog of PrrF) in B. subtilis (48). For the 417 

reasons described above and the involvement of known PrrF targets in the TCA cycle, we 418 

considered gltA to be a probable PrrF target. We hypothesize that the novel targets nuoF, nuoI 419 

and PA4430 are likely regulated by PrrF despite not being supported by available transcriptional 420 

profiling data. We base our conclusion on the following observations: first, interaction of PrrF 421 

with the nuo operon and the PA4427-PA4428-PA4429-PA4430-PA4431 operon is supported by 422 

the PrrF1-nuoK and PrrF1-PA4431 interactions predicted by CopraRNA. Second, the predicted 423 

PrrF-nuo interaction is highly probable considering that: i) the nuo operon is regulated by RyhB 424 

in E. coli; ii) PrrF and RyhB have multiple targets in common (e.g. the sdh operon, acnA and acnB). 425 

The same is true for the PrrF-PA4430 interaction. PA4430 putatively encodes cytochrome b and 426 

RyhB regulates multiple cytochrome encoding genes. Third, we considered as differentially 427 

expressed the genes labeled as such in (47). In that study, a 0.0001 p-value threshold was used 428 

to define differential expression. The stringent p-value threshold may account for categorizing 429 

PA4430 and the nuo operon as not differentially expressed. Hence, only one out of the 10 novel 430 
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PrrF targets predicted by the model (PA4570) appears to be a false positive. Other putative 431 

targets are supported either by experimental data, computational RNA-RNA predictions, or 432 

conservation of PrrF targets in other species. 433 

 434 

FsrA is the functional analog of PrrF in B. subtilis (25). Fig. 5D shows the inferred FsrA regulon. 435 

The predicted regulon contains eight (out of twelve) priors and seven novel target genes. In 436 

agreement with our model, three novel targets (odhA, odhB and pmi) are among the FsrA targets 437 

predicted by CopraRNA. odhA and odhB form an operon and encode genes involved in the TCA 438 

cycle (49). In support of the predicted FsrA-odhA interaction, analysis of 2D protein gels showed 439 

that average fold-change of the OdhA protein level is 1.78 in the double fsrA-fur deletion mutant 440 

respect to the WT strain (25).  Furthermore, odhA and odhB mRNA levels were up-regulated (1.68 441 

and 1.91 mean fold-changes, respectively) in the double fsrA-fur deletion mutant when 442 

compared to the fur single deletion mutant (48). The interaction between FsrA and ysmA, an 443 

uncharacterized gene, is supported by the similarity between ysmA transcription profile and that 444 

of known FsrA targets (leuC and sdh operon) (48).  Additionally, ysmA is up-regulated (3.78 mean 445 

fold-change) in the double fsrA-fur deletion mutant with respect to the fur deletion mutant (48). 446 

The interaction between FsrA and the sucC-sucD operon is supported by up-regulation (2.46 447 

mean fold-change) of sucD in the double fsrA-fur deletion mutant compared to the fur single 448 

deletion mutant (48) and down-regulation (0.53 mean fold-change) of sucC in the fur single 449 

deletion mutant compared to the WT (48). Two predicted targets of FsrA (sucC and ppnKB) are 450 

validated targets of RoxS, another trans-encoded sRNA of B. subtilis (17). Interestingly, 451 

expression of multiple genes regulated by Fur, the transcriptional repressor of FsrA, also appear 452 
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to be influenced by RoxS (17). This may suggest a functional connection between RoxS and FsrA. 453 

However, we did not find any data in support of the predicted FsrA-ppnKB interaction. Follow up 454 

experiments are required to obtain a definitive answer. In summary, interactions between FsrA 455 

and the odhA-odhB and sucC-sucD transcripts are particularly promising due to the role played 456 

by these genes in the TCA cycle, a previously known target of FsrA (sdh operon) (25, 48). 457 

 458 

 459 
 460 

 461 

  462 
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CONCLUSIONS 463 
 464 
We have developed a new computational pipeline that integrates estimates of TF and sRNA 465 

activities with a well-tested network model selection procedure for inferring bacterial sRNA 466 

regulons. Our work shows that using transcriptional profiles of sRNAs as proxy for their activity 467 

in traditional network inference approaches is less than optimal, because it does not account for 468 

the fact that sRNA activity can be influenced by factors such as RNA chaperones, ribonucleases 469 

and sRNA: targets ratio (18, 19). Our findings further demonstrates that the need to estimate 470 

regulatory activity of non-coding RNAs is not exclusive to eukaryotic systems (50) but relevant 471 

for all types of regulatory non-coding RNAs that require substantial processing and are involved 472 

in multiple interactions (such as micro-RNAs and bacterial sRNAs).  473 

 474 

Our results indicate that integration of sRNA activities in network inference pipelines significantly 475 

improves their prediction power (Fig. 3A) and our strategy significantly outperforms previous 476 

network inference efforts. Importantly, this work complements sRNA-mRNA prediction methods 477 

based on sequencing analysis and the recently developed technologies for detecting physical 478 

interactions between sRNAs and mRNAs (Fig. 4). Our computational approach identified a total 479 

of 39 novel sRNA-mRNA interactions with experimental support in Gram-positive and Gram-480 

negative species (E. coli, P. aeruginosa and B. subtilis). In addition, we showed that our strategy 481 

is robust to false positives and negatives, thus allowing the accurate detection of novel sRNA 482 

targets. Importantly, our method is especially well suited to removing the many false positives 483 

present in sequence-based computationally predicted sRNA-mRNA interactions. Our pipeline can 484 
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both expand current sRNA regulons and serve as a first approach to prioritize the study of 485 

predicted targets of uncharacterized sRNAs. 486 

 487 

The sRNA regulons inferred in this study increase by 40% the number of experimentally 488 

supported interactions originally compiled for estimating E. coli sRNA activities. We uncovered 489 

novel experimentally supported sRNA-mRNA interactions (Fig. 4, Fig. 5A-B and Table S2) involved 490 

in chemotaxis and oxidation-reduction pathways. Thus, our work extends the contribution of 491 

sRNA-mediated regulation in these processes. Simultaneously, we discovered how a single sRNA 492 

(Spf) can repress all branches of a metabolic reaction (i.e. conversion of malate to pyruvate in 493 

NAD and NADP dependent fashion).  Analysis of the inferred Spf regulon also suggested how 494 

sRNAs can repress the consumption of alternative sugars (i.e. galactose) by simultaneously 495 

inhibiting their catabolism and their intake. In general, our approach offered insights into the 496 

functional role of bacterial sRNAs as fine tuners of gene expression in the analyzed species. 497 

 498 

The main limiting factor in our approach is the fact that it requires prior information (including 499 

transcriptomics data, a transcriptional network, and candidate sRNA targets). As a proof of 500 

principle, we selected bacterial species for which we could comprehensively assess the quality of 501 

the inferred models. Beyond these selected species, we believe that there is a much larger group 502 

of bacterial species (e.g. Salmonella enterica and Mycobacterium tuberculosis), whose study 503 

could benefit from the application of the strategy delineated in this work. Transcriptional 504 

compendia for approximately 20 bacterial species can be easily downloaded from the 505 

COLOMBOS database (51). Transcriptional networks can be (at least partially) reconstructed by 506 
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mining literature and databases that store information about experimentally supported 507 

transcriptional interactions [e.g. RegPrecise database (30)]. Finally, we show that initial sets of 508 

sRNA priors can be generated using available mRNA-sRNA interaction prediction tools (e.g. 509 

CopraRNA), genetic perturbations or with global detection of sRNA-mRNA binding events.  510 

 511 

The applicability of our strategy will increase in the next few years as the field of bacterial sRNA-512 

mediated regulation grows. Incorporating estimated TFs regulatory activity in network inference 513 

strategies, has led to recent improvements in the transcriptional regulatory networks of yeast 514 

(52), sex specific gene networks in Drosophila (53), transcriptional networks associated with 515 

cancer (54, 55) and transcriptional networks that drive differentiation of mice T lymphocytes  516 

(56). Our strategy relies on knowledge about sRNA-mRNA interactions that is already available 517 

to accurately estimate sRNA activities and to identify novel sRNA targets. Hence, we expect 518 

performance of our strategy to improve as the quality and number of confirmed sRNA-mRNA 519 

interactions continues to rise.  520 

  521 
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MATERIALS AND METHODS 522 
 523 
Bacterial species 524 

We inferred transcriptional regulatory networks and small non-coding RNA regulons for 525 

Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. 526 

Small non-coding RNA priors 527 

sRNA-mRNA interactions used as sRNAs priors for sRNA activity estimation in each species are 528 

listed in Table S1. For sRNA priors in E. coli, only one member of each operon containing multiple 529 

validated sRNA targets was considered to avoid over-representation of any operon.  Because 530 

S596 is an uncharacterized sRNA of S. aureus, we used as S596 priors the CopraRNA-derived 531 

candidate targets selected in (26). 532 

Transcriptomics datasets 533 

The transcriptomics datasets used for inferring the transcriptional and sRNA networks of 534 

analyzed species are described in Table S3. 535 

Prior transcriptional networks 536 

For each species, the prior transcriptional network was constructed as a collection of 537 

experimentally supported signed (activation or repression) TF-gene interactions. The prior 538 

networks were used for estimating the regulatory activities of TFs included as potential 539 

regulators, inferring the corresponding transcriptional network and defining the final model of 540 

the inferred networks (see below). Sources for each species are shown in Table S3. 541 

Estimation of transcription factors and sRNAs regulatory activities 542 

Activities of potential regulators (TFs and sRNAs) were simultaneously estimated using the set of 543 

experimentally supported interactions in the prior network as described in (27). Briefly, we first 544 
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combined the sRNA and transcriptional prior networks into a global prior network. We 545 

represented the analyzed transcriptional dataset in matrix format (referred to as X) where each 546 

row corresponded to the transcriptional profile of a gene. Then, we applied a network 547 

component analysis (NCA; 43) to decompose X in two matrices: a first matrix P, which we derived 548 

from the prior network. The values in P are in the {0, 1, -1} set, where 1 and -1 indicate activation 549 

and repression, respectively. Value in the Pij entry corresponds to the interaction between gene 550 

i and regulator j. The second matrix A is unknown but represents the activities of regulators along 551 

the conditions in X. As such, the Akl entry is the activity of regulator k in condition l.  In matrix 552 

notation, NCA can be stated as:  X=PA (Eq. 1). We solved for A using the pseudo-inverse of P as 553 

explained in (27).  554 

Inference of Transcriptional and sRNA Networks 555 

Transcriptional and sRNA networks were simultaneously inferred using Inferelator Bayesian Best 556 

Subset Regression (BBSR), as detailed in (27). The core model of the Inferelator with 557 

incorporation of TFs and sRNAs activities can be summarized as:   558 

𝑋𝑋𝑖𝑖,𝑗𝑗 = ∑ 𝛽𝛽𝑖𝑖,𝑘𝑘Â𝑘𝑘,𝑗𝑗𝑘𝑘 ∈{𝑇𝑇𝑇𝑇𝑇𝑇 𝑈𝑈 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑇𝑇}  (Eq. 2), where 𝑋𝑋𝑖𝑖,𝑗𝑗 is the mRNA level of gene i in condition j, Â is 559 

the matrix of estimated activities generated with NCA (as described above), and 𝛽𝛽𝑖𝑖,𝑘𝑘 indicates the 560 

effect (positive or negative) and strength of regulator k’s activity on gene i. 𝛽𝛽 is the main output 561 

of the Inferelator. To model the sparsity of biological networks, BBSR solves for a matrix β where 562 

most values are zero. More details about BBSR solution can be found in (27). To avoid overfitting, 563 

we bootstrapped the input transcriptional data 20 times (we have previously observed minimal 564 

change above 20 bootstraps) (27). We averaged the β scores associated with each re-sampling 565 

instance into a final β matrix.  The second output of the Inferelator, is a confidence score matrix 566 
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generated as explained in (27). The confidence score of an interaction indicates the likelihood of 567 

the interaction.  Mixed-CLR was run using the mi_and_clr.R script in the Inferelator release, 568 

available in https://sites.google.com/a/nyu.edu/inferelator/home.  569 

Construction of final model of transcriptional and sRNA networks 570 

We ranked the set of all potential regulator (TF/sRNA)-gene interactions based on the associated 571 

confidence scores. We used a 0.5 precision cutoff [as previously used in (27)] to determine the 572 

set of interactions included in the final model. The confidence cutoff was defined as the score at 573 

which exactly 50% of the TF-gene and sRNA-gene interactions above the cutoff were part of the 574 

prior network.  575 

Validation of inferred sRNAs regulons 576 

For each species, we mined publicly available transcriptional profiling data, sRNA-mRNA binding 577 

data and results of other relevant experiments (such as northern blots, point mutations, 578 

translational fusions, ribosome profiling, in-silico predictions) for assessing the accuracy of the 579 

inferred sRNA regulons. A total of 385 candidate E. coli sRNA-mRNA interactions were suggested 580 

by available literature (excluding binding data). This set of potential interactions was extended 581 

to 691 with the addition of genes located in the same operons. E. coli operons prediction was 582 

downloaded from MicrobesOnline (58). Independent studies supporting novel sRNA-mRNA 583 

interactions discussed in the text are cited in the relevant sections.  584 

Differential expression analysis of Spf over-expressing E. coli 585 

Normalized microarray data of Spf over-expression (GEO accession GSE24875) (37) was 586 

downloaded and differential expression analysis was performed using a Bayesian T-test with 587 

Cyber-T (59). Only genes included in the E. coli transcriptomics data used in this study were 588 
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considered in the analysis. In addition, genes that were absent in any of the replicates were 589 

excluded. Finally, genes with p-values ≤ 0.01 were considered differentially expressed. We have 590 

successfully used this p-value threshold for analyzing B. subtilis data (27). 591 

In-silico prediction of sRNA-mRNA interactions 592 

For sRNAs that were conserved among multiple bacterial species, precomputed predictions from 593 

the CopraRNA website (http://rna.informatik.uni-freiburg.de/CopraRNA/Input.jsp) were 594 

downloaded and used as priors. If CopraRNA predictions were not available for a sRNA of interest, 595 

a new run was submitted to the CopraRNA website. All CopraRNA predictions were downloaded 596 

between January and June 2016. 597 

Functional enrichment analysis 598 

Enrichment analysis was performed on the DAVID website (60).  599 

  600 
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FIGURES 810 

  811 
Figure 1. The transcriptional profile of a sRNA is a sub-optimal proxy for its regulatory activity. 812 
The motivation for estimating sRNA activities is illustrated for three E. coli sRNAs. sRNA activities 813 
were estimated for each experimental condition. Each dot represents one microarray 814 
experiment.  The number of known targets used to estimate sRNA activities and to compute the 815 
mean transcription of the analyzed regulons (in each condition) is indicated. A) Spf controls  the 816 
uptake and metabolism of alternative sugars (37). A stronger relation is observed between the 817 
estimated Spf activity and the mean transcription profile of its dependent genes (right panel) 818 
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than between the transcription profile of spf and its targets (left panel). B) RyhB is involved in 819 
iron metabolism and represses expression of iron-consuming genes as part of the iron sparing 820 
response under iron poor conditions (31). Similarly, the relation between estimated RyhB activity 821 
and the mean transcription profile of its targets is stronger than the relation between the 822 
transcription profile of ryhB and its targets. C) Violin plots show the distribution of Pearson 823 
correlation values between sRNAs and the transcriptional profile of their priors when either 824 
estimated sRNA activities or sRNA transcriptional profiles are used for computation. Black lines 825 
indicate median correlation values (-0.5 and -0.18 for sRNA activity and sRNA transcriptional 826 
profiles, respectively). The difference between both sets of correlation values is statistically 827 
significant (T-test p-value = 9.3x10-10). D) FnrS is involved in respiration (61, 62). Probes for the 828 
fnrS gene did not need to be present in the E. coli transcriptomic dataset in order to be included 829 
as potential regulator in our pipeline. FnrS activities were estimated from the transcriptional 830 
profile of 10 FnrS-dependent genes present in the dataset. 831 
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  833 

 834 
Figure 2. General strategy. 835 
A transcriptomic dataset and a prior network (built from experimentally supported TF-gene and 836 
supported or candidate sRNA-mRNA interactions) are used for estimating the regulatory 837 
activities of TFs (TFAs) and sRNAs (SRAs) using a network component analysis approach (27, 57). 838 
Next, estimated TFAs and SRAs, transcriptomic data and prior network are used as input for the 839 
Inferelator to infer a regulatory network composed of a transcriptional layer (TF-based) and a 840 
post-transcriptional layer (sRNA-based). 841 
  842 
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  843 
Figure 3. Performance of the Inferelator and alternative computational methods for expanding 844 
sRNA networks. 845 
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A) Performance of the Inferelator (BBSR) and mixed-CLR, an alternative method, with (indicated 846 
by the SRA suffix) and without incorporation of sRNA activities. Genes predicted as targets but 847 
not used for sRNA activity estimation were considered to be experimentally supported if they 848 
were differentially expressed in transcriptional profiling experiments (deletion or over-849 
expression of CyaR, GcvB, MicA, OmrA, Spf, RybB and RyhB) or when they were part of an operon 850 
containing differentially expressed genes. For each sRNA, targets were ranked based on 851 
confidence score (in the case of the Inferelator) or mutual information-based score (in the mixed-852 
CLR runs). To estimate the basal performance level of the Inferelator, the average of ten runs 853 
with shuffled sRNA priors was also computed (grey line). B) The inferred sRNA regulatory network 854 
of E. coli. To allow comparison between transcriptional and post-transcriptional networks, 855 
overlap between both networks is displayed. C) Violin plots showing distribution of absolute 856 
values of Bayesian regression coefficients (which indicate magnitude and direction) associated 857 
with TF-gene and sRNA-mRNA interactions. Black dots indicate the median. D) The inferred sRNA 858 
regulons are experimentally supported. Experimental support rate for novel predictions (not in 859 
the prior network) and full inferred regulons (recovered priors and novel predictions) of the 860 
Inferelator.SRA run described in panel A are shown on top of each bar. E) The Inferelator can 861 
identify experimentally supported targets among noisy priors. Experimental support rates for 862 
recovered priors are plotted for different levels of noise in the priors. Each dot is the mean value 863 
of ten Inferelator runs (each run with a different set of false priors). Each colored symbol 864 
corresponds to one of eight sRNAs. Black lines indicate the median proportion for all eight sRNAs. 865 
Gray star indicates the expected proportion if priors included in the predicted networks were 866 
randomly selected. Number of true sRNA targets is shown in parentheses. 867 
  868 
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 869 

 870 
Figure 4. The Inferelator can identify computationally predicted sRNA-mRNA interactions with 871 
experimental support. 872 
A) General strategy to integrate computational sRNA-mRNA predictions in our pipeline. The 873 
resulting sRNA regulon is then analyzed to identify sequence-based sRNA-mRNA interactions 874 
supported by transcriptional data and potential additions to the sRNA regulon. B) The 875 
experimental support rate of recovered priors is significantly higher than the one of the original 876 
CopraRNA sRNA priors. The six points per sRNA correspond to the six sets of sRNA priors derived 877 
from CopraRNA predictions (Table S2). C) Inferred RyhB regulon when CopraRNA predictions 878 
associated with enriched functional terms were used as priors. D) Inferred GcvB regulon when 879 
CopraRNA predictions with p-value ≤ 0.01 were used as priors. E) Inferred Spf regulon when 880 
CopraRNA predictions with p-value ≤ 0.01 and associated with enriched functional terms were 881 
used as priors. Diamonds and circles represent sRNAs and target genes, respectively. Solid lines 882 
indicate interactions with experimental support. Dashed lines indicate interactions with no 883 
experimental support; dotted lines indicate unsupported targets that are part of an operon that 884 
contains experimentally supported targets. Priors included in the final regulon are labeled with 885 
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black text. Novel targets (i.e. not present in the priors) are labeled with white text. Targets genes 886 
are colored based on their functional annotation.  887 
  888 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/657478doi: bioRxiv preprint 

https://doi.org/10.1101/657478


 44 

 889 

 890 
Figure 5. Selected expanded sRNA regulons of E. coli, P. aeruginosa and B. subtilis. 891 
White node labels indicate novel targets (not present in the sRNA priors) and black node labels 892 
indicate prior targets. Solid lines indicate priors and experimentally supported novel targets. 893 
Dotted lines indicate interactions partially supported by experimental data, computational RNA-894 
RNA prediction methods or data from functional analogs in other species. Dashed lines indicate 895 
unsupported predictions. A) The inferred E. coli Spf regulon. All predicted targets are 896 
experimentally supported. B) The inferred E. coli GcvB regulon. Novel interactions supported by 897 
transcriptional profiling data, physical binding data or both are shown in green, orange and red, 898 
respectively. C) The inferred PrrF regulon of P. aeruginosa. D) The inferred FsrA regulon of B. 899 
subtilis. In each panel, nodes are color-coded by functional categories. 900 
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TABLES 905 
 906 

Table 1. Escherichia coli sRNAs analyzed in this study 907 

 908 
 909 

 910 

 911 

 912 

 913 

 914 

 915 

sRNA Biological process Prior Targets 
Differentially 

expressed 
genes$ 

References 

CyaR Sugar metabolism luxS, nadE, ompX, yqaE, yobF, 
ptsI 28 (63) 

FnrS Anaerobic respiration cydD, folE, folX, gpmA, maeA, 
marA, metE, sodA, sodB, yobA 59 (61, 62) 

GcvB Amino acid metabolism 
&  transport 

argT, csgD, cycA, gdhA, livJ, lrp, 
phoP, sstT, yifK 88 (64) 

MicA Stress response ecnB, fimB, lamB, lpxT, ompA, 
ompW, tsx, ycfS, yfeK 16 (65) 

OmrA/OmrB^ Stress response 
(membrane) 

cirA, csgD, fecA, fepA, opmR, 
opmT 48 (66, 67) 

RybB Stress response fadL, fiu, lamB, nmpC, ompA, 
ompC, ompF, ompW, rluD, tsx 22 (65) 

RyhB Iron metabolism 
acnA, cysE, dmsA, erpA, fumA, 
fumB, msrB, nagZ, sodB, uof, 

ykgJ, ynfF 
87* (24, 31) 

Spf Sugar metabolism & 
transport 

ascF, fucI, galK, glpF, gltA, 
maeA, nanC, paaK, puuE, srlA, 

sthA, xylF 
42#  (37) 

$Based on available profiling data 
*Includes ribosome profiling data 
#Re-analyzed using Cyber-T (59) 
^OmrA and OmrB were merged in a single regulator (OmrA) 
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Table 2. Putative new members of the RyhB, GcvB and Spf regulons identified using CopraRNA-916 
derived sRNA priors. 917 
 918 

sRNA Target Experimental 
support Recovered prior Prior set% References 

RyhB cheY B, S YES (i) (10, 33) 
RyhB tpx B NO (i) (10) 
RyhB folX B NO (ii) (10) 
RyhB gshB B NO (ii) (10) 
RyhB ubiD B NO (ii),(vi) (10) 
RyhB ybaB B NO (ii),(iv),(vi) (10) 
RyhB fabZ B NO (vi) (10) 
RyhB mrp B, RP NO (iv) (10, 31) 
GcvB dcyD (yedO) B, S NO (i),(ii),(v), (vi) (10, 35) 
GcvB icd B NO (i) (10) 
GcvB purU B, S NO (i) (10, 35) 
GcvB aroP B, S YES (ii)-(vi) (10, 35) 
GcvB gdhA B, S YES (ii),(iii),(vi) (10, 35) 
GcvB ydiJ B YES (ii),(v) (10) 
GcvB hcxB B NO (ii)-(vi) (10) 
GcvB asd B NO (ii)-(vi) (10) 
Spf lysS B, I YES (i) (10, 68) 
Spf tktA B, I YES (i) (10, 69) 
Spf fabA TP NO (i) - 
Spf yjjK TP,I NO (i),(ii),(v), (vi) (10, 68) 
Spf mglB TP, S YES (iii)-(iv) (40) 
Spf rbsB TP NO (iii) - 
Spf fadL TP YES (iv) - 
Spf lpd B YES (iv),(vi) (10) 
Spf mdh B NO (iv),(vi) (10) 
Spf yjiA B, TP YES (v) (10) 

B: Physical interaction between sRNA and candidate target 919 
S: Experimental support from studies in Salmonella 920 
RP: Ribosome profiling 921 
I: Indirect supporting evidence (e.g. differential expression in Hfq gene deletion strain) 922 
TP: Our differential expression analysis of transcriptional profiling data reported in (37)  923 
%Refers to the six versions of CopraRNA-derived sRNA priors described in the main text 924 
 925 

  926 
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SUPPLEMENTARY FIGURES 927 
 928 

 929 
 930 
Figure S1. Motivation for estimating the regulatory activity of sRNAs in Gram-positive and 931 
Gram-negative bacteria. 932 
sRNA activities were estimated for each experimental condition. Each dot represents one 933 
microarray experiment.  The number of experimentally supported targets used to estimate sRNA 934 
activities and to compute the mean transcription of the analyzed regulons (in each condition) is 935 
indicated. In all cases, a stronger relation is observed between the estimated sRNA activities and 936 
the average transcription profile of their dependent genes (right panels) than between the 937 
transcription profile of the sRNAs and the average transcription profile of their targets (left 938 
panels).  A) E. coli CyaR controls genes involved in sugar metabolism (63). CyaR is expressed 939 
during high cellular levels of cAMP. B) E. coli GcvB regulates genes involved in amino acid 940 
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transport and amino acid biosynthesis (64). C) E. coli MicA is a stress related sRNA (65). D) E. coli 941 
OmrA is important in the response to membrane stress (66, 67). E) E. coli RybB is a stress related 942 
sRNA (65). MicA and RybB have multiple targets in common. F) FsrA is involved in the iron sparing 943 
response of B. subtilis (25). FsrA is a functional analog of RyhB in E. coli. G) S596 was recently 944 
identified as the functional analog of RyhB and FsrA in S. aureus (26).  945 
  946 
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 947 
 Figure S2. Presence of false sRNA-mRNA interactions reduced the number of sRNA priors 948 
included in the networks inferred by the Inferelator. 949 
Each dot is the mean value of ten Inferelator runs (each one with a different set of false priors). 950 
Each colored symbol corresponds to one of seven sRNAs. Black lines indicate the median 951 
proportion for all seven sRNAs. Number of true targets for each sRNA is shown in parentheses. 952 
A) Ratio between the number recovered priors in Inferelator runs with noisy sRNA priors and the 953 
total number of recovered priors in the Inferelator run without false positives. B) Ratio between 954 
number of recovered priors with experimental support (true priors) in Inferelator runs with noisy 955 
sRNA priors and the total number of recovered priors in the Inferelator run without false 956 
positives. 957 
 958 
  959 
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SUPPLEMENTARY TABLES 960 
 961 
Table S1. sRNA-mRNA interactions used as priors in this study. 962 
 963 

Species sRNA Target gene Locus 
E. coli CyaR ompX b0814 
E. coli CyaR nadE b1740 
E. coli CyaR yobF b1824 
E. coli CyaR ptsI b2416 
E. coli CyaR yqaE b2666 
E. coli CyaR luxS b2687 
E. coli FnrS gpmA b0755 
E. coli FnrS cydD b0887 
E. coli FnrS maeA b1479 
E. coli FnrS marA b1531 
E. coli FnrS sodB b1656 
E. coli FnrS yobA b1841 
E. coli FnrS folE b2153 
E. coli FnrS folX b2303 
E. coli FnrS metE b3829 
E. coli FnrS sodA b3908 
E. coli GcvB lrp b0889 
E. coli GcvB csgD b1040 
E. coli GcvB phoP b1130 
E. coli GcvB gdhA b1761 
E. coli GcvB argT b2310 
E. coli GcvB sstT b3089 
E. coli GcvB livJ b3460 
E. coli GcvB yifK b3795 
E. coli GcvB cycA b4208 
E. coli MicA tsx b0411 
E. coli MicA ompX b0814 
E. coli MicA ompA b0957 
E. coli MicA ycfS b1113 
E. coli MicA ompW b1256 
E. coli MicA lpxT b2174 
E. coli MicA yfeK b2419 
E. coli MicA lamB b4036 
E. coli MicA fimB b4312 
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E. coli MicA ecnB b4411 
E. coli OmrA ompT b0565 
E. coli OmrA fepA b0584 
E. coli OmrA csgD b1040 
E. coli OmrA cirA b2155 
E. coli OmrA ompR b3405 
E. coli OmrA fecA b4291 
E. coli RybB tsx b0411 
E. coli RybB nmpC b0553 
E. coli RybB fiu b0805 
E. coli RybB ompF b0929 
E. coli RybB ompA b0957 
E. coli RybB ompW b1256 
E. coli RybB ompC b2215 
E. coli RybB fadL b2344 
E. coli RybB rluD b2594 
E. coli RybB lamB b4036 
E. coli RyhB erpA b0156 
E. coli RyhB ykgJ b0288 
E. coli RyhB dmsA b0894 
E. coli RyhB nagZ b1107 
E. coli RyhB acnA b1276 
E. coli RyhB ynfF b1588 
E. coli RyhB fumA b1612 
E. coli RyhB sodB b1656 
E. coli RyhB msrB b1778 
E. coli RyhB cysE b3607 
E. coli RyhB fumB b4122 
E. coli RyhB uof b4637 
E. coli Spf gltA b0720 
E. coli Spf galK b0757 
E. coli Spf puuE b1302 
E. coli Spf paaK b1398 
E. coli Spf maeA b1479 
E. coli Spf srlA b2702 
E. coli Spf ascF b2715 
E. coli Spf fucI b2802 
E. coli Spf xylF b3566 
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E. coli Spf glpF b3927 
E. coli Spf sthA b3962 
E. coli Spf nanC b4311 

P. aeruginosa PrrF m-acnA PA0794 
P. aeruginosa PrrF acnA PA1562 
P. aeruginosa PrrF sdhD PA1582 
P. aeruginosa PrrF sdhA PA1583 
P. aeruginosa PrrF sdhB PA1584 
P. aeruginosa PrrF acnB PA1787 
P. aeruginosa PrrF antA PA2512 
P. aeruginosa PrrF antB PA2513 
P. aeruginosa PrrF antC PA2514 
P. aeruginosa PrrF sodB PA4366 
P. aeruginosa PrrF HUU PA4880 

B. subtilis FsrA dctP BSU04470 
B. subtilis FsrA citB BSU18000 
B. subtilis FsrA gltA BSU18440 
B. subtilis FsrA gltB BSU18450 
B. subtilis FsrA leuC BSU28250 
B. subtilis FsrA leuD BSU28260 
B. subtilis FsrA sdhA BSU28430 
B. subtilis FsrA sdhB BSU28440 
B. subtilis FsrA sdhC BSU28450 
B. subtilis FsrA lutA BSU34030 
B. subtilis FsrA lutB BSU34040 
B. subtilis FsrA lutC BSU34050 
S. aureus S596 addB SAOUHSC_00904  
S. aureus S596 - SAOUHSC_00907  
S. aureus S596 ctaA SAOUHSC_01065  
S. aureus S596 sdhC SAOUHSC_01103  
S. aureus S596 miaB SAOUHSC_01269  
S. aureus S596 katA SAOUHSC_01327  
S. aureus S596 citB SAOUHSC_01347  
S. aureus S596 arlR SAOUHSC_01420  
S. aureus S596 gpsA SAOUHSC_01491  
S. aureus S596 citZ SAOUHSC_01802  
S. aureus S596 - SAOUHSC_01882  
S. aureus S596 hemE SAOUHSC_01962  
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S. aureus S596 rumA SAOUHSC_02113  
S. aureus S596 ilvD SAOUHSC_02281  
S. aureus S596 - SAOUHSC_02303  
S. aureus S596 fdhA SAOUHSC_02582  
S. aureus S596 - SAOUHSC_02651  
S. aureus S596 nreC SAOUHSC_02675  
S. aureus S596 - SAOUHSC_02760  
S. aureus S596 - SAOUHSC_02779  
S. aureus S596 citM SAOUHSC_02943  

   964 
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Table S2.  The Inferelator filters the CopraRNA-derived priors and predicts novel sRNA-mRNA 965 
interactions with experimental support. 966 
 967 

sRNA Prior 
selection& 

sRNA Priors Supported 
priors# 

Priors 
predicted as 

targets# 

New targets# 

Top 100 (i) RyhB 100 29 (0.29)  5 (1) 6 (0.17) 
GcvB 100 30 (0.3) 3 (0.67) 12 (0.42) 
Spf 100 17 (0.17) 6 (0.33) 27 (0.07) 

P-values ⩽ 0.01 (ii) RyhB 49 17 (0.35) 5 (0.4) 29 (0.14) 
GcvB 46 21 (0.46) 11 (0.82) 39 (0.41) 
Spf 54 12 (0.22) 4 (0.25) 17 (0.06) 

Annotated with 
enriched terms (iii) 

RyhB 38 19 (0.5) 6 (1) 9 (0.44) 
GcvB 34 19 (0.56) 11 (0.82) 43 (0.37) 
Spf 43 11 (0.26) 5 (0.4) 6 (0.17) 

P-values ⩽ 0.01 
AND annotated with 
enriched terms (iv) 

RyhB 20 11 (0.55) 1 (1) 6 (0.33) 
GcvB 22 16 (0.73) 13 (0.77) 37 (0.46) 
Spf 23 8 (0.35) 6 (0.67) 12 (0.17) 

 P-values ⩽ 0.01 OR 
annotated with 

enriched terms (v) 

RyhB 67 25 (0.37) 4 (1) 1 (0) 
GcvB 58 24 (0.41) 10 (0.8) 39 (0.36) 
Spf 74 15 (0.2) 7 (0.29) 17 (0.06) 

Top 15+$ (vi) RyhB 29 14 (0.48) 1 (1) 8 (0.38) 
GcvB 25 16 (0.64) 10 (0.8) 36 (0.5) 
Spf 32 10 (0.31) 4 (0.5) 14 (0.14) 

Predicted targets with physical interaction with sRNAs according to binding data in (10), or 968 
differential expression in transcriptional profiling experiments (overexpressing or deleting 969 
putative sRNA regulator) were considered supported. Members of operons with differential 970 
expression in sRNA perturbation were also considered experimentally supported.  971 
&Derived from CopraRNA predictions        972 
#Experimental support rate is shown in parentheses             973 
$Prior set was the union of the top 15 predictions (ranked by associated p-values), and the set of 974 
targets with p-values ⩽ 0.01 and annotated with enriched terms (iv) 975 
 976 
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Table S3. Transcriptional prior networks and transcriptomic datasets used in this study 978 

Species Transcriptional prior 
network% Reference Transcriptomic 

dataset# Reference 

Escherichia coli RegulonDB version 9.0  
(1875*) (29) 

Many Microbe 
Microarrays†  
(4297 x 861) 

(13) 

Pseudomonas 
aeruginosa  

Collection of known 
transciptional interactions          (70) 

COLOMBOS 3.0∆  
(5629 x 559)  (51) Experimental sigma factor 

network (71) 

RegPrecise&                          
(3569^) (30) 

Staphylococcus 
aureus 

SigB regulon 
 (26) HG001  

(2837 x 156) (26) RegPrecice& 

(798^) (30) 

Bacillus subtilis 

SubtiWiki (72) 

BSB1                   
(4445 x 269) (73) Transcriptional network 

constructed with the 
Inferelator      

(2614∑) 

(27) 

%Number of interactions in the corresponding network is shown in parentheses 
#Number of genes and number of arrays in the dataset are shown in parentheses 
*Only signed interaction with strong or confirmed evidence were included as priors 
†Version with un-averaged replicates was used. 16 conditions related to sRNA KOs or their regulators  
were removed 
&Only signed interactions (activation or repression) were considered 
^Total number of interactions in the compiled network (including all mentioned sources) 
∆123 rows missing more than 10% of their values were removed 
∑Total number of interaction the compiled network. The network is composed of TF-gene interactions 
originally reported in SubtiWiki (72) that were recovered in the network reconstructed by the Inferelator, 
 and experimentally supported novel interactions of the Inferelator-reconstructed model (27) 

 979 

 980 
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