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Summary

Several tools analyze the outcome of single-cell RNA-seq experiments, and they often assume a probability
distribution for the observed sequencing counts. It is an open question of which is the most appropriate
discrete distribution, not only in terms of model estimation, but also regarding interpretability, complexity
and biological plausibility of inherent assumptions. To address the question of interpretability, we inves-
tigate mechanistic transcription and degradation models underlying commonly used discrete probability
distributions. Known bottom-up approaches infer steady-state probability distributions such as Poisson
or Poisson-beta distributions from different underlying transcription-degradation models. By turning this
procedure upside down, we show how to infer a corresponding biological model from a given probability
distribution, here the negative binomial distribution. Realistic mechanistic models underlying this distribu-
tional assumption are unknown so far. Our results indicate that the negative binomial distribution arises as
steady-state distribution from a mechanistic model that produces mRNA molecules in bursts. We empirically
show that it provides a convenient trade-off between computational complexity and biological simplicity.

Keywords: gene expression, negative binomial distribution, Poisson-beta distribution, single-cell RNA
sequencing, switching process, bursting process, stochastic differential equation, Ornstein-Uhlenbeck
process

Introduction

When analyzing the outcomes of single-cell RNA
sequencing (scRNA-seq) experiments, it is essen-
tial to appropriately take properties of the result-
ing data into account. Many methods assume a
parametric distribution for the sequencing counts
due to its larger power than non-parametric ap-
proaches. To that end, a family of parametric dis-
tributions which adequately models the data needs
to be chosen. In Supplementary Table S1, we pro-
vide an overview of computational tools for scRNA-
seq analyses and their distribution choices. Among

∗Correspondence
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christiane.fuchs@helmholtz-muenchen.de (Christiane
Fuchs)

the 23 listed tools, around 60% use a negative bi-
nomial (NB) distribution, 40% a zero-inflated dis-
tribution (these two cases can overlap) and about
7% a Poisson-beta (PB) distribution.

Count data is most appropriately described by dis-
crete distributions unless count numbers are with-
out exception very high. A commonly chosen dis-
tribution is the Poisson distribution, which can
be derived from a simple birth-death model of
mRNA transcription and degradation. However,
due to widespread overdispersed data, it is sel-
dom suitable. Another typical choice is a three-
parameter PB distribution (Delmans and Hemberg,
2016, Vu et al., 2016) which can be derived from
a DNA switching model (also called random tele-
graph model, see Dattani and Barahona, 2017, or
basic model of gene activation and inactivation, see
Raj et al., 2006). Parameters of the PB distribu-
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tion can be estimated from scRNA-seq data (Kim
and Marioni, 2013), as well as experimentally mea-
sured and inferred (Suter et al., 2011). This distri-
bution provides good estimates of scRNA-seq data;
however, it entails the estimation of three param-
eters which introduces a high computational cost
(Kim and Marioni, 2013). A frequent third choice
is the NB distribution, used by several tools that
analyze single-cell gene expression measurements
such as SCDE (Kharchenko et al., 2014), Mono-
cle 2 (Qiu et al., 2017) and many more (see Sup-
plementary Table S1). This distribution is chosen
due to computational convenience and good empir-
ical fits. Mathematically, it can be considered as
asymptotic steady-state distribution of the switch-
ing model (see Raj et al., 2006). However, this will
entail biologically unrealistic assumptions. So far,
no mechanistic model is known that directly leads
to a NB distribution in steady state.

To close this gap, we look again at the already
known mechanistic processes and their inferred
parametric steady-state distributions: Poisson and
PB. Integrating these in the general framework
of Ornstein-Uhlenbeck (OU) processes (Barndorff-
Nielsen and Shephard, 2001), we aim to transfer
a general method of connecting mechanistic pro-
cesses via stochastic differential equations (SDEs)
and their theoretical steady-state distributions to
this research problem. Hence, we show how to con-
nect a desired steady-state distribution of the in-
tensity process with the corresponding SDE by us-
ing OU processes and their properties. We use this
method to calculate the corresponding SDE from
the NB distribution as given steady-state distribu-
tion; from this, we can read a corresponding mech-
anistic model. In a (Case Study), we use our R
package scModels to estimate three count distribu-
tion models (Poisson, PB and NB) on simulated
perfect-world data, and perform model selection as
well as goodness-of-fit tests. A comparison with ex-
isting implementations of the PB distribution, de-
tailed derivations and definitions of the employed
probability distributions can be found in the Ap-
pendix. Lastly, we repeat this comparison on real-
world data and extend the models to more realistic
ones by including zero inflation and heterogeneity.

By inferring a mechanistic model for stochastic gene
expression, our work validates the NB distribution
as a steady-state distribution for mRNA content in
single cells.

A Generalized model

B Basic model

C Switching model

D Bursting model

DNA

mRNA

Polymerase

Figure 1: Transcription and degradation models: (A) Gen-
eralized model with time-dependent stochastic transcription
rate Rt and constant deterministic degradation rate rdeg .
(B) Basic model with constant deterministic transcription
and degradation rates. (C) Switching model of gene acti-
vation and inactivation, transcription and degradation. (D)
Bursting model, where bursts occur at rate rburst and burst
sizes have mean sburst . This model differs from (A) in
that transcription events can produce more than one mRNA
molecule.

Results

It has previously been shown how to derive an
mRNA count distribution from a simple birth-
death model for mRNA transcription and degra-
dation (Dattani and Barahona, 2017, Peccoud and
Ycart, 1995). Alterations in the transcription and
degradation model lead to alterations in the re-
sulting mRNA count distribution. We will sketch
the derivation of several such models and distribu-
tions. Our models describe the number of mRNA
molecules in a cell for either one gene or for a group
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of genes for which we can assume identical kinetic
parameters.
In the general context, we consider a transcription-
degradation model with stochastic time-varying
transcription rate Rt and deterministic constant
degradation rate rdeg (Figure 1A). Here, the num-
ber of mRNA molecules at time t is Poisson dis-
tributed with intensity It following the random dif-
ferential equation

dIt = −rdegItdt+Rtdt (1)

for t ≥ 0 and fixed I0 = i0 > 0. Depending on the
transcription process, described by Rt, this RDE
has different solutions which will be shown in the
following (for detailed calculations see Appendix).

Basic model: constant transcription and
degradation. In the basic model, transcrip-
tion and degradation occur at constant rates rtran

and rdeg (Figure 1B). The RDE (1) simplifies to the
ordinary differential equation (ODE)

dIt = −rdegItdt+ rtrandt (2)

with time-independent non-stochastic steady state
It = rtran/rdeg . Hence, if the cell is in steady
state, mRNA counts in this model follow a Poisson
distribution with constant intensity rtran/rdeg (see
Appendix).

Switching model: gene activation and deacti-
vation. In the well-known switching model, a gene
switches between an inactive state where transcrip-
tion is impossible, and an active state where tran-
scription occurs. This can be explained by poly-
merases binding and unbinding to the specific gene
(Figures 1C and S1). The RDE (1) becomes

dIt = −rdegItdt+ rswitch(t)dt (3)

with

rswitch(t) =

{
ron if DNA active at time t

roff if DNA inactive at time t,

where roff < ron . The transcription rate is modeled
by a continuous-time Markov process (rswitch(t))t≥0

that switches between two discrete states ron

and roff with activation and deactivation rates ract

and rdeact , respectively. One usually sets roff = 0.
This corresponds to a system where a gene’s en-
hancer sites can be bound by different transcrip-
tion factors or co-factors. Once bound, transcrip-
tion occurs at constant rate ron , and mRNA con-
tinuously happens at constant rate rdeg . Waiting

times between switches are assumed to be exponen-
tially distributed. As shown in the Appendix, these
assumptions lead to It following a four-parameter
Beta (ract/rdeg , rdeact/rdeg , roff /rdeg , ron/rdeg) dis-
tribution, and therefore the mRNA content in
steady state is described by a Poisson-beta (PB)
distribution. Hence, the probability of hav-
ing n mRNA molecules at time t is time-
independent. For roff = 0 (i. e. no transcription
possible during inactive DNA state), it can be sim-
plified to

P(n, t) =
Γ
(
ract

rdeg
+ rdeact

rdeg

)(
ron

rdeg

)n
Γ
(
ract

rdeg
+ n

)
Γ
(
ract

rdeg

)
Γ(n+ 1)Γ

(
ract

rdeg
+ rdeact

rdeg
+ n

)
× 1F1

(
ract

rdeg
+n,

rdeact

rdeg
+
ract

rdeg
+n,− ron

rdeg

)
, (4)

where Γ denotes the gamma function and

1F1(a, b, z) = Γ(b)
Γ(a)Γ(b−a)

∫ 1

0
ezuua−1(1 − u)b−a−1du

is the confluent hypergeometric function of first
order, also called Kummer function. The density
function of this PB distribution converges to the
density function of a negative binomial (NB)
distribution under specific conditions (Appendix).
For ron = rtran , ract → ∞ and rdeact = 0, the
switching model reduces to the basic model, and
the above PB distribution collapses to a Poisson
distribution with intensity parameter rtran/rdeg , in
consistency with the above-derived results.

Connecting SDEs with steady-state distribu-
tions. Taken together, both models described the
intensity process of a Poisson distribution (Equa-
tions 2 and 3). These intensity processes govern the
transcription and degradation within the mechanis-
tic models. They determine the steady-state dis-
tribution of the intensity parameter, and thus the
overall distribution of the mRNA content. Impor-
tantly, changes in the intensity process lead to dif-
ferent steady-state distributions. We generalize this
framework by using Ornstein-Uhlenbeck (OU) pro-
cesses and their properties (Barndorff-Nielsen and
Shephard, 2001).
The general definition of an OU SDE (adjusted to
the above notation) is given by

dIt = −rdegIt dt+ dLt, (5)

where Lt with L0 = 0 (almost surely) is a Lévy pro-
cess, i. e. a stochastic process with independent and
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stationary increments. In addition, we need Lt to
be a subordinator, that is a Lévy process with pos-
itive increments (Definition 7 in Appendix). A spe-
cial property of OU processes is that, under certain
conditions (see Definition 9), for a chosen distribu-
tion D there is an OU process that in steady state
leads to this distribution D. The other direction,
i. e. the existence of a steady-state distribution D
for a chosen OU process (in terms of its subordi-
nator), holds as well. For a given Lévy subordina-
tor Lt, the characteristic function of D, and thus D
itself, can be derived as described in the following
(adjusted to the notation of Equation 5):

1. Find the characteristic function µ̂Lt(z) of the
Lévy subordinator Lt.

2. Calculate µ̂L1
(z) and write the result in the

form exp(φ(z)) for some function φ(z).

3. Calculate the characteristic function C(z) of
the stationary distribution D of It by setting
C(z) = exp(r−1

deg

∫ z
0
φ(ω)ω−1 dω). C(z) leads

to D.

More details and examples are shown in the
Appendix. Despite this apparently clear line
of action, finding a corresponding law D and
process Lt is challenging without prior knowledge,
e. g. if D is not well-known or Lt is only specified
through the characteristic function of L1. In the
next section, we cast the NB distribution as an
alternative distribution for which a subordinator
can be derived.

Negative binomial distribution: Deriving an
explanatory bursting process. A widely con-
sidered model for scRNA-seq counts is the NB dis-
tribution. Like the above-employed PB distribu-
tion, it accounts for overdispersion by modeling the
variance independently of the mean of the data.
Having one parameter less than PB, NB is an ap-
pealing choice. However, mechanistic models un-
derlying the NB distributional assumption are un-
known. We aim to derive such a mechanistic model
of transcription and degradation by reversing the
steps that led from the switching model to the PB
distribution. For that purpose, an important fact
is that an NB distribution can be expressed as a
Poisson-gamma (PG) distribution, i. e. as a condi-
tional Poisson distribution with gamma distributed
intensity parameter I. One has

PG(α, β) =̂ NB
(
α, (β + 1)−1

)
(6)

for α, β > 0 as derived in the Appendix.
In analogy to the derivation of the PB distribution
from the switching model, we now seek to describe
the mRNA content by a Poisson distribution with
intensity parameter It, which in steady state fol-
lows a gamma distribution instead of a beta dis-
tribution. Thus, we aim to specify an OU process
with the gamma distribution as steady-state dis-
tribution. In terms of mechanistic modeling, this
means that we need to describe a suitable tran-
scription process. Mathematically, we need to spec-
ify the Lévy subordinator Lt accordingly. From fi-
nancial mathematics it is known that a stationary
gamma distribution is obtained if Lt is chosen to
be a compound Poisson process (CPP, see Defini-
tion 8) with exponentially distributed jump sizes
(Barndorff-Nielsen et al., 2001). This will be our
choice of subordinator; however, the parameters of
this process still need to be specified. In the follow-
ing, we will show that the Lévy subordinator of the
OU process (5) whose one-dimensional stationary
distribution is Gamma(α, β), is a CPP with inten-
sity parameter α · rdeg and mean jump size β−1.
To obtain this result, we follow the three-step pro-
cedure described above in reverse order. We start
with D =̂ Gamma(α, β) and transform its charac-

teristic function to exp
{
r−1

deg

∫ z
0
φ(ω)ω−1dω

}
, using

the characteristic function of D as given in the Ap-
pendix, Definition 1:

C(z) =

(
1− iz

β

)−α
= exp

{
−α log

(
1− iz

β

)}
= exp

{
α

∫ z

0

−1

iβ + ω
dω

}
= exp

{
α

∫ z

0

iω

(β − iω)ω
dω

}
= exp

{
r−1

deg

∫ z

0

α rdeg

(
β

β − iω
− 1

)
ω−1dω

}
= exp

{
r−1

deg

∫ z

0

φ(ω)ω−1dω

}
with φ(ω) = α rdeg

(
β

β−iω − 1
)

and i the imaginary

number. Next, we use µ̂L1
(z) = exp(φ(z)) to obtain

µ̂L1
(z) = exp

(
α rdeg

(
β

β − iz
− 1

))
. (7)

We aim to bring this into agreement with µ̂Lt(z),
the time-dependent characteristic function of a gen-
eral CPP Lt with intensity parameter λ. This is
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given by

µ̂Lt(z) = exp(t λ(µ̂Y (z)− 1)),

where Y is a random variable following the distribu-
tion of the jump sizes of the CPP, and µ̂Y is its char-
acteristic function (see Appendix, Definition 8). A
CPP with intensity λ = α · rdeg and i.i.d. expo-
nentially distributed increments Y ∼ Exp(β) with
characteristic function µ̂Y (z) = β/(β − iz) yields
the overall characteristic function

µ̂Lt(z) = exp

(
tαrdeg

(
β

β − iz
− 1

))
.

This is in accordance with µ̂L1
(z) as derived in

Equation (7), and hence, a mathematically appro-
priate subordinator is a CPP with intensity param-
eter α · rdeg and mean jump size β−1.
As a consequence, transcription is expressed via a
stochastic process Lt, namely the CPP, which expe-
riences jumps after exponentially distributed wait-
ing times. In contrast to the Lévy subordinators of
the basic model, Lbasic

t = ron t, and of the switching

model, Lswitch
t =

∫ t
0
rswitch(s)ds, it possesses point-

wise discontinuous sample paths (Figure 2, right).
Intervals without any transcription activity seem to
be disrupted by sudden explosions of mRNA num-
bers. This burstiness led us to call the mechanism
behind the NB distribution the bursting model. We
denote its subordinator by Lburst

t and argue the bi-
ological justification of the model in the Discussion
and Conclusion.
We aim to derive the mechanistic transcription pro-
cess of the bursting model in more detail. Specif-
ically, we tackle the distribution of burst sizes of
mRNA counts. For this we look at a heuristic tran-
sition from Lswitch

t to Lburst
t .

First, we dismantle the shape of the trajectories
of Lswitch

t . As depicted in Figure 2 on the left, such
a trajectory consists of alternating piecewise con-
stant and piecewise linear parts. The constant parts
appear during time intervals without transcription,
i. e. where the DNA is inactive. The length of such
a time interval depends only on the rate ract of the
switching model. Once the DNA switches into the
active mRNA transcribing state, the time interval
with transcription depends only on the rate rdeact .
The slope of the trajectory during this active DNA
state represents the transcription strength and de-
pends only on the parameter ron .
In case the length of the time interval of active DNA
becomes infinitesimally small, and at the same time

the transcription strength becomes infinitesimally
large, the trajectory of Lswitch

t turns into a step
function as depicted in Figure 2 on the right. This
limit is obtained if rdeact → ∞ and ron → ∞ in
a way that needs to be specified. For that reason,
we in the following seek to describe a mechanistic
model for the transition phase (Figure 2, middle)
leading to the bursting model.
In the switching model, as soon as DNA becomes
active, a competition starts between the events
transcription and deactivation. In addition, degra-
dation may happen, which will affect the intensity
process It and the number of mRNA molecules,
but not the transcription process. If a transcrip-
tion event occurs, the competition between tran-
scription and deactivation continues at the same
probability rates as before; the only affected event
probability is the one for degradation because this
probability depends on the current mRNA count.
We now consider the following approximation of the
switching model and call it the transition model :
When DNA becomes active, we allow the events
transcription and deactivation to happen, but not
degradation. To correct for the missing degrada-
tion events, we introduce a waiting time W after
DNA deactivation in which only degradation can
occur, but no DNA activation. For appropriately
chosen rdeact → ∞ and ron → ∞, the approxima-
tion error will tend to zero.
The number of transcription events S during one
active DNA phase is geometrically distributed with
success probability parameter rdeact/(rdeact + ron).
In the interpretation of the geometric distribution,
transcription events are considered as failures, de-
activation as success. The waiting time W needs to
accumulate the times before S transcriptions and
one deactivation. Thus, W = T1 + · · · + TS + D,
where Ti ∼ Exp(ron), i = 1, . . . , S, are the sin-
gle waiting times for each transcription event and
D ∼ Exp(rdeact) is the waiting time till the next
DNA deactivation.
Taken together, the bursting process can be con-
sidered as the limiting process of the approxima-
tion of the switching process as ron → ∞ and
rdeact → ∞ under the condition that the success
probability parameter of the geometric distribution,
rdeact/(rdeact + ron) stays constant. As the link be-
tween the switching model and PB distribution is
known, and since PB converges towards NB under
certain conditions (see Appendix), we can connect
the parameters of the bursting model with those of
the NB distribution and CPP.
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Figure 2: The Lévy subordinator of the switching model is shown on the left by means of an exemplary trajectory. For
small duration of the DNA being active and large transcription strength, its behavior can be approximately described by a
step function as depicted in the middle (transition model). The limit of this approximation, with infinitesimally small DNA
activation time interval and infinitesimally large transcription strength, leads to a trajectory of the subordinator of the bursting
model which is shown on the right.

That is, the bursting model can mechanistically be
described as follows: After Exp(rburst)-distributed
waiting times, a Geo((1 + sburst)

−1)-distributed
number of mRNAs are produced at once, where
sburst is the mean burst size (see also Golding
et al., 2005). As in the basic and switching
models, degradation events occur with Exp(rdeg)-
distributed waiting times. The just described mech-
anistic bursting model is shown in Figure 1D. It can
equivalently be described by the OU process (5)
with Lt being a CPP with Exp(rburst)-distributed
waiting times and Exp(sburst)-distributed jump
sizes. Thus, in steady state, mRNA counts follow a
PG(rburst/rdeg , sburst) distribution or, equivalently,
a NB

(
rburst/rdeg , (1 + sburst)

−1
)

distribution if the
bursting model is assumed.

The NB
(
rburst/rdeg , (1 + sburst)

−1
)

model, again,
can be interpreted as follows (see also Appendix,
Definition 3): Assume you have an empty bucket
into which you put balls according to the follow-
ing stochastic procedure. You perform a number
of independent Bernoulli trials, each with success
probability (1 + sburst)

−1. If there is a failure, you
add one ball to the bucket. If there is a success,
you do not do anything but count the success event.
You continue until there have been rburst/rdeg suc-
cesses. (For interpretation purposes, we here as-
sume rburst/rdeg to be a whole-valued number.)
The larger sburst , the smaller the success proba-
bility, i. e. by expectation you will put more balls
in the bucket for large sburst . Similarly, the larger
the ratio of rburst to rdeg , the more success events
will be waited for, thus the more balls will tend to

be added. The final number of balls in the bucket
represents the number of mRNA molecules in a cell
at steady state.

The above top-down derivation from the steady-
state distribution to the mechanistic process has
to be motivated heuristically in parts. In the
Appendix we prove bottom-up that the above
described mechanistic bursting model indeed leads
to the steady-state NB distribution by directly
calculating the master equation (see also Supple-
mentary Figure S2).

Heterogeneity and dropout. The transcription
and degradation models considered so far describe
the number of mRNA molecules for homogeneously
expressed genes that are actually present in a cell.
Real-world data is usually more complex: First,
cell populations may be heterogeneous. Second,
scRNA-seq measurements will be subject to mea-
surement error. For example, they often contain a
large number of zeros. If a zero is due to techni-
cal error, it is called dropout. Regardless of what
causes this phenomenon, a data model should take
this property into account. We describe two model
extensions here.

Data that originates from different cell populations
(in terms of different transcriptomic properties) can
be modeled mathmatically. If a population consists
of e. g. two subpopulations, each of them is mod-
eled by one single distribution, D1 or D2, parame-
terized via θ1 and θ2, respectively. One assumes
the mRNA count to be distributed according to
pD1(θ1) + (1−p)D2(θ2) with p ∈ [0, 1], that means:
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With probability p, the count distribution of that
cell is D1, otherwise D2. The corresponding mix-
ture density is given by

f2mix(x; θ1, θ2, p) = p f1(x; θ1) + (1− p)f2(x; θ2),

where f1 and f2 are the densities of D1 and D2,
and x is the observed mRNA count. For k > 2
subpopulations, the density can easily be general-
ized to a mixture of k distributions D1, . . . ,Dk with
probabilities p1, . . . , pk:

fkmix(x; θ1, · · · , θk, p1, · · · , pk−1) = (8)

p1 f1(x; θ1) + . . .+

(
1−

k−1∑
i=1

pi

)
fk(x; θk).

The distributions Di can be any (ideally discrete
count) distribution, possibly from different distri-
bution families.
An appropriate model for the occurrence of the
above-mentioned dropout is a zero-inflated distri-
bution (Kharchenko et al., 2014). For one homo-
geneous population, the mRNA count will be dis-
tributed according to p1{0}+(1−p)D(θ), with 1{0}
being the indicator function with point mass at
zero, and the corresponding density function reads

fzi(x; θ, p) = p1{0}(x) + (1− p)f(x; θ),

where f is the density function of D. Analogously,
zero inflation can be added to a mixture of several
distributions, see (8). mRNA counts are then dis-
tributed according to

p11{0} + p2D1(θ1) + . . .+

(
1−

k∑
i=1

pi

)
Dk(θk).

The corresponding density function is given by

fzi-kmix(x; θ1, · · · , θk, p1, · · · , pk)

= p11{0}(x) + p2 f1(x; θ1) + . . .

+

(
1−

k∑
i=1

pi

)
fk(x; θk).

Data application. We perform a comprehensive
comparison of the considered mRNA count distri-
butions, that is the Poisson, NB and PB distribu-
tion, when applied to real-world data. Within each
of the three distributions we further consider mix-
tures of two populations (from identical distribu-
tion types but with different parameters) with and

without additional zero inflation. In total, we in-
vestigate twelve different models as shown in Fig-
ure 3. The numbers of parameters in these models
are listed in Supplementary Table S3.

0 1,251 43 1,294

1,04521,0430

1 7,248 159 7,408

42804271

2 9,969 204 10,175
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A Nestorowa et al.:  

50 3,374 30 3,454

4623266193

111 98 58 267

200812

366 3,746 91 4,203
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ZI-1-pop

ZI-2-pop

2-pop

Pois NB PB

mm10:10x: B

Selected distributions after GOF

1,0001000

10,0001000

Figure 3: Frequencies of chosen distributions via BIC-
after-GOF applied to real-world datasets: (A) Nestorowa
et al. (2016) (B) mm10:10x, Official 10x Genomics Support
(2017).

We estimate these twelve models on two real-world
datasets: The first one stems from Nestorowa
et al. (2016), contains 1,656 mouse HSPCs and
was generated using the Smart-Seq2 (Picelli et al.,
2014) protocol, and thus did not employ unique
molecular identifiers (UMIs). The second dataset
contains 3,356 homogeneous NIH3T3 mouse cells
and has been generated using the 10x Chromium
technique (Zheng et al., 2017), thus incorporat-
ing UMIs. It is part of the publicly available
10x dataset “6k 1:1 Mixture of Fresh Frozen
Human (HEK293T) and Mouse (NIH3T3) Cells”
(Official 10x Genomics Support, 2017). Here, we
refer to this dataset as mm10:10x.
We applied a gene filter (see Appendix), estimated
the model parameters of the twelve considered
models via maximum likelihood, and performed
model selection as described in the Case Study via
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the Bayesian information criterion (BIC). Figure 3
summarizes the frequencies of the chosen models
across genes. We only display those choices where
the chosen distribution with estimated parameters
was not rejected by a goodness-of-fit (GOF) test
(χ2-test) at 5% significance level with multiple test-
ing correction.
In the data from Nestorowa et al. (2016), 16,364
genes remained after filtering, of which 10,175 were
not rejected by the GOF test. Figure 3A shows that
some variant of the NB distribution was chosen for
98% of these genes. Among these, mRNA count
numbers for many genes were best described by the
zero-inflated NB distribution. However, an even
higher preference could be observed for the mixture
of two NB distributions. This can be explained by
taking a closer look at the gene expression counts
of the affected genes (see also Supplementary Fig-
ure S6): Most of those genes not only show many
zeros, but also many low non-zero counts, i. e. many
ones, twos etc., next to higher counts. Such ex-
pression profiles are not covered by a simple zero-
inflated model but prefer a mix of two distributions,
one of them mapping to low expression values (see
Supplementary Table S3).
In the mm10:10x data, 4,203 genes remained after
filtering and the GOF test. Figure 3B shows that
for 89% of these genes, an NB distribution vari-
ant was chosen as most appropriate model. How-
ever, other than for the dataset from Nestorowa
et al. (2016), the standard NB distribution (for one
population, without zero inflation) was sufficient in
the majority of cases. We looked for commonali-
ties between the gene profiles that led to the same
distribution choice. Supplementary Figure S5 sug-
gests an interdependence between the chosen one-
population distributions and the range of the pa-
rameter estimates.
Taken together, the NB distribution was chosen for
most gene profiles, either as a single distribution, a
mixture of two NB distributions or with additional
zero inflation.

NB distribution as commonly chosen count
model. While the mechanistic models and their
steady-state distributions describe actual mRNA
contents in single cells, real-world data underlies
technical variation in addition to biological com-
plexity. We investigated in a simulation study
(Case Study and Figure 4) and on real-world data
(Figure 3) which distributions were most appropri-
ate among those considered to describe gene expres-

sion profiles. The simulation study showed that an
NB distribution may be best suited even if the in
silico data had been generated from the switching
model. Also in the real-data application, the NB
distribution was chosen in most cases. In line with
our expectations, gene profiles of the non-UMI-
based dataset by Nestorowa et al. (2016) showed
strong preference for a two-population mixture or
zero-inflated variant of the NB distribution. In con-
trast, the mm10:10x dataset consists by construc-
tion of homogeneous cells, and 10x Chromium is not
known for large amounts of unexpected zeros in the
measurements. Accordingly, the single-population
NB distribution was sufficient for most gene profiles
here. For 9% of the considered genes in the m10:10x
dataset, mRNA counts were most appropriately de-
scribed by some form of the Poisson distribution.
We have examined these 366 genes for functional
similarities; while estimated parameters show some
apparent pattern (Supplementary Figure S5), we
did not find any defining biological characteristics
(Supplementary Figure S7).
Similar to us, Vieth et al. (2017) performed model
selection among Poisson, NB and PB distributions
by BIC and GOF on several publicly available
datasets. Although they used the method of Vu
et al. (2016) for which computation of the GOF
statistics is impossible for the PB distribution, they
still observed a tendency towards the NB distribu-
tion as preferred models. In our study, we represent
the PB density in terms of the Kummer function,
which allows us to compute the GOF statistics ac-
cordingly.
Different sequencing protocols might lead to
differences in distributions and also might generate
data of different magnitudes. Ziegenhain et al.
(2017) applied various sequencing methods to cells
of the same kind to understand the impact of the
experimental technique on the data. Based on the
so-generated data, Chen et al. (2018) investigated
differences in gene expression profiles between
read-based and UMI-based sequencing technolo-
gies. They concluded that, other than for read
counts, the NB distribution adequately models
UMI counts. Townes et al. (2019) suggest to
describe UMI counts by multinomial distributions
to reflect the nature of the sequencing procedure;
for computational reasons, they propose to ap-
proximate the multinomial density again by an
NB density. Overall, the NB distribution appears
sufficiently flexible to hold independently of the
specific sequencing approach.
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R package scModels. We provide the R pack-
age scModels which contains all functions needed
for maximum likelihood estimation of the consid-
ered distribution models. Three applications of the
Gillespie algorithm (Gillespie, 1976) allow synthetic
data simulation (as used in the Case Study) via the
basic, switching and bursting model, respectively.
Implementations of the likelihood functions for the
one-population case and two-population mixtures,
with and without zero inflation, allow inference of
the Poisson, NB and PB distributions. We pro-
vide a new implementation of the PB density, based
on our novel implementation of the Kummer func-
tion, also known as the generalized hypergeomet-
ric series of Kummer. This became necessary, be-
cause the existing R function (kummerM() con-
tained in package fAsianOptions) was only valid for
specific parameter values, and hence, was not suited
for optimization in continuous unconstrained space
(more information in Appendix). Existing packages
such as D3E (Delmans and Hemberg, 2016), imple-
mented in Python, and BPSC (Vu et al., 2016), im-
plemented in R, use the PB distribution for scRNA-
seq data analysis but based on a different approxi-
mation scheme (see Appendix). With our new im-
plementation of the PB density we did not overcome
the problem of time-consuming calculation, but we
for the first time provided an implementation of the
Kummer function in R valid for all values required
inside the PB density. For a more detailed descrip-
tion of scModels and a package comparison to D3E
and BPSC, see the Appendix.

Case Study

In a simulation study, we generate in silico data
from the three considered mechanistic models: the
basic model (Figure 1B), the switching model (Fig-
ure 1C), and the bursting model (Figure 1D), using
the Gillespie algorithm implemented in scModels.
In order to choose realistic values for the rate pa-
rameters, we orient ourselves on experimental stud-
ies which aim to determine rates of the switching
process in specific cases. For example, Suter et al.
(2011) identify rates for so-called short-lived genes
where mRNA and protein pulses are directly con-
nected to one single on-and-off-switch of a gene. We
provide an overview of the employed rate combina-
tions in Supplementary Table S4.
As a proof of concept, we estimate the three
corresponding distributions, i. e. the Poisson, the

Poisson-beta (PB) and the negative binomial (NB)
distribution, on all generated datasets via maxi-
mum likelihood estimation. To investigate which
distribution explains the data best, we compute the
Bayesian information criterion

BIC = −2`(θ̂) + log(n)dim(θ̂),

where ` represents the corresponding log-likelihood
function, θ the possibly multivariable parameter
vector of the distribution, θ̂ its maximum likelihood
estimate, dim(θ̂) its dimension, i. e. the number of
unknown scalar parameters, and n the sample size.
The distribution with lowest BIC value is consid-
ered most appropriate among all considered mod-
els. Afterwards, we apply a χ2-test to assess the
goodness-of-fit (GOF) and neglect those datasets
for which the distribution fits are rejected at the
5% significance level (without multiple testing cor-
rection). This reduces the total number of 1,000
simulated datasets per model to the amounts dis-
played in Figure 4A.
We investigate whether the selected distributions
correspond to the distributions that arise from the
respective mechanistic models: For the datasets
generated from the basic model, model selection
via BIC-after-GOF indeed prefers the Poisson dis-
tribution in most cases, independently of the used
distribution parameter λ (Figure 4A, first bar, and
Figure 4B). In contrast, for datasets generated by
the switching model, BIC-after-GOF in big parts
chooses either the NB or the PB distribution (Fig-
ure 4A, middle bar). The choice seems to depend on
the employed rate parameters: Figure 4C indicates
a tendency towards the PB distribution for low val-
ues of β; otherwise, the NB distribution often seems
to model the data generated by the switching model
sufficiently well. For datasets generated by the
bursting model, BIC-after-GOF picks the NB dis-
tribution for the majority of the time without any
obvious bias (Figure 4A/D). The study shows that,
apparently, the NB distribution is complex enough
to describe the data generated from the switching
model. The BIC decides in many cases that a po-
tentially better fit is not worth the extra effort for
estimating an additional parameter in the PB dis-
tribution.

Discussion and Conclusion

In this work, we derived a mechanistic model for
stochastic gene expression that results in the NB
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the Appendix.

distribution as steady-state distribution for mRNA
content in single cells. According to the so-obtained
bursting model, transcription happens in chunks,
rather than in a one-by-one production as com-
monly assumed in mechanistic modeling (Dattani
and Barahona, 2017). We discuss the biological
plausibility of bursty transcription further below.
The consideration of the bursting model and its
derivation is interesting from both practical and
theoretical points of view:
First of all, the NB distribution is defined through
two parameters whereas the PB distribution typ-
ically requires three parameters to be specified in
the current context. Therefore, the NB distribu-
tion is computationally less elaborate to estimate,
given some data, than the PB distribution. Several
tools employ the NB distribution to parameterize
mRNA read counts (see Supplementary Table S1).
However, there has been no mechanistic biological
model known so far leading to this distribution,
other than for the Poisson and the PB distribu-

tions (Figures 1B,C). Here, we provide a possible
explanation.
Second, we demonstrated how to generally link a
probability distribution to an Ornstein-Uhlenbeck
(OU) process and derive a mechanistic model. This
brings a new field of mathematics to single-cell biol-
ogy. The procedure can be used to deduce possible
mechanistic processes leading to different steady-
state distributions, exploiting the rich literature on
OU processes from financial mathematics.
Third, although we focused on the resulting
steady-state distributions of the mechanistic mod-
els here, our mathematical framework also provides
model descriptions in terms of stochastic processes.
Nowadays, sequencing counts are commonly avail-
able as snapshot data. However, time-resolved
measurements may become standard (Golding
et al., 2005), and in that case our models open up
the statistical toolbox of stochastic processes to
extract information from interdependencies within
single-cell time series.
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Limiting cases of the switching model that
give rise to the NB distribution are biologi-
cally unrealistic. The NB and PB distributions
have been linked before. Among others, Raj et al.
(2006) and Grün et al. (2014) have shown that
the NB distribution is an asymptotic result of the
switching model and the corresponding PB distri-
bution (see Appendix). However, this result holds
only under biologically unrealistic assumptions as
we elaborate in the following. Our derivation of
the NB steady-state distribution, in contrast, is
based on a thoroughly realistic mechanism of bursty
transcription. The approach by Raj et al. (2006)
and Grün et al. (2014) requires rdeact/rdeg → ∞
and ron/rdeact < 1. That means, the deactiva-
tion rate has to be substantially larger than the
mRNA degradation rate and, simultaneously, the
transcription rate needs to be smaller than the gene
deactivation rate. Here, we discuss the plausibility
of these presumptions:

Schwanhäusser et al. (2011) showed that mRNA
half-life is in median around t1/2 = 9h (range:
1.61h to 40.47h), which results in a degra-
dation rate rdeg = log(2)/t1/2 of 0.077h−1 =

0.00128 min−1 (range: 0.00718 min−1 to
0.00029 min−1). For rdeact/rdeg → ∞, the
mRNA degradation rate needs to become much
smaller than the gene deactivation rate. Visual
comparison shows that density curves of the PB
and according NB distributions start to look
similar for rdeact/rdeg ≈ 20, 000. Assuming a
20,000-fold larger gene deactivation rate results
in rdeact = 29.67 min−1 (range: 143.51 min−1 to
5.71 min−1). This means that on average the
gene switches approximately 30 times per minute
into the off-state, i. e. on average the gene is
in its active state for only two seconds. RNA
polymerases proceed at 30 nt/sec (without pausing
at approximately 70 nt/sec) (Darzacq et al., 2007).
Genes have a length of hundreds to thousands of
nucleotides. Thus, according to the above numbers,
genes cannot be transcribed in such short phases.
The DNA needs to stay active during the whole
transcription process of one (or more) mRNAs;
as soon as the DNA turns inactive, all currently
running transcriptions are stopped. In other words,
although the NB distribution can mathematically
be derived as a limiting steady-state distribution
of the switching model, this entails biologically
implausible assumptions.

This criticism is underpinned by the work of
Suter et al. (2011) who derived ranges of the rates
of the switching model experimentally and by
calculations. Here, only so-called short-lived genes
were taken into account. Thus, observed mRNA
half-lives were on a smaller scale, mainly between
30 and 140 min, resulting in mRNA degradation
rates between 0.005 min−1 and 0.023 min−1. At
the same time, deactivation rates were found
in the range between 0.1 min−1 and 0.6 min−1.
Hence, their quotient is at maximum around
120 and thus nowhere close to infinity. Another
mathematical assumption for deriving the NB limit
distribution was that the transcription rate needed
to be smaller than the deactivation rate. This is
not confirmed by Suter et al. (2011) for most genes.

Biological plausibility of bursting model.
Burst-like transcription has been discussed, e. g.
Golding et al. (2005), Schwanhäusser et al. (2011)
and Suter et al. (2011). We take a look at the
inherent assumptions of the bursting model: The
bursting rate rburst represents the waiting time
until the DNA turns open for transcription in
addition to the time which the polymerase needs
to transcribe. The model assumes that several
polymerases attach simultaneously to the DNA
and terminate transcription at the same time. By
simplifying this part of the transcription process
model, the problem of persisting DNA activation
during the whole transcription process in the
switching model is avoided.

Practical relevance. There is no unambigu-
ous answer to the question of the most appropri-
ate probability distribution for mRNA count data.
Pragmatic reasons will often lead to NB distribu-
tion as already employed by many tools (see Sup-
plementary Table S1). However, the choice may
depend on experimental techniques, the statisti-
cal analysis to be performed, and also differ be-
tween genes within the same dataset. For large read
counts, even continuous distributions may be most
suitable.
While statistics quantifies which model is the most
plausible one from the data point of view, mathe-
matical modelling points out which biological as-
sumptions may implicitly be made when a par-
ticular distribution is used. Importantly, while
the mechanistic model leads to a unique steady-
state distribution, the reverse conclusion is not true.
In general, the basic model and the correspond-
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ing Poisson distribution may appear too simple in
most cases (both with respect to biological plausi-
bility and the ability to describe measured sequenc-
ing data). The switching and bursting models are
harder to distinguish. From the mathematical point
of view, their densities are of similar shape, such
that the less complex NB model will often be pre-
ferred. Answering the question from the biological
perspective may require measuring mRNA gener-
ation at a sufficiently small time resolution (e. g.
Golding et al., 2005) to see whether several mRNA
molecules are generated at once (bursting model) or
in short successional intervals (switching model).
Taken together, we have identified mechanistic
models for mRNA transcription and degradation
with good interpretability, and established a link
to mathematical representations by stochastic pro-
cesses and steady-state count distributions. Specif-
ically, the commonly used NB model is supplied
with a proper mechanistic model of the underlying
biological process. The R package scModels over-
comes a previous shortcoming in the implementa-
tion of the PB density. It provides a full toolbox for
data simulation and parameter estimation, equip-
ping users with the freedom to choose their mod-
els based on content-related, design-based or purely
pragmatic motives.

Appendix

Detailed methods are provided and include the fol-
lowing:

• OVERVIEW TOOLS TABLE

• METHOD DETAILS

– DEFINITIONS AND IDENTITIES

– NEGATIVE BINOMIAL CORRE-
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∗ SWITCHING MODEL

– OU PROCESSES LINK SDES TO
STEADY-STATE DISTRIBUTIONS

∗ OU PROCESS DERIVATION FOR
BASIC MODEL

– MASTER EQUATION OF THE
BURSTING MODEL

– R PACKAGE scModels

∗ BPSC

∗ D3E

∗ scModels

∗ COMPARISON OF scModels WITH
D3E AND BPSC

– DATA APPLICATION

∗ GENE FILTERING

∗ ESTIMATION OF ONE-
POPULATION MODELS

∗ BLOOD DIFFERENTIATION
MARKER GENES

∗ GO TERMS

– OVERVIEW OF SINGLE-CELL ANAL-
YSIS TOOLS

• DATA AND SOFTWARE AVAILABILITY

– Case Study: Simulated data

– Scripts
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Supplemental Information

Supplemental Information includes seven figures
and four tables which can be found at the end of
this paper.
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Appendix

OVERVIEW TOOLS TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Software and Algorithms
R version 3.5.0 R Core Team https://www.r-project.org

R package: BPSC Github https://github.com/nghiavtr/BPSC

R package: biomaRt Bioconductor https://bioconductor.org/packages/

release/bioc/html/biomaRt.html

R package: GOfuncR Bioconductor http://bioconductor.org/packages/

release/bioc/html/GOfuncR.html

Python 2.7.13 Python Software
Foundation

https://www.python.org/downloads/

release/python-2713/

Python package D3E Github https://github.com/hemberg-lab/D3E

MPFR C++ Pavel Holoborodko http://www.holoborodko.com/pavel/mpfr

Other
Data for Figure 3A Nestorowa et al. (2016)
Data for Figure 3B Official 10x Genomics Support (2017)

METHOD DETAILS

DEFINITIONS AND IDENTITIES

Probability distributions and other mathematical terms are often not uniformly defined in literature. In this
section, we explain the terminology used in the present work. References include Dormann (2013), the NIST
library (Olver et al., 2019), Karlis and Xekalaki (2005), Rogers and Williams (2000), Barndorff-Nielsen and
Shephard (2001) and Graham et al. (2017).

Definition 1 (Gamma and exponential distribution). The gamma distribution is a continuous distribution
on [0,∞), parameterized through a shape parameter α > 0 and rate parameter β > 0 (which is the inverse
of the often-used scale parameter) and denoted as

X ∼ Gamma(α, β).

The probability density function of X reads

fγ(x;α, β) =
βα

Γ(α)
xα−1 exp(−βx),

where Γ(z) =
∫∞

0
tz−1 exp(−t)dt for z > 0 is the gamma function. The characteristic function is given by

µ̂X(z) =

(
1− iz

β

)−α
.

For α = 1, one obtains the exponential distribution.

Definition 2 (Beta distribution). The standard beta distribution is a continuous distribution on (0, 1),
parameterized through a shape parameter α > 0 and scale parameter β > 0. The state space can be generalized
from (0, 1) to (a, c) by introducing the minimum and maximum values a and c as additional parameters.
The resulting four-parameter distribution is denoted by

X ∼ Beta(α, β, a, c)
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and has probability density function

fβ(x;α, β, a, c) =
(x− a)α−1(c− x)β−1

(c− a)α+β−1B(α, β)
,

where B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt = Γ(x+ y)/(Γ(x)Γ(y)) for x, y > 0 is the beta function. The character-

istic function of the beta distribution is given by

µ̂X(z) =
1

c
1F1(α;α+ β; iz),

where 1F1 is the confluent hypergeometric function of the first kind (see Definition 6) .

Definition 3 (Negative binomial distribution, NB). The negative binomial (NB) distribution is a discrete
distribution that describes the probability of an observed number of failures

X ∼ NB(r, p)

in a sequence of independent Bernoulli trials until a predefined number of successes has occurred. In each
trial, the probability of success is denoted by p ∈ [0, 1], and the predefined number of successes is r ∈ N0,
respectively. The probability mass function of X is given by

fNB(x; r, p) ≡ PNB(r,p)(X = x) =

(
x+ r − 1

x

)
pr(1− p)x for x ∈ N0.

The probability generating function of X is given by

GNB(z) =

(
p

1− z(1− p)

)r
for |z| ≤ 1.

The above definition of the negative binomial distribution can be extended to r ∈ R+. All equations remain
valid except for the interpretation in terms of Bernoulli trials. This generalization of r is underpinned by
the construction of the Poisson-gamma distribution that is of central interest in this work and derived along
Definition 5.
Note: Here, we describe X to represent the number of failures. Literature also provides different parame-
terizations, where X e. g. denotes the total number of trials (including the last success). The notation used
here is the one implemented in the R function nbinom (package stats), with r and p being called size and
prob. Another commonly specified parameter is the mean mu of X, given by mu = size/prob− size.

Definition 4 (Geometric distribution). The geometric distribution is a discrete distribution that describes
the probability of

X ∼ Geo(p)

failures before the first success in independent Bernoulli trials with success probability p each. The probability
mass function of X is given by

fGeo(x; p) ≡ PGeo(p)(X = x) = p(1− p)x for x ∈ N0.

Note: fNB(r,p)(x; 1, p) ≡ fGeo(p)(x; 1− p).

Definition 5 (Poisson distribution and conditional Poisson distribution). The Poisson distribution is a
discrete count distribution, denoted by

X ∼ Pois(λ),

with probability measure

fPois(x;λ) ≡ PPois(λ)(X = x) =
λx

x!
exp(−λ) for x ∈ N0.
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The probability generating function of X reads

GPois(z) = exp(λ(z − 1)) for |z| ≤ 1.

A conditional Poisson distribution is a Poisson distribution with intensity parameter λ following itself a
distribution with probability density function g, parameterized by θ. We denote this by

X ∼ Pmix(θ).

The probability mass function of X is given by

fPmix(x; θ) ≡ PPmix(θ)(X = x) =

∫ ∞
0

e−λλx

x!
g(λ; θ)dλ for ∈ N0.

Definition 6 (Confluent hypergeometric function of first order). Let w, z, a, b ∈ C. Kummer’s equation

z
d2w

dz2
+ (b− z)dw

dz
− aw = 0

has a regular singularity at the originand an irregular singularity at infinity.One standard solution of this
differential equation that only exists if b is not a non-positive integer is given by the Kummer confluent
hypergeometric function M(a, b, z) with

M(a, b, z) =

∞∑
n=0

a(n)zn

b(n)n!
= 1F1(a; b; z),

where 1F1 is the confluent hypergeometric function of the first kind with the rising factorial defined through

a(0) = 1 and a(n) = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
(a+ n− 1)!

(a− 1)!
=

Γ(a+ n)

Γ(a)
.

The generalized hypergeometric function is given by

pFq(a1, · · · , ap; b1, · · · , bq; z) =
∞∑
n=0

a
(n)
1 . . . a

(n)
p zn

b
(n)
1 . . . b

(n)
q n!

.

If Re(b) > Re(a) > 0, M(a, b, z) can be represented as an integral

M(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ezuua−1(1− u)b−a−1 du.

Definition 7 (Lévy process, subordinator). A process (Xt)t≥0 with values in Rd is called a Lévy process
(or process with stationary independent increments) if it has the following properties:

• For almost all ω in the considered probability space, the mapping t 7→ Xt(ω) is right-continuous on [0,∞],

• for 0 ≤ t0 < t1 < · · · < tn, the random variables Yj := Xtj −Xtj−1
(j = 1, . . . , n) are independent,

• the law of Xt+h −Xt depends on h > 0, but not on t.

An increasing Lévy process is called a subordinator. Examples for Lévy processes are Brownian motion or
a compound Poisson process (see Definition 8).

Definition 8 (Poisson process and compound Poisson process, CPP). A Poisson process Xt with intensity
parameter λ starts almost surely in zero, has independent increments, and for all 0 ≤ s < t one has
Xt −Xs ∼ Pois((t− s)λ). A compound Poisson process Zt with intensity parameter λ is defined as

Zt =

Nt∑
i=1

Yi,
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where Nt is a Poisson process with parameter λ, and Yi are independent and identically distributed random
variables. The characteristic function of a CPP depends on the distribution of the Yi and is given by

µ̂Zt(z) = exp(t λ(µ̂Y (z)− 1)),

where µ̂Y is the characteristic function of the Yi.

Definition 9 (Ornstein-Uhlenbeck (OU) process). Following Barndorff-Nielsen and Shephard (2001), an
Ornstein-Uhlenbeck (OU) process yt is the solution of a stochastic differential equation (SDE) of the form

dyt = −λyt dt+ dzt, (9)

where zt, with z0 = 0 almost surely, is a Lévy process (see Definition 7). If the Lévy process has no Gaussian
components, the process zt is called a non-Gaussian OU process or also a process of OU-type. Often, this
is shortened to OU process. Barndorff-Nielsen et al. (2001) also call zt a background-driving Lévy process
(BDLP) as it drives the OU process. A special property of OU processes is that, given a one-dimensional
distribution D, there exists an OU–type stationary process whose one-dimensional law is D if and only if D
is self-decomposable.
In most applications in financial mathematics, the SDE (9) is transformed to

dyt = −λyt dt+ dzλt for some λ > 0

such that whatever value of λ is chosen, the marginal distribution of yt remains unchanged. In the context
of our work, we however need to work with the original, untransformed SDE (9). In that case, the procedure
to find D for a given Lévy subordinator zt is given as follows (as also described in the main text with
model-specific notation):

1. Find the characteristic function µ̂zt(z) of the Lévy subordinator zt.

2. Calculate µ̂z1(z) and write the result in the form exp(φ(z)) for some function φ(z).

3. Calculate the characteristic function C(z) of the stationary distribution D of yt by setting
C(z) = exp(λ−1

∫ z
0
φ(ω)ω−1 dω). C(z) leads to D.

An example is shown later for the derivation of the steady-state distribution of the basic model (Figure 1A).

Definition 10 (Self-decomposable distributions). Let µ̂ be the characteristic function of a random vari-
able X following the one-dimensional law D. D is self-decomposable iff

µ̂(z) = µ̂(cz)µ̂c(z)

for all z ∈ R and all c ∈ (0, 1) and some family of characteristic functions {µ̂c : c ∈ (0, 1)}.

Lemma The following identities will be used in the derivations on the following pages:

1. For the gamma function Γ, one has

lim
n→∞

Γ(n+ α)

Γ(n)nα
= 1, α ∈ R. (10)

2. Using

• the identity of the binomial series theorem:

∞∑
k=0

(
r

k

)
xk = (1 + x)r,

which holds for |x| < 1 and r can be arbitrary real or complex,
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• the symmetry of binomial coefficients (
z

w

)
=

(
z

z − w

)
,

with z ∈ R > w ∈ R ≥ 0,

• and the identity for upper negation of binomial coefficients(
r

k

)
= (−1)k

(
k − r − 1

k

)
,

with an integer k,

one has
∞∑
k=0

(
r + l − 1

r − 1

)
(−x)

l
=
∞∑
0

(−1)−l
(
−r
l

)
(−x)

l
∞∑
0

(
−r
l

)
xl =

1

(1 + x)r
. (11)

Here, r can be any arbitrary real or complex number but |x| < 1.

NEGATIVE BINOMIAL CORRESPONDS TO POISSON-GAMMA

Negative binomial and Poisson-gamma distributions are equivalent, i. e. they can be transformed into each
other by reparameterization. To show this, we start with a Poisson-gamma (PG) distribution. Let α, β > 0
and x ∈ N0. Then, according to Definitions (1) and (5),

fPG(x;α, β) =

∫ ∞
0

e−λλx

x!

βαλα−1e−βλ

Γ(α)
dλ =

1

x!

βα

Γ(α)

∫ ∞
0

e−λ(1+β)λx+α−1dλ.

Substitution with u = λ (1 + β) and dλ
du = 1

1+β and use of Γ(k) =
∫∞

0
tk−1e−tdt for k > 0 leads to

fPG(x;α, β) =
βα

x!Γ(α)

∫ ∞
0

e−u
(

u

1 + β

)x+α−1
1

1 + β
du =

βα

x!Γ(α)

1

(1 + β)x+α
Γ(x+ α)

=
Γ(x+ α)βα

x!Γ(α)(β + 1)x+α
=

(
x+ α− 1

x

)(
1

β + 1

)x(
β

β + 1

)α
= fNB

(
x;α,

1

β + 1

)
,

which is the probability mass function of the negative binomial distribution. The reparameterization can
also be considered the other way round:

fNB (x; r, p) = fPG

(
x; r,

1

p
− 1

)
for r ∈ R+ and p ∈ (0, 1).

POISSON-BETA CONVERGES TOWARDS NEGATIVE BINOMIAL

In the Results section, we considered the Poisson-beta distribution PB (ract/rdeg , rdeact/rdeg , 0, ron/rdeg)
(see Definitions 2 and 5) as the steady-state distribution of the switching model. For large rdeact/rdeg and
ron/rdeact < 1, the probability mass function of this distribution converges towards the one of a negative
binomial distribution (see Definition 3) (Raj et al., 2006):

P
PB
(
ract
rdeg

,
rdeact
rdeg

,0, ron
rdeg

)(X = n)

=
Γ
(
ract

rdeg
+ rdeact

rdeg

)(
ron

rdeg

)n
Γ
(
ract

rdeg
+ n

)
Γ
(
ract

rdeg

)
Γ(n+ 1)Γ

(
ract

rdeg
+ rdeact

rdeg
+ n

) 1F1

(
ract

rdeg
+ n,

rdeact

rdeg
+
ract

rdeg
+ n,− ron

rdeg

)
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=
Γ
(
ract

rdeg
+ rdeact

rdeg

)(
ron

rdeg

)n
Γ
(
ract

rdeg
+ n

)
Γ
(
ract

rdeg

)
Γ(n+ 1)Γ

(
ract

rdeg
+ rdeact

rdeg
+ n

) ∞∑
l=0

Γ
(
ract

rdeg
+ n+ l

)
Γ
(
ract

rdeg
+ n

) Γ
(
ract

rdeg
+ rdeact

rdeg
+ n

)
Γ
(
ract

rdeg
+ rdeact

rdeg
+ n+ l

)
(
− ron

rdeg

)l
l!


=

Γ
(
ract

rdeg
+ n

)(
ron

rdeg

)n
Γ
(
ract

rdeg

)
Γ(n+ 1)

∞∑
l=0

Γ
(
ract

rdeg
+ n+ l

)
Γ
(
ract

rdeg
+ n

) Γ
(
ract

rdeg
+ rdeact

rdeg

)
Γ
(
ract

rdeg
+ rdeact

rdeg
+ n+ l

)
(
− ron

rdeg

)l
l!


=

Γ
(
ract

rdeg
+ n

)(
ron

rdeg

)n
Γ
(
ract

rdeg

)
Γ(n+ 1)

∞∑
l=0

 Γ
(
ract

rdeg
+ n+ l

)
Γ
(
ract

rdeg
+ n

)
Γ(l + 1)

Γ
(
ract

rdeg
+ rdeact

rdeg

)
Γ
(
ract

rdeg
+ rdeact

rdeg
+ n+ l

) (rdeact

rdeg

)l(
− ron

rdeact

)l
=

Γ
(
ract

rdeg
+ n

)(
ron

rdeg

)n
Γ
(
ract

rdeg

)
Γ(n+ 1)

∞∑
l=0

( ract

rdeg
+ n+ l − 1

ract

rdeg
+ n− 1

) Γ
(
ract

rdeg
+ rdeact

rdeg

)
Γ
(
rdeact

rdeg

)(
rdeact

rdeg

) ract
rdeg

·
Γ
(
rdeact

rdeg

)(
rdeact

rdeg

) ract
rdeg

+n+l

Γ
(
ract

rdeg
+ rdeact

rdeg
+ n+ l

) (
rdeact

rdeg

)−n−l(
rdeact

rdeg

)l(
− ron

rdeact

)l
=

Γ
(
ract

rdeg
+ n

)
Γ
(
ract

rdeg

)
Γ(n+ 1)

(
ron

rdeg

)n(
rdeg

rdeact

)n ∞∑
l=0

( ract

rdeg
+ n+ l − 1

ract

rdeg
+ n− 1

) Γ
(
ract

rdeg
+ rdeact

rdeg

)
Γ
(
rdeact

rdeg

)(
rdeact

rdeg

) ract
rdeg

·
Γ
(
rdeact

rdeg

)(
rdeact

rdeg

) ract
rdeg

+n+l

Γ
(
ract

rdeg
+ rdeact

rdeg
+ n+ l

)
(
− ron

rdeact

)l
1
l+

ract
rdeg

+n

 .
Taking the limit, one can use the asymptotic approximation given in (10) twice, leading to

lim
rdeact
rdeg

→∞
P

PB
(
ract
rdeg

,
rdeact
rdeg

,0, ron
rdeg

)(X = n)

=
Γ
(
ract

rdeg
+ n

)
Γ
(
ract

rdeg

)
Γ(n+ 1)

(
ron

rdeact

)n ∞∑
l=0

( ract

rdeg
+ n+ l − 1

ract

rdeg
+ n− 1

)(− ron

rdeact

)l
1
l+

ract
rdeg

+n

 .
Next, we use (11) to simplify the expression, and to that end assume ron/rdeact < 1:

lim
rdeact
rdeg

→∞
P

PB
(
ract
rdeg

,
rdeact
rdeg

,0, ron
rdeg

)(X = n)

=
Γ
(
ract

rdeg
+ n

)
Γ
(
ract

rdeg

)
Γ(n+ 1)

(
ron

rdeact

)n
1(

1 + ron

rdeact

) ract
rdeg

+n

=
Γ
(
ract

rdeg
+ n

)
Γ
(
ract

rdeg

)
Γ(n+ 1)

(
ron

rdeact

1 + ron

rdeact

)n(
1 +

ron

rdeact

)− ract
rdeg

=

( ract

rdeg
+ n− 1

n

)(
1− rdeact

rdeact + ron

)n(
rdeact

rdeact + ron

) ract
rdeg

= P
NB
(
ract
rdeg

,
rdeact

rdeact+ron

)(X = n).
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This is the probability mass function of the negative binomial distribution NB (ract/rdeg , rdeact/rdeact + ron).
Overall, for rdeact/rdeg →∞ and ron/rdeact < 1, one obtains

fPB

(
x;
ract

rdeg
,
rdeact

rdeg
, 0,

ron

rdeg

)
= fNB

(
x;
ract

rdeg
,

rdeact

rdeact + ron

)
for all x ∈ N0.

MASTER EQUATION OF THE GENERALIZED MODEL

We describe the derivation of steady-state distributions for mRNA counts in the considered mechanistic
transcription and degradation models depicted in Figure 1, starting with the generalized model. In the
following, P (n, t) describes the probability of having n mRNA molecules at time t in the system. The master
equation is set up by looking at the reactions (at most one) that can happen within an infinitesimally small
time interval: Either one mRNA molecule is transcribed, which happens with probability rate Rt, or one
mRNA molecule degrades with rate rdeg , or nothing happens. In the following, we write P(n, t|Rt, rdeg) =
P(n, t) for the sake of simpler notation. The master equation reads

dP(n, t)

dt
=RtP(n− 1, t) + rdeg(n+ 1)P(n+ 1, t)− (Rt + rdeg n)P(n, t).

From this, one obtains the probability generating function

G(z, t) =
∞∑
n=0

znP(n, t)

with derivatives

∂G

∂z
(z, t) =

∞∑
n=0

n z(n−1)P(n, t)

and

∂G

∂t
(z, t) =

∞∑
n=0

zn
dP(n, t)

dt

=
∞∑
n=0

zn (RtP(n− 1, t) + rdeg(n+ 1)P(n+ 1, t)− (Rt + rdeg n)P(n, t))

=Rt z
∞∑
n=0

zn−1P(n− 1, t) + rdeg

∞∑
n=0

zn(n+ 1)P(n+ 1, t)

−Rt
∞∑
n=0

znP(n, t)− rdeg z
∞∑
n=0

zn−1nP(n, t)

=Rt zG(z, t) + rdeg
∂G

∂z
(z, t)−RtG(z, t)− rdeg z

∂G

∂z
(z, t).

This results in the partial differential equation (PDE)

∂G

∂t
(z, t) =(z − 1)RtG(z, t)− (z − 1)rdeg

∂G

∂z
(z, t).

The solution of this PDE with initial condition of having n0 mRNA molecules is calculated by using the
methods of characteristics:

G(z, t|n0) =
[
(z − 1)e−rdeg t + 1

]n0
eIt(z−1) with It =

∫ t

0

Rτe
−
∫ t
τ
rdegdτ

′
dτ. (12)
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The first factor of G(z, t|n0) reflects the dependence of the distribution on the initial value n0. The sec-
ond factor exp(It(z − 1)) corresponds to the long-term behaviour of the mRNA content and equals the
time-dependent probability generating function of a Poisson distribution with intensity parameter It (see
Definition 5). One commonly considers the distribution in steady state (if that state exists), meaning t→∞.
In this limit, the first factor vanishes (i. e. becomes one). Thus, the steady-state distribution is independent
of the starting condition. The second term remains. Thus, in steady state the mRNA count follows a condi-
tional Poisson distribution with intensity parameter It being governed by the transcription and degradation
process. From Definition 5, one gets

Psteady state(n, t) = PIt(n, t) =

∫ ∞
0

xn

n!
e−xfIt(x, t)dx (13)

for n ∈ N0 and t ≥ 0 (but large), where fIt denotes the density of It. To exactly specify the conditional
Poisson distribution we need to take a closer look at the intensity process It, defined through (12), and ex-

amine its long-term (steady-state) behavior. It =
∫ t

0
Rτe

−
∫ t
τ
rdegdτ

′
dτ is a solution of the random differential

equation (RDE)
dIt
dt

+ rdegIt = Rt,

which can be rewritten as
dIt = −rdegItdt+Rtdt. (14)

In this representation, one can directly recognize the impact of the mRNA degradation rate rdeg and the
transcription rate Rt on the number of mRNA molecules: Larger rdeg will lead to lower mRNA numbers,
larger Rt to higher numbers. The properties and steady state of It clearly depend on the choice of Rt. The
RDE (14) can be generalized to a stochastic differential equation by considering Rtdt = dLt, where Lt is an
arbitrary (increasing) Lévy process (Definition 7). Then

dIt = −rdegItdt+ dLt.

Since the trajectories of a Lévy process are not necessarily left-continuous, their derivatives may not exist
in the classical sense. Care has to be taken here (see main text).

In the following sections, we show how to derive the steady-state distribution of It for different choices of Rt
or Lt.

DETERMINISTIC CONTINUOUS TRANSCRIPTION MODEL

We start with a simple model: If Rt is a deterministic rather than stochastic function R(t), It itself becomes
deterministic, now denoted by I(t). Dattani and Barahona (2017) show that the probability to have n
mRNA molecules at time t is Poisson distributed with time-dependent intensity I(t), i. e.

PI(t)(n, t) =
I(t)n

n!
e−I(t).

The solution for I(t) then is

I(t) =

∫ t

0

R(τ)e−
∫ t
τ
rdegdτ

′
dτ =

∫ t

0

R(τ)e−rdeg(t−τ)dτ = e−rdeg t

∫ t

0

R(τ)erdegτdτ. (15)

BASIC MODEL

In the basic model (Figure 1B), R(t) takes only one time-independent value rtran . With Equation (15), we
get

I(t) = rtrane
−rdeg t

(
erdeg t − 1

rdeg

)
=
rtran

rdeg

(
1− e−rdeg t

)
.

All together, for t → ∞, the steady-state distribution of the mRNA count follows a Poisson distribution
with intensity parameter I = rtran/rdeg .
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SWITCHING MODEL

We now assume transcription to be governed by Rt = rswitch(t), which is a Markov chain with two states on
(or active) and off (or inactive), switching between these two states after exponentially distributed waiting
times with rates ract and rdeact . During the active state, transcription happens with rate ron , whereas in
the inactive state, either strongly down-regulated transcription happens (small roff ) or none (roff = 0).
Supplementary Figure S1 shows a more detailed picture of Figure 1C.
Again we calculate the steady-state distribution of mRNA content. We follow the derivation of Smiley and
Proulx (2010), who show how to obtain the density function for the mRNA expression level. Dattani and
Barahona (2017) use this result and transfer it into the probability distribution. Raj et al. (2006) arrive at
the same solution.
The differential equation (14) now reads

dIt = −rdegItdt+ rswitch(t)dt. (16)

As transcription is governed by a Markov chain which is a random process and not deterministic anymore,
the probability distribution for the amount of mRNA at time t is a Poisson mixture distribution as described
by (13). Again, in order to determine the steady-state distribution of mRNA counts, we need to determine
the steady-state distribution of It in (16).
The Markov chain rswitch(t) can be characterized by its infinitesimal generator

Q =

[
−ract rdeact

ract −rdeact

]
,

where the entries on the anti-diagonal Qij (i 6= j) are the transition rate constants from state j to i and
its reciprocals are the means of the exponential waiting times. States 1 and 2 correspond to the inactive
and the active state, respectively. This means ract corresponds to the rate with which a gene is activated
(transition from state 1 to 2), and rdeact is the deactivation rate, that is the rate of the transition from
state 2 to 1. The probability transition matrix P (t) is defined as

P (t) =
1

ract + rdeact

[
rdeact + racte

−(rdeact +ract )t rdeact − rdeacte
−(rdeact +ract )t

ract − racte
−(rdeact +ract )t ract + rdeacte

−(rdeact +ract )t

]
.

P (t) satisfies the Kolmogorov differential equation P ′(t) = QP (t), and the initial condition is

P (0) =

[
1 0
0 1

]
.

The entry Pij(t) denotes the probability of a transition from state j to i. (Note: Here, Q and P (t) are the
transpose of the usual notation as this notation is more convenient in the present stationary analysis.) If the
probabilities for rswitch(0) being in state 1 or 2 are given by p(0) = [poff(0), pon(0)]T , then the distribution
of rswitch(t) is given by p(t) = P (t)p(0) and it follows that

p(t) =
1

ract + rdeact

[
rdeact + (ractpoff (0)− rdeactpon(0))e−(rdeact +ract )t

ract + (rdeactpon(0)− ractpoff (0))e−(rdeact +ract )t

]
. (17)

The matrix p(t) has to fulfill the Kolmogorov differential equation

p′(t) = Qp(t) (18)

as well. Assume 0 ≤ roff < ron , then I0 ∈ [roff /rdeg , ron/rdeg ] and, with probability one, one has It ∈
[roff /rdeg , ron/rdeg ] for t > 0. One has

P(It ∈ [x, x+4x]) = P(It ∈ [x, x+4x], rswitch(t) = ron)

+ P(It ∈ [x, x+4x], rswitch(t) = roff ).

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 5, 2019. ; https://doi.org/10.1101/657619doi: bioRxiv preprint 

https://doi.org/10.1101/657619
http://creativecommons.org/licenses/by-nc-nd/4.0/


The joint cumulative distribution functions (CDFs) associated with the joint probabilities of It being equal
to x and rswitch(t) being equal to ri are given by

Ψi(x, t) = P(It ≤ x, rswitch(t) = ri), for x ≥ 0 and i ∈ {on, off}.

Their derivatives with respect to x given the joint distribution of It = x and rswitch(t) = ri is denoted as
ψi(x, t). The probability density function (PDF) ψ(x, t) associated with It can be characterized by a system
of two partial differential equations (PDEs)

ψ(x, t) = ψon(x, t) + ψoff (x, t), x ∈
[
roff

rdeg
,
ron

rdeg

]
.

Clearly, with (17) one obtains∫ ron/rdeg

roff /rdeg

ψi(x, t)dx = P
(
It ∈

[
roff

rdeg
,
ron

rdeg

]
, rswitch(t) = ri

)
= pi(t), i ∈ {on, off}. (19)

We now set

q(x, t) =

[
ψoff (x, t)

ψon(x, t)

]
,

which is still directly connected with the two-state Markov chain rswitch(t). Both components of q(x, t) are
continuous PDFs, one for each state of rswitch(t). This is again a two-state Markov chain and adopts the
transition rate matrix Q from the process rswitch(t). It hence inherits its property (18), and thus, q(x, t)
fulfills the Kolmogorov differential equation as well, i. e.

q′(x, t) = Qq(x, t).

All together [
d
dtψoff (x, t)
d
dtψon(x, t)

]
=

[
−ract rdeact

ract −rdeact

][
ψoff (x, t)

ψon(x, t)

]

and thus [
∂
∂tψoff (x, t) + ∂

∂xψoff (x, t)dx
dt

∂
∂tψon(x, t) + ∂

∂xψon(x, t)dx
dt

]
=

[
−ractψoff (x, t) + rdeactψon(x, t)

ractψoff (x, t)− rdeactψon(x, t)

]
.

Using (16), we get dx
dt = −rdegx+ rswitch(t). Plugging this in, the system of PDEs can be simplified to

∂

∂t
ψoff (x, t) +

∂

∂x
[ψoff (x, t)(roff − rdegx)] = −ractψoff (x, t) + rdeactψon(x, t) (20)

∂

∂t
ψon(x, t) +

∂

∂x
[ψon(x, t)(ron − rdegx)] = ractψoff (x, t)− rdeactψon(x, t), (21)

which correspond to Equations (6) in Smiley and Proulx (2010). Integrating both sides of (20) and (21)
with respect to x over the range from roff /rdeg to ron/rdeg leads us to

∂

∂t

∫ ron
rdeg

roff
rdeg

ψoff (x, t)dx+

∫ ron
rdeg

roff
rdeg

∂

∂x
[ψoff (x, t)/roff − rdegx)]dx

=− ract

∫ ron
rdeg

roff
rdeg

ψoff (x, t)dx+ rdeact

∫ ron
rdeg

roff
rdeg

ψon(x, t)dx
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and

∂

∂t

∫ ron
rdeg

roff
rdeg

ψon(x, t)dx+

∫ ron
rdeg

roff
rdeg

∂

∂x
[ψon(x, t)(ron − rdegx)]dx

=ract

∫ ron
rdeg

roff
rdeg

ψoff (x, t)dx− rdeact

∫ ron
rdeg

roff
rdeg

ψon(x, t)dx.

With (19), it follows that

∂

∂t
poff (t) + [ψoff (x, t)(roff − rdegx)]

ron/rdeg

roff /rdeg
= −ractpoff (t) + rdeactpon(t)

and

∂

∂t
pon(t) + [ψon(x, t)(ron − rdegx)]

ron/rdeg

roff /rdeg
= ractpoff (t)− rdeactpon(t).

Since Equation (18) still has to be fulfilled, it follows directly that the redundant terms have to be equal to
zero:

ψoff

(
ron

rdeg
, t

)
(roff − ron) + ψoff

(
roff

rdeg
, t

)
(roff − roff )

!
= 0,

which is equivalent to

ψoff

(
ron

rdeg
, t

)
= 0 for t > 0.

Similarly,

ψon

(
ron

rdeg
, t

)
(ron − ron)− ψon

(
roff

rdeg
, t

)
(ron − roff )

!
= 0,

which implies

ψon

(
roff

rdeg
, t

)
= 0 for t > 0. (22)

Following Smiley and Proulx (2010), we next investigate the PDF of the stationary distribution of ψ(x, t),
denoted by fIt , which is analogously determined by a pair of functions fIt,off and fIt,on via

fIt(x) = fIt,off (x) + fIt,on(x),

with fIt,off and fIt,on being the time-independent solutions of (20) and (21). Those can be calculated by
solving the time-independent versions of (20) and (21), given by

d

dx
[fIt,off (x)(roff − rdegx)] = −ractfIt,off (x) + rdeactfIt,on(x) (23)

d

dx
[fIt,on(x)(ron − rdegx)] = ractfIt,off (x)− rdeactfIt,on(x) (24)

with integral conditions derived from Equation (19) for t→∞

∫ ron
rdeg

roff
rdeg

fIt,off (x)dx =
rdeact

ract + rdeact
, (25)

∫ ron
rdeg

roff
rdeg

fIt,on(x)dx =
ract

ract + rdeact
. (26)
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Summing up (23) and (24) results in

d

dx
[fIt,off (x)(roff − rdegx) + fIt,on(x)(ron − rdegx)] = 0 for

roff

rdeg
< x <

ron

rdeg
.

For any solution of (23) and (24) and for any constant K it follows that

fIt,off (x)(roff − rdegx) + fIt,on(x)(ron − rdegx) = K for
roff

rdeg
< x <

ron

rdeg
,

thus

fIt,on(x) =
(rdegx− roff )fIt,off (x) +K

ron − rdegx
. (27)

Plugging in (27) into (23) and setting K = 0 (as all steady-state solutions have to satisfy the condition given
in (22)), we get

f ′It,off (x) =

(
− ract

roff − rdegx
− rdeact

ron − rdegx
+

rdeg

roff − rdegx

)
fIt,off (x),

which can be solved up to a normalizing factor C:[
fIt,off (x)

fIt,on(x)

]
= C

(rdegx− roff )
ract
rdeg
−1

(ron − rdegx)
rdeact
rdeg

(rdegx− roff )
ract
rdeg (ron − rdegx)

rdeact
rdeg

−1

 .
We use Equations (25) and (26) to determine C:

∫ ron
rdeg

roff
rdeg

(rdegx− roff )
ract
rdeg
−1

(ron − rdegx)
rdeact
rdeg dx =

(ron − roff )
ract+rdeact

rdeg

rdeg
B

(
ract

rdeg
, 1 +

rdeact

rdeg

)

=
(ron − roff )

ract+rdeact
rdeg

rdeg
B

(
ract

rdeg
,
rdeact

rdeg

)
rdeact

ract + rdeact

and

∫ ron
rdeg

roff
rdeg

(rdegx− roff )
ract
rdeg (ron − rdegx)

rdeact
rdeg

−1
dx =

(ron − roff )
ract+rdeact

rdeg

rdeg
B

(
1 +

ract

rdeg
,
rdeact

rdeg

)

=
(ron − roff )

ract+rdeact
rdeg

rdeg
B

(
ract

rdeg
,
rdeact

rdeg

)
ract

ract + rdeact
.

Here, B denotes the beta function as introduced in Definition 2. Both of the above integrals have to be
normalized by

(ron − roff )
ract+rdeact

rdeg

rdeg
B

(
ract

rdeg
,
rdeact

rdeg

)
in order to result in rdeact/(ract +rdeact) as given by (25) and ract/(ract +rdeact) as given by (26), respectively.
All together, we get

fIt,off (x) =
rdeg(rdegx− roff )

ract
rdeg
−1

(ron − rdegx)
rdeact
rdeg

(ron − roff )
ract+rdeact

rdeg B
(
ract

rdeg
, rdeact

rdeg

) fIt,on(x) =
rdeg(rdegx− roff )

ract
rdeg (ron − rdegx)

rdeact
rdeg

−1

(ron − roff )
ract+rdeact

rdeg B
(
ract

rdeg
, rdeact

rdeg

) .
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Adding these up will provide the final solution

fIt(x) = fIt,on(x) + fIt,off (x)

=
rdeg(rdegx− roff )

ract
rdeg
−1

(ron − rdegx)
rdeact
rdeg

−1
[(ron − rdegx) + (rdegx− roff )]

(ron − roff )
ract+rdeact

rdeg B
(
ract

rdeg
, rdeact

rdeg

)
=
rdeg(rdegx− roff )

ract
rdeg
−1

(ron − rdegx)
rdeact
rdeg

−1

(ron − roff )
ract+rdeact

rdeg
−1
B
(
ract

rdeg
, rdeact

rdeg

)

=
r

1+
ract
rdeg
−1

deg

(
x− roff

rdeg

) ract
rdeg
−1

r

rdeact
rdeg

−1

deg

(
ron

rdeg
− x
) rdeact

rdeg
−1

(ron − roff )
ract+rdeact

rdeg
−1
B
(
ract

rdeg
, rdeact

rdeg

)

=

(
x− roff

rdeg

) ract
rdeg
−1 (

ron

rdeg
− x
) rdeact

rdeg
−1

(
ron

rdeg
− roff

rdeg

) ract+rdeact
rdeg

−1

B
(
ract

rdeg
, rdeact

rdeg

) . (28)

This is the density of the stationary distribution of It from Equation (3), and it is the density function
of a four-parametric beta distribution (see Definition 2) with parameters a = roff /rdeg , c = ron/rdeg ,
α = ract/rdeg and β = rdeact/rdeg .

The overall steady-state distribution of mRNA counts (see Equation (13)) is by construction a conditional
Poisson distribution. When conditioning the Poisson distribution on an intensity parameter following the
distribution defined by Equation (28), the overall distribution will be a Poisson-beta distribution whose
probability mass function can be written in the following way:

PIt(n, t) =

∫ ∞
0

xn

n!
e−xfIt(x, t)dx

=

∫ ron
rdeg

roff
rdeg

xn

n!
e−x

rdeg(rdegx− roff )
ract
rdeg
−1

(ron − rdegx)
rdeact
rdeg

−1

(ron − roff )
ract+rdeact

rdeg
−1
B
(
ract

rdeg
, rdeact

rdeg

) dx

=

∫ ron
rdeg

roff
rdeg

xn

n!
e−x

1

ron

rdeg(rdeg
x
ron

)
ract
rdeg
−1

(1− rdeg
x
ron

)
rdeact
rdeg

−1

B
(
ract

rdeg
, rdeact

rdeg

) dx.

Substitution by z = (xrdeg − roff )/(ron − roff ) and dx/dz = (ron − roff )/rdeg leads to

PIt(n, t) =

∫ 1

0

(z(ron − roff ) + roff )n

rndegn!
e
−
z(ron−roff )+roff

rdeg
rdeg

ron − roff

(z)
ract
rdeg
−1

(1− z)
rdeact
rdeg

−1

B
(
ract

rdeg
, rdeact

rdeg

) ron − roff

rdeg
dz.

From this point on, we can simplify further when setting roff = 0. This is valid as we suppose no transcription
during the deactivated DNA state. Then

PIt(n, t) =

∫ 1

0

(zron)n

rndegn!
e
−z ron

rdeg
z
ract
rdeg
−1

(1− z)
rdeact
rdeg

−1

B
(
ract

rdeg
, rdeact

rdeg

) dz

=
Γ
(
ract

rdeg
+ rdeact

rdeg

)(
ron

rdeg

)n
Γ
(
ract

rdeg

)
Γ
(
rdeact

rdeg

)
Γ(n+ 1)

∫ 1

0

zne
−z ron

rdeg z
ract
rdeg
−1

(1− z)
rdeact
rdeg

−1
dz
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=
Γ
(
ract

rdeg
+ rdeact

rdeg

)(
ron

rdeg

)n
Γ
(
ract

rdeg
+ n

)
Γ
(
rdeact

rdeg

)
Γ
(
ract

rdeg

)
Γ
(
rdeact

rdeg

)
Γ(n+ 1)Γ

(
ract

rdeg
+ rdeact

rdeg
+ n

) 1F1

(
ract

rdeg
+ n,

rdeact

rdeg
+
ract

rdeg
+ n,− ron

rdeg

)

=
Γ
(
ract

rdeg
+ rdeact

rdeg

)(
ron

rdeg

)n
Γ
(
ract

rdeg
+ n

)
Γ
(
ract

rdeg

)
Γ(n+ 1)Γ

(
ract

rdeg
+ rdeact

rdeg
+ n

) 1F1

(
ract

rdeg
+ n,

rdeact

rdeg
+
ract

rdeg
+ n,− ron

rdeg

)
,

where 1F1 is the confluent hypergeometric function of first order as introduced in Definition 6.

OU PROCESSES LINK SDES TO STEADY-STATE DISTRIBUTIONS

OU processes and the concept of linking them to distributions is widely used in financial mathematics,
especially in the areas of option pricing and volatility modeling. Among others (Sato (1999), Rogers and
Williams (2000)), especially Barndorff-Nielsen and Shephard (2001) and Barndorff-Nielsen et al. (2001) used
OU processes in a wide range and showed and proved a substantial amount of their properties.

OU PROCESS DERIVATION FOR BASIC MODEL

In the following, we will show how to use an OU process to infer the steady-state distribution of the basic
model (Figure 1A). We use the following general OU equation introduced in the main text in Equation (5):

dIt = −rdegIt dt+ dLt.

This general OU SDE is transformed to the ODE of the basic model by setting Lt := rtran t, with dLt =
rtrandt, yielding the ODE

dIt = −rdegIt dt+ rtrandt,

which was already given in the main text as Equation (2). In this simple case, the Lévy subordinator Lt =
rtran t describes a state-continuous process without any jumps or Brownian components. Still, this ODE
fulfills all required properties and can be used for deriving a steady-state distribution for the mechanistic
model according to the procedure that was described before.

To do so, we now follow the three steps described in Definition 9 and in the main text. These are:

1. Find the characteristic function of the Lévy subordinator Lt = rtran t. For the basic model, that is

µ̂Lt(z) = E[exp(izrtran t)] = exp(izrtran t).

2. Calculate µ̂L1
(z) and write the result in the form exp(φ(z)) to determine φ(z). For the basic model,

that is

µ̂L1
(z) = exp(izrtran︸ ︷︷ ︸

=φ(z)

),

so it follows that φ(z) = izrtran .

3. Calculate the characteristic function C(z) of the stationary distribution gD of It by

C(z) = exp

(
r−1

deg

∫ z

0

iωrtranω
−1 dω

)
= exp

(
irtranz

rdeg

)
.

This is the characteristic distribution of a point distribution where all mass is concentrated at a single point
rtran/rdeg (see Sato (1999), Example 2.19). This is also the same solution that we obtained by solving the
ODE directly, shown in the previous sections.
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MASTER EQUATION OF THE BURSTING MODEL

When the mechanistic model of the bursting process in known, its master equation can be set up easily,
especially if one draws a connection to queuing theory. In a general queuing model, customers arrive at one
or several service desks according to some arrival process, which in our case corresponds to the transcription
process. The number of customers waiting is equivalent to the number of mRNA molecules in a cell. As soon
as a customer can proceed from the queue to a service desk, this number decreases by one, corresponding
to mRNA degradation. Here, service time is zero and thus plays no role in our model.
The bursting model described in the main text corresponds to the following queuing system: Customers
do not arrive separately at constant rate, but they arrive in groups (e. g., in buses) after exponentially
distributed waiting times with rate rburst . Then, several people start queuing at the same time. The
number of people arriving with each group follows a geometric distribution with mean sburst .
This process corresponds to a mixture of two queuing problems from Adan and Resing (2002). The first
queuing problem is the basic so-called M/M/∞ queuing setup (Example 11.1.1 in that reference), and the
second one is the M/G/1 model which corresponds to a queue with group arrivals (Chapter 10.4 in that
reference). (The notation here is due to Kendall: In the three-part code a/b/c, a specifies the inter-arrival
time distribution, b the service time distribution and c the number of servers. The letter G is used for a
general distribution, M for the exponential distribution and D for deterministic times.) A standard waiting
process is modeled where the group arrival time is exponentially distributed, service time and group size
follow arbitrary distributions, but only one service counter is open. With those two models in mind, we set
up our bursting queuing process (as mentioned above we don’t have service times). We illustrate all possible
state changes in Supplementary Figure S2. Along that figure, we can set up the master equation directly:

dP(n, t)

dt
=

∞∑
x=0

rburstP(n− x, t)P(X = x) + rdeg(n+ 1)P(n+ 1, t)−

( ∞∑
x=0

rburstP(X = x) + rdeg n

)
P(n, t),

where P denotes the probability mass function of a random variable X that is geometrically distributed with
success probability p. The probability-generating function then reads

∂G

∂t
(z, t) =

∞∑
n=0

zn
dP(n, t)

dt

=
∞∑
x=0

zxrburstP(X = x)
∞∑
n=0

zn−xP(n− x, t) + rdeg

∞∑
n=0

(n+ 1)znP(n+ 1, t)

− rburst

∞∑
x=0

P(X = x)
∞∑
n=0

znP(n, t)− rdegz
∞∑
n=0

nzn−1P(n+ 1, t).

With

G(z, t) =
∞∑
n=0

zn−xP(n− x, t)

G(z, t) =
∞∑
n=0

znP(n, t)

∂G

∂z
(z, t) =

∞∑
n=0

nzn−1P(n+ 1, t)

∂G

∂z
=
∞∑
n=0

(n+ 1)znP(n+ 1, t)

it follows that

∂G

∂t
(z, t) = rburst

( ∞∑
x=0

zxP(X = x)−
∞∑
x=0

P(X = x)

)
G(z, t) + rdeg(1− z)∂G

∂z
(z, t).
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Because of P(X = x) = (1− p)xp and
∑∞
x=0 P(X = x) = 1, it follows that

∂G

∂t
(z, t) = rburst

(
p

1

1− (1− p)z
− 1

)
G(z, t) + rdeg(1− z)∂G

∂z
(z, t).

Taken together, the result is a PDE of order one and equivalent to

G(z, t) =
1− (1− p)z

rburstp− rburst(1− (1− p)z)
∂G

∂t
(z, t)− rdeg(1− z)(1− (1− p)z)

rburstp− rburst(1− (1− p)z)
∂G

∂z
(z, t). (29)

In the following we show how to solve the PDE

G(z(y), t(y)) = Gz ż +Gtṫ.

Ansatz: G(z, t) = U(x,w) = Uz ż + Utṫ

To use this ansatz, we need to determine x and w. We read ż and ṫ from the full equation given by (29):

ż = − rdeg(1− z)(1− (1− p)z)
rburstp− rburst(1− (1− p)z)

ṫ =
1− (1− p)z

rburstp− rburst(1− (1− p)z)

ż

ṫ
=

dz
dy

dt
dy

=
dz

dt
=
−rdeg(1− z)(1− (1− p)z)(rburstp− rburst(1− (1− p)z)

(rburstp− rburst(1− (1− p)z))(1− (1− p)z)
= −rdeg(1− z).

Thus, it follows that

dt =
dz

rdeg(z − 1)
.

Integrating both sides yields∫
dt =

∫
1

rdeg(z − 1)
dz ⇔ log(z − 1) = rdeg t+ c̃

for an arbitrary constant c̃. Next, we take the exponential of both sides

z − 1 = cerdeg t ⇔ c = (z − 1)e−rdeg t

for a constant c. Choose x = c = (z − 1)e−rdeg t and w = t. Then it follows that z = xerdegw + 1. For the
derivatives, we obtain

xz = e−rdeg t xt = −(z − 1)rdege
−rdeg t

wz = 0 wt = 1.

Next, we need to determine Uz and Ut:

Uz =Uxxz + Uwwz = e−rdeg tUx

Ut =Uxxt + Uwwt = −rdege
−rdeg t(z − 1)Ux + Uw.

Finally, we can compute U:

U(x,w) =Uz ż + Utṫ

= e−rdeg tUx
(−rdeg)(1− z)(1− (1− p)z)
rburstp− rburst(1− (1− p)z)
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+
1− (1− p)z

rburstp− rburst(1− (1− p)z)
(
rdege

−rdeg t(1− z)Ux + Uw
)

=
1− (1− p)z

rburstp− rburst(1− (1− p)z)
Uw.

Plug in z and t to get U only in terms of x and w:

U(x,w) =
1− (1− p)(xerdegw + 1)

rburstp− rburst(1− (1− p)(xerdegw + 1))
Uw

=
1− xerdegw − 1 + pxerdegw + p

rburstp− rburst + rburstxerdegw + rburst − rburstpxerdegw − rburstp
Uw

=
erdegw(px− x+ pe−rdegw)

erdegw(rburstx− rburstpx)
Uw.

As Uw = dU/dw, we can separate the terms depending on U and the terms depending on w:

dw

px− x+ pe−rdegw
=

dU

U(rburstx− rburstpx)
.

Integrating both sides leads to:

− log (pxerdegw − xerdegw + p)

rdegx− rdegpx
=

log(U)

rburstx− prburstx
+ f(x),

where f(x) is seen as a constant with respect to w and U and thus can only be a function that depends
on x. Then

log(U) = −rburstx(1− p)
rdegx(1− p)

log (pxerdegw − xerdegw + p) + f(x).

Next, we take the exponential on both sides

U = (pxerdegw − xerdegw + p)
− rburst

rdeg f(x) = (−xerdegw(1− p) + p)
− rburst

rdeg f(x)

Return to the parameterization in terms of z and t:

G(z, t) = U(x = (z − 1)e−rdeg t, w = t)

= (−(z − 1)e−rdeg terdeg t(1− p) + p)
− rburst

rdeg f((z − 1)e−rdeg t),

where f((z − 1)e−rdeg t) =: f(z, t) now represents a function that depends on z and t. We get

G(z, t) = (−z + zp+ 1− p+ p)
− rburst

rdeg f(z, t)

= (1− z(1− p))−
rburst
rdeg f(z, t).

The right hand side is of the form of the probability generating function of a negative binomial distribution
with parameters rNB and pNB as stated in Definition 3 if one chooses f(z, t) = prNB

NB , rNB = rburst/rdeg

and pNB = p. Since the mean burst size in the bursting model is sburst , the parameter p of the geometric
distribution and hence the parameter pNB of the negative binomial distribution is equal to (1 + sburst)

−1.

R PACKAGE scModels

We need to calculate the probability mass function of the Poisson-beta distribution (Equation (4)) in some
sections of this paper. The general form of the probability mass function of the Poisson-beta(α, β, 0, c)
distribution for α, β, c > 0 is given by

PPB(α,β,0,c)(X = n) =
Γ (α+ β) cnΓ (α+ n)

Γ (α) Γ(n+ 1)Γ (α+ β + n)
1F1 (α+ n, α+ β + n,−c)
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for n ∈ N0. To compute this function, the Kummer function 1F1 (a, b, z) (see Definition 6) needs to be
calculated with the following constraints on its parameters:

1. z ∈ R≤0 (where z is the third parameter of 1F1); in our case where z = −c, it thus follows c = ron

rdeg
∈ R≥0.

2. a, b ∈ R≥0 and 0 ≤ a ≤ b. This means in our case where a = α+ n and b = β + n that α = ract

rdeg
∈ R≥0

and β = rdeact

rdeg
∈ R≥0 and n ∈ Z≥0.

Muller (2001) showed how hard it is to compute the Kummer function, because its computational behaviour
splits into a number of distinct regions, which makes it impossible to have a unified algorithm for all possible
input parameters. One of the well-behaved analytical solutions to the function is in the form of an infinite
series. Additionally, for specific constraints on the parameters (which are fullfilled when the function appears
inside the Poisson-beta distribution), there exists an integral representation of the solution. Nevertheless,
neither the integral nor the infinite sum can be computed directly, and thus approximations and workarounds
had to be implemented. There are different existing methods that have tried to address this problem. On
the one hand, there are methods that compute the Poisson-beta distribution by approximating the integral
representation of the Kummer function (see BPSC, Vu et al., 2016); while on the other hand methods employ
the characteristics of the Poisson-beta distribution to estimate its parameters, circumventing the evaluation
of the Kummer function (see D3E, Delmans and Hemberg, 2016). Our approach is to calculate the density
by truncating the infinite series solution to the Kummer function at a reasonable error bound. This is also
challenging as the existing R function kummerM() (Package:fAsianOptions) tries a similar approach but
fails for many parameters (see Supplementary Figure S3). In the following, we will first go into detail of
the existing methods and will then present our new implementation. Afterwards we compare our method
to existing ones in terms of fitting and computation time.

BPSC

Vu et al. (2016) present how to do use the integral representation to calculate the probability mass function
of a Poisson-beta distribution. This is implemented in their R-package BPSC. Vu et al. (2016) define three
different beta-Poisson models (they use this name rather than Poisson-beta) where the so-called three-
parameter beta-Poisson model corresponds to the one we proposed in the main part of this paper, and thus,
is the only one we want to use here and later on in the comparison. Parameter estimation is done via
likelihood maximization, where two techniques are used to speed up the calculations: First, the authors bin
the data and for each bin interval the probability is calculated separately via the PDF of the Poisson-beta
distribution in this interval. Second, to calculate the PDF of such an interval, the integral-notation of the
Kummer function is used and the value of this integral is approximated by using the Gaussian quadrature
method. Starting values for α and β for the parameter optimization are calculated based on the method of
moments whereas c is assumed to be the maximum of the data points.

D3E

Delmans and Hemberg (2016) implemented two different methods to estimate the parameters of the Poisson-
beta distribution in their D3E package that is available in Python: The first implementation is a “fast but
inaccurate method” using the moment matching approach that was first proposed by Peccoud and Ycart
(1995). The second implementation is the Bayesian inference method proposed by Kim and Marioni (2013)
where gamma priors are used for the parameters α, β and c and a collapsed Gibbs sampler, using slice
sampling, is used for parameter estimation. Additionally, D3E provides a differential gene expression test by
using a likelihood ratio test. To overcome the problem of calculating the Kummer function, a Monte Carlo
method is used that approximates the PDF as average of empirical PDFs of a large number of datasets
generated from a Poisson-beta distribution.

scModels

All functions needed to simulate data or estimate distributions are collected in our R package scModels which
is published on CRAN (https://cran.r-project.org/). The current working version can be found on
Github under https://github.com/fuchslab/scModels. Included are the Poisson, the negative binomial,
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and most importantly, a new implementation of the Poisson-beta distribution (probability density function,
cumulative distribution function, quantile function and random number generation) together with a required
new implementation of the Kummer function (also called confluent hypergeometric function of the first kind).
Three implemented Gillespie algorithms allow synthetic data simulation via the basic, switching and bursting
mRNA generating process, respectively. Lastly, we added likelihood functions for one population and two
population mixtures – with and without zero inflation – that allow estimation of the Poisson, negative
binomial and the Poisson-beta distribution. These can be performed with one included wrapper function
fit params() that uses the general-purpose optimization function optim().
As stated above, we implemented a new version in R of the Kummer function that uses the infinite sum
representation. The only existing (at least to our knowledge) implementation in R, kummerM(), which is
contained in the package fAsianOptions, works only for some specific parameter choices but not for others,
e. g. for negative z the kummerM() does not return the correct values (see Supplementary Figure S3). More
specifically, this implementation gives back the correct result only for parameter values that can be written
as m 1

2n with m,n ∈ N0. Because this is impracticable when numerically determining parameters during
likelihood optimization, we decided to correct this issue by reimplementing the Kummer function.
Our new implementation aims to be as close as possible to the true solution for the parameter values we
need, when the Kummer function is used during calculation of the Poisson-beta probability mass function.
Muller (2001) stated that if neither a nor b are negative integers, then the series converges for all finite z.
In reality, however, calculations fails when, for example, a and z have opposite signs. The problem arises
because of cancellations. One of Kummer’s transformations promises to circumvent this problem: Suppose
that a, b ∈ R0

+ and 0 ≤ a ≤ b but z ∈ R−, then

M(a, b, z) = exp(z)M(ã, b̃, z̃),

where ã = b− a, b̃ = b, z̃ = −z. Now for the new parameters it holds that

1. z̃ ∈ R≥0.

2. ã, b̃ ∈ R≥0 for 0 ≤ ã ≤ b̃.
With these new constraints, the power series does not have convergence issues, but is difficult to be evaluated
because of limits on machine precision. Consequently, we use the MPFR library (see https://www.mpfr.

org) for arbitrary-precision floating-point computation. To make the code more readable, we use another
MPFR C++ wrapper (http://www.holoborodko.com/pavel/mpfr/), written by Pavel Holoborodko. The
precision of the temporary results in an expression is chosen as the maximum precision of its arguments,
and the final result is rounded to the precision of the target variable.
Although the final result of the function is quite large, the logarithmic value can be casted into double,
which is then used further. We implement the iterative algorithm described as Method 1 in Muller (2001).
Convergence and error analysis for Taylor series summation using multiple precision arithmetic has been
explained in Brent (2010).
Convergence of the Kummer series as given in Definition 6 can be checked using the ratio test, and an
appropriate lower bound on the number of terms needed for computation can be subsequently calculated.
One has

M(a, b, z) =
∞∑
i=0

Ti , where Ti =
(a)i

(b)i
zi

i!
.

For convergence, we need

1 > lim
i→∞

∣∣∣∣Ti+1

Ti

∣∣∣∣ = lim
i→∞

(a+ i)z

(b+ i)i
,

which is easily fulfilled for all reasonable positive values of a, b, z. With this, we can have a lower bound on
the number of terms needed for a good approximation. Specifically, we need to sum up at least until the
term where the ratio falls below one. Hence, the condition is

(a+ i)z

(b+ i)i
< 1
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and this implies

i2 + i(b− z)− az > 0.

Since only positive values of i are sensible, we have

i =
−(b− z) +

√
(b− z)2 + 4az

2
≤
√
az .

Therefore, the series converges after
√
az terms. Nevertheless, our new implementation of the Kummer

function that is contained in scModels stops the calculations of the infinite sum as soon as a new summand
is smaller than 10−6.

COMPARISON OF scModels WITH D3E AND BPSC

In a simulation study, we compare the implemented functions of the Poisson-beta distribution that are
contained in the three described packages. We first generate sample data on which to test the three packages
by using our gmRNA switch() function contained in scModels. We use this function to generate data from
the switching model as this is the mechanistic model that leads to the Poisson-beta distribution in steady
state. We simulate 1,000 data points from four different sets of parameters, respectively. Supplementary
Table S2 shows the chosen Poisson-beta parameters which are calculated from the parameters used in the
data simulation, α = ract/rdeg , β = rdeact/rdeg and c = ron/rdeg , as well as the results of this comparison
study. These results are also depicted in Supplementary Figure S4. The estimation procedures and time
measurements were performed on a cluster of machines with the following specifications: Intel(R) Xeon(R)
CPU E5620 (2.40GHz). Jobs were submitted using the Univa Grid Engine queuing system with 1 GB of
memory for each job. Package-specific details of the procedure are described in the following:

• BPSC: The function getInitParam() estimates initial parameters of the distribution to be passed to
the optimization function. The estimateBP() function calls the standard optim() routine to generate
final results.

• D3E: D3E is designed for identifying differentially expressed genes based on scRNA-seq data. The
data needs to be provided in a tab-separated read-count table, where rows correspond to genes, and
columns correspond to cell types. Since it works for differentially expressed genes, the columns in the
read-count table have to be labeled for the two different types of cells or conditions. The output is the
parameter values of the Poisson-beta distribution along with other statistics for comparison. Here, we
do not aim to test for differential expression but only intend to estimate model parameters for one type
of cells. Hence, we have to circumvent this procedure: We use the function getParamsBayesian() from
inside the package to bypass the differential expression step.

• scModels: We use the method of moments combined with bootstrap to predict initial values for
the optimization. The final result is obtained by minimizing the negative log-likelihood function that
employs the implemented density function dpb() of the Poisson-beta distribution.

The estimation results show that all three methods are able to estimate a density function that well describes
the data and is close to the true density curve (Supplementary Figure S4). The obtained values of the
negative log-likelihood are in the same range, with our package scModels always leading to the lowest or
equally low (i.,e., best) value (Supplementary Table S2). Computing times and parameter estimates are
variable and do not show a clear picture.

DATA APPLICATION

In the main text, investigations were performed on publicly available real-world datasets. Here we describe
some of the (additional) analysis in more detail.
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GENE FILTERING

The data preprocessing has been performed as follows.
Nestorowa dataset (Nestorowa et al., 2016). As described in the main text, this data was generated
using the Smart-Seq2 protocol and thus the resulting data consists of read counts. The original data matrix
contained 45,771 genes and 1,656 cells. We used two filters: The first one selects only those genes that have
mean expression larger than one, whereas the second filter additionally removes all genes that are only lowly
expressed, i.e. after application of this filter, only those genes remain that have at minimum five reads in at
minimum 20 cells. After having applied the two filters, we are left with a read count matrix of 16,364 genes
and 1,656 cells.
mm10:10x dataset (Official 10x Genomics Support, 2017). This dataset contains UMI counts. The raw
UMI matrix (only the mouse part) consisted of 27,998 genes in 3,427 cells. To filter out cells with only a few
expressed genes that could, for example, be generated by empty droplets, we applied a cell filter that only
selected cells that expressed more than 1,500 genes. The gene filter is slightly less strict than the one for
the first dataset as UMI count matrices show smaller entries (by definition several read counts collapse to
less UMI counts). Thus, we filtered for genes that were expressed in at minimum ten cells with at minimum
three UMIs.

ESTIMATION OF ONE-POPULATION MODELS

We investigated which characteristics led to the same choice of distribution for the gene expression profiles
in the mm10:10x dataset. To that end, we estimated one-population models of the Poisson, NB and PB
distributions for all genes and chose the most appropriate model among those three based on BIC and GOF.
In Supplementary Figure S5, we visualize the values of the parameter estimates for each model and indicate
the chosen models by different colors. For example (see Supplementary Figure S5B), if the NB distribution is
estimated, we observe the following pattern: If the NB distribution is also the chosen one, the corresponding
estimated parameters cover wide ranges p ∈ (0, 1) and r ∈ [0, 12]. In contrast, gene profiles that are most
adequately described by a Poisson distribution would have resulted in a fairly large value of the parameter p
in the NB distribution (i. e. p > 0.2, but more than 90% of them show p > 0.6) and larger values of r (i. e.
r ∈ [0, 16]). Those genes that chose the PB distribution would have had smaller values in both parameters,
namely p < 0.6 and r < 7.

BLOOD DIFFERENTIATION MARKER GENES

In Figure 3A, we observed a relatively large number of genes for which mRNA count data from Nestorowa
et al. (2016) was best described by a mixture of two NB distributions rather than a zero-inflated NB
distribution. In Supplementary Figure S6, we exemplarily display the count frequencies for five known
blood differentiation genes from this dataset (see Paul et al., 2015), where the chosen distribution was a
mixture of two NB distributions. The histograms show that some expression profiles contain many non-zero
but low counts next to several large counts. Supplementary Table S3 lists the BIC values for all twelve
considered models for these five genes.

GO TERMS

In Figure 3B, we observed a relatively large number of genes (in comparison to Figure 3A) for which mRNA
count data from the mm10:10x dataset (Official 10x Genomics Support, 2017) was best described by some
variant of the Poisson distribution, a distribution model that—for general contexts—is considered too simple.
We thus searched for patterns in the gene ontology (GO) terms of these genes (Supplementary Figure S7.)
but did not observe any apparent differences in the characteristics of the Poisson genes (i. e., those genes
where the Poisson distribution was chosen) and the non-Poisson genes. To conduct this analysis, we used GO
term information from http://supfam.org/SUPERFAMILY/cgi-bin/go.cgi and the R packages biomaRt
and GOfuncR. biomaRt determines all GO terms of a gene, and GOfuncR determines all parents of a GO
term. This information was then filtered for the first children GO terms.
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OVERVIEW OF SINGLE-CELL ANALYSIS TOOLS

Many tools exist that are frequently used in single-cell analysis. In Supplementary Table S1, we pro-
vide an overview of those tools that use an underlying probability distribution to describe the counts of a
specific gene’s mRNA. Most of the tools can be found at https://www.scrna-tools.org and at https:

//omictools.com. In the following, we describe the single categories, taken from www.scrna-tools.org.
Additionally, we added the category batch correction.

• Batch Correction: Dealing with data from different batches

• Clustering: Unsupervised grouping of cells based on expression profiles

• Differential Expression: Testing of differential expression across groups of cells

• Dimensionality Reduction: Projection of cells into a lower-dimensional space

• Expression Patterns: Detection of genes that change over a trajectory

• Gene Networks: Identification of co-regulated gene networks

• Gene Sets: Testing or other uses of annotated gene sets

• Imputation: Estimation of expression where zeros have been observed

• Normalization: Removal of unwanted variation that may affect results

• Ordering: Ordering of cells along a trajectory

• Quality Control: Removal of low-quality cells

• Simulation: Generation of synthetic scRNA-seq datasets

• Variable Genes: Identification or use of highly (or lowly) variable genes

• Visualization: Functions for visualizing some aspect of scRNA-seq data or analysis

DATA AND SOFTWARE AVAILABILITY

Case Study: Simulated data

In the Case Study, we generated in silico data from the considered mechanistic models. For the rate
sizes in the switching model, we oriented ourselves on the experimentally derived rates of Suter et al.
(2011). From these, we calculated ranges for the basic and the bursting models to make simulated
data comparable among models: rtran = ron ∪ ract (this is informal notation for the union of the two
ranges of ron and ract), sburst = ron/rdeact and rburst = ract . For each considered model, we gen-
erated a grid of 1,000 unique parameter sets and generated one dataset for each parameter set. The
employed ranges for the parameter grid are described in Supplementary Table S4. The simulated data
can be found in the GitHub repository https://github.com/fuchslab/A_mechanistic_model_for_the_

negative_binomial_distribution_of_single-cell_mRNA_counts.

Scripts

All scripts used in this study can be found in our open GitHub repository https://github.com/fuchslab/

A_mechanistic_model_for_the_negative_binomial_distribution_of_single-cell_mRNA_counts.

Software

The newly generated R package scModels can be found on CRAN and in our open GitHub repository
https://github.com/fuchslab/scModels.
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SUPPLEMENTARY MATERIALS

SINGLE CELL ANALYSIS TOOLS

In Supplementary Table S1, an overview of tools in single-cell analysis is given that are based on distributional
assumptions.

Tool Category

N
B

P
B

O
th

e
r

Z
I

H
u

rd
le

Notes

BASICS Normalization, Differen-
tial Expression, Variable
Genes, Simulation

x Poisson-gamma, Bayesian hierarchical
models, Vallejos et al. (2015)

bayNorm Normalization, Imputa-
tion, Simulation

x Binomial sampling with NB priors, Tang
et al. (2018)

BEAM Ordering, Expression Pat-
terns, Differential Expres-
sion

x Branch-dependent gene expression as a
contrast between two NB GLMs, Qiu et al.
(2017)

BPSC Differential Expression x x BP3 is PB; BP4 adds fractions scaling pa-
rameter; BP5 adds ZI; Vu et al. (2016)

ComBat Batch Correction x Uses normal distribution on normalized
data, Stein et al. (2015)

DCA Imputation x x Eraslan et al. (2019)
DPT Ordering, Expression Pat-

terns, Visualization
x x Normal distribution, Haghverdi et al.

(2016)
D3E Differential Expression x Delmans and Hemberg (2016)
diffxPy Differential Expression x x https://github.com/theislab/diffxpy

limma Normalization, Differen-
tial Expression, Gene Sets,
Batch Correction

x Linear model using normal distributions,
Ritchie et al. (2015)

lineagePulse Differential Expression,
Expression Patterns,
Visualization, Simulation

x x https://github.com/YosefLab/

LineagePulse

MAST Quality Control, Normal-
ization, Differential Ex-
pression, Gene Sets, Gene
Networks

x Logistic regression & Gaussian linear model
for expressed genes, Finak et al. (2015)

M3Drop Differential Expression,
Marker Genes, Visualiza-
tion, Simulation

x Depth-adjusted NB, Andrews and Hemberg
(2018)

powSimR Visualization, Simulation x x The user has the option to include zero in-
flation (default is not to use it), Vieth et al.
(2017)

SAVER Imputation x Huang et al. (2018)
SCDE Differential Expression,

Gene Sets, Visualization
x (x) Poisson-NB mixture: Poisson for dropout,

NB for amplified expression, Kharchenko
et al. (2014)

SCHiRM Normalization, Gene Net-
works, Visualization, Sim-
ulation

x Poisson-lognormal, Intosalmi et al. (2018)
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scImpute Imputation x (x) Gamma-normal mixture on log-
transformed expression: dropouts modeled
via normal distribution, Li and Li (2018)

sctransform Normalization, Integra-
tion, Differential Expres-
sion, Transformation,
Visualization

x Regularized NB regression, Hafemeister
and Satija (2019)

scVI Dimensionality Reduction x x ZINB-like generative model, Lopez et al.
(2018)

Splatter Visualization, Simulation x x Some intermediate steps; gene- and cell-
wise mean are modeled with gamma dis-
tribution, Zappia et al. (2017)

ZIFA Dimensionality Reduction x x Zero-inflated Gaussian (Bernoulli-normal
mixture), Pierson and Yau (2015)

ZINB-WaVE Normalization, Dimension-
ality Reduction, Simula-
tion

x x Risso et al. (2018)

Table S1: Related to Appendix. Overview of single-cell analysis tools with underlying distributional assumptions. In italics we
highlight those categories that were assigned by ourselves to tools that were not listed on www.scrna-tools.org.
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SWITCHING MODEL

In Supplementary Figure S1, we depicted an alternative description of the switching process shown in
Figure 1B that is required for the calculations in Appendix.

Figure S1: Related to Figure 1B and to Appendix. Detailed depiction of the Markov chain that governs the switching process
in the switching model of gene activation, transcription and degradation.
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BURSTING MODEL

In Supplementary Figure S2, all possible state transitions of the bursting model are depicted. This is the
basis for deriving the master equation of the model as shown in the Appendix.

Figure S2: Related to Figure 1D and to Appendix. Bursting model with all states and possible transitions between states,
assuming that at most one event (transcription or degradation) can happen at the same time. Transitions from one node to
itself are not depicted. Here, P (G = k) stands for the probability of a geometrically distributed random variable G taking the
value k.
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KUMMER FUNCTION AND scModels

Supplementary Figure S3 shows the incomplete implementation of the Kummer function that is contained
in dAsianOptions and our fix that is described in more detail in the Appendix.
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Figure S3: Related to Appendix. Behavior of the Kummer function for different parameter sets based on the implementations
of dAsianOptions in black and scModels in blue. (A,C and E) As long as z is positive, the Kummer function of both packages
return the correct values. (B,D and E) As soon as z is negative (smaller than -50) the Kummer function of the fAsianOptions
returns wrong values for a, b and z values that cannot be expressed by the general formula m · 2−n, m,n ∈ N0. This bug is
fixed in the new implementation of the Kummer function in scModels.
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Supplementary Table S2 shows the results of the simulation study on package comparisons that is explained
in the Appendix.

α β c
computing

time
value of negative

log-likelihood

dataset 1
true values 50 200 4,000 - 6,041

BPSC estimate 23 13 1,243 0.61 6,058
D3E estimate 64 270 4,214 188.77 6,044

scModels estimate 66 2,927 36,384 116,760.21 6,038

dataset 2
true values 50 200 500 - 4,210

BPSC estimate 41 83 304 1.05 4,208
D3E estimate 62 1,298 2,195 165.67 4,211

scModels estimate 45 135 399 1,528.39 4,208

dataset 3
true values 50 20 100 - 3,738

BPSC estimate 19 3 82 0.737 3,735
D3E estimate 92 191 221 174.49 3,741

scModels estimate 17 2 80 110.57 3,735

dataset 4
true values 50 20 10 - 2,415

BPSC estimate 73 69 14 0.686 2,415
D3E estimate 43 2,160 368 163.43 2,418

scModels estimate 0.56 0.0037 7.18 89.67 2,413

Table S2: Related to Appendix. Results of parameter estimation for the Poisson-beta distribution using the software packages
BPSC, D3E and scModels. We simulated four datasets of size 1,000 each (for details, see Appendix). The table shows values of
the parameters α, β and c: the true values used for synthetic data generation, and the estimates obtained through application
of the different packages. The last two columns show the computation time measured in seconds for each algorithm and the
value of the negative log-likelihood function (computed using the function scModels::nlogL pb()) evaluated at the respective
parameter values. Smaller values of the negative log-likelihood indicate better point estimates.
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Supplementary Figure S4 shows further results from the package comparison simulation study.
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Figure S4: Related to Appendix and Table S2. Histograms of the four simulated datasets (A-D) and Poisson-beta densities
using the true and estimated parameters from Table S2, respectively: true (blue), scModels (green), BPSC (red) and D3E
(orange).
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ESTIMATION OF ONE-POPULATION MODELS

Supplementary Figure S5 shows the results when forcing each gene of the mm10:10x dataset to be modeled
by a one-population distribution.
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Figure S5: Related to Figure 3B. We estimated one-population models of the Poisson, NB and PB distributions for all genes
in the mm10:10x dataset and chose the most appropriate model based on BIC after GOF. (A) Estimated λ parameters for the
Poisson distribution. Each dot corresponds to one gene. In the top line, estimated values are coloured in red for those genes
where the Poisson distribution was chosen. In the middle line, green symbols indicate estimated values in the Poisson model
where the NB distribution would have been preferred. In the bottom line, blue colour indicates the estimates for those genes
that chose the PB distribution. (B) Similarly for the NB distribution. (C) Similarly for the PB distribution.
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BLOOD DIFFERENTIATION MARKER GENES

In Supplementary Figure S6 we plotted for exemplary reasons some known blood differentiation genes (see
Paul et al., 2015).
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Figure S6: Related to Figure 3A. (A)-(E) Log-transformed mRNA count profiles for five genes (based on 1,656 single cells) from
the dataset by Nestorowa et al. (2016), known as blood differentiation markers. Coloured lines indicate the densities of the
estimated empirical and NB distribution variants: empirical distribution (data, black), NB distribution (NB, red), zero-inflated
NB distribution (ZINB, green), mixture of two NB distributions (NB2, blue), zero-inflated mixture of two NB distributions
(ZINB2, yellow). The blue NB2 was the most appropriate distribution in all cases.
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Supplementary Table S3 contains more estimation details for these five genes.

Table S3: Related to Figures 3A and S6 and Appendix. BIC values for selected blood differentiation marker genes (based
on 1,656 single cells) as described in Supplementary Figure S6 and the text body of the Supplementary Materials. Columns:
Results for five genes Csf1r, Ccl5, Prss34, H2-Aa, Gfi1b. Rows: BIC values for all twelve estimated models; the selected model
and the corresponding p-value of the GOF test (for all gene profiles, the NB2 model is chosen); percentages of zero counts, one
counts, and counts larger than one.

Csf1r Ccl5 Prss34 H2-Aa Gfi1b
BICPois (1 parameter) 377,837 62,721 194,047 1,224,382 1,690,010
BICZIPois (2 parameters) 330,413 29,741 107,502 984,306 1,618,095
BICPois2 (3 parameters) 60,829 9,930 20,889 390,636 489,696
BICZIPois2 (4 parameters) 74,845 8,759 150,63 568,092 502,270
BICNB (2 parameters) 10,295 1,878 1,545 8,454 29,842
BICZINB (3 parameters) 10,292 1,865 1,490 8,454 18,653
BICNB2 (5 parameters) 8,505 1,693 1,387 7,672 17,585
BICZINB2 (6 parameters) 9,978 1,713 1,401 8,477 18,676
BICPB (3 parameters) 10,407 1,865 1,490 8,516 18,675
BICZIPB (4 parameters) 10,414 1,897 1,555 8,618 18,803
BICPB2 (7 parameters) 10,187 1,920 1,570 8,467 18,778
BICZIPB2 (8 parameters) 10,727 1,937 1,653 8,564 18,787
Selected model NB2 NB2 NB2 NB2 NB2
p-value of GOF (χ2) test 1.515e-02 9.577e-01 1.054e-05 9.371e-01 2.233e-04
Percentage of zero counts 29.0% 91.4% 93.5% 54.0% 6.2%
Percentage of one counts 26.3% 5.6% 3.7% 19.1% 8.1%
Percentage of counts larger than one 44.6% 3.0% 2.7% 26.9% 85.7%
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GO TERMS

Supplementary Figure S7 shows a GO term analysis comparing groups of genes which where best described
by a Poissonian model and those that were not.
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Figure S7: Related to Figure 3B. (A) Amount of Poisson and non-Poisson genes (after GOF) that are contained in the first
level of GO term children of the families biological process and molecular function. (B) Distribution of the first children GO
terms of the families biological process and molecular function for Poisson and non-Poisson genes. (C) Distribution of the
overall number of GO terms a gene is contained in. GO terms were taken from the initial biomaRt determination. (D) Gene
importance of Poisson and non-Poisson genes: Functional coupling network of genes taken from funcoup.sbc.su.se. Each link
with weight > 0.75 was taken and the distribution of the number of coupled genes per gene in this network is plotted.
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Case Study

Supplementary Table S4 shows the ranges of the rates used in the simulation study in the Case Study.

Table S4: Related to Figure 4. Ranges of rates in the simulation study in the Case Study.

Mechanistic model Rate parameter Minimum value Maximum value

Basic model
rtran 0.005 2.5
rdeg 0.001 0.05

Bursting model

rburst 0.005 0.06
sburst 0.5 2.5
rdeg 0.001 0.05

Switching model

ract 0.005 0.06
rdeact 0.01 0.6
ron 0.5 2.5
rdeg 0.001 0.05
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