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Abstract 6 

Immunosenescence is believed to be responsible for poor vaccine efficacy in the elderly. To 7 
overcome this difficulty, research into vaccination strategies and the mechanisms of immune 8 
responses to vaccination is required. By analyzing the innate and adaptive immune responses to 9 
vaccination with vaccinia virus (VACV) in mice of different age groups, we found that immune cell 10 
recruitment, production of cytokines/chemokines and control of viral replication at the site of 11 
intradermal vaccination were preserved in aged mice and were comparable with younger groups. 12 
Analysis of cervical draining lymph nodes (dLN) collected after vaccination showed that numbers of 13 
germinal center B cells and follicular T helper cells were similar across different age groups. The 14 
number of VACV-specific CD8 T cells in the spleen and the levels of serum neutralizing antibodies 1 15 
month after vaccination were also comparable across all age groups. However, following intranasal 16 
challenge of vaccinated mice, body weight loss was lower and virus was cleared more rapidly in aged 17 
mice than in younger animals. In conclusion, vaccination with VACV can induce an effective 18 
immune response and stronger protection in elderly animals. Thus, the development of recombinant 19 
VACV-based vaccines against different infectious diseases should be considered as a strategy for 20 
improving vaccine immunogenicity and efficacy in the elderly. 21 

1 Introduction 22 

Old people have increased susceptibility to viral and bacterial infections (1) and in people above 65, 23 
about a third of mortality is related to infections (2, 3). Prophylactic vaccination is recommended for 24 
the elderly to reduce the burden and severity of infectious diseases (4). However, the elderly respond 25 
poorly to the majority of existing vaccines, including vaccines against influenza virus, 26 
pneumococcus, hepatitis B, tetanus, pertussis, and diphtheria (5–10). It is important, therefore, to 27 
search for ways to overcome this barrier. 28 

The reported decline in the immune system fitness with age, is thought to contribute to reduced 29 
vaccine efficacy in humans and mice (5, 6, 11, 12). This decline impacts both innate and adaptive 30 
immunity. Impaired recognition of microorganisms and their components, inadequate receptor 31 
signaling, and altered cytokine production have all been reported (13). Additionally, dysfunctionality 32 
of innate immune cells such as neutrophils, NK cells, monocytes, macrophages and dendritic cells in 33 
their ability to migrate, perform phagocytosis, kill bacteria and secrete cytokines have been noted (2, 34 
14–16). Decline in the performance of multiple aspects of the adaptive immune response with age 35 
also occurs. This includes decreased numbers of naïve T cells, a reduced TCR repertoire, an impaired 36 
clonal expansion and generation of functional effector and memory T cells, a decrease in 37 
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immunoglobulin class switch recombination, and restricted B cell diversity and antibody production 38 
(7, 11, 17). 39 

Vaccinia virus (VACV), a dsDNA poxvirus (18), is the vaccine used to eradicate smallpox (19). 40 
VACV replicates in the cytoplasm of infected cells and has a large genome containing approximately 41 
200 genes (20). Between one third and one half of these genes encode proteins dedicated to immune 42 
evasion (21). Although VACV is immunosuppressive, vaccination with VACV in humans and mice 43 
results in the generation of robust, long-lasting antibody and T-cell memory that provides protection 44 
against re-infection (21–25). The ability of VACV to generate such potent humoral and cellular 45 
memory, and its proven ability to protect a population against infectious disease, makes it an 46 
excellent model system for studying immune response to vaccination. In this study, we use a mouse 47 
model of VACV intradermal vaccination that generates protective immunity against re-infection (26). 48 
In this model, both antibody and T cell memory responses are robust and consistent and contribute to 49 
protection against subsequent challenge with VACV (27, 28). Although VACV has been studied 50 
intensively in multiple models, the influence of aging on the immune and vaccination responses to 51 
VACV is unexplored. In this study, we analyzed the innate and adaptive immune response to VACV 52 
infection and evaluated subsequent resistance to re-infection in three different age groups of mice. 53 

2 Materials and Methods 54 

2.1 Animals and study design 55 

C57BL/6 female mice were used in the study. All animals were purchased from Charles River and 56 
housed in the Cambridge University Biomedical Services facility. All animal experiments were 57 
conducted according to the Animals (Scientific Procedures) Act 1986 under PPL 70/8524 issued by 58 
UK Home Office. 59 

The animal experiments included intradermal (i.d.) vaccination and intranasal (i.n.) challenge (Fig. 60 
1). Animals of 7, 22 and 54 weeks old (wo) received i.d. injections with 104 plaque-forming unit 61 
(PFU) of VACV strain Western Reserve (WR) or control vehicle (0.01% BSA/PBS) into both ear 62 
pinnae. VACV used for infection of animals was purified from infected cells by sedimentation 63 
through a sucrose cushion and subsequently through a sucrose density gradient. Virus infectious titers 64 
were determined by plaque assay on BSC-1 cells and frozen at -70 ℃ until use. To evaluate the 65 
immune response during the acute stage post vaccination, ear tissues and cervical draining lymph 66 
nodes (dLN) were collected at day (d) 7 after i.d. infection for measurement of infectious viral titers 67 
(by plaque assay), leukocyte infiltration (by FACS) and levels of cytokines/chemokines (by Luminex 68 
assay). Serum and spleens were obtained at 29 d post i.d. injections to measure the titers of anti-69 
VACV neutralizing antibodies and the composition of T cell subpopulations. 70 

To assess the efficacy of vaccination, vaccinated mice (33 d post i.d. VACV infection) and naïve 71 
(non-vaccinated) mice were challenged i.n. with ~107 PFU of VACV WR. The body weights of 72 
animals were monitored daily. Whole lungs were collected at 12, 24 and 48 h post challenge to 73 
measure the viral load and the levels of cytokines/chemokines in tissue. 74 

The baseline of immunological parameters was measured in the blood, spleens and lungs of naïve, 75 
uninfected animals (n=4). 76 

2.2 Flow cytometry 77 
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FACS analysis was performed to measure the immune cells present in ear tissue, cervical dLN, blood 78 
and spleens of vaccinated and mock-vaccinated animals. 79 

Ear pinnae were collected at 7 d post i.d. infection, then separated into dorsal and ventral layers and 80 
both leaflets were placed into 1.5 ml of the RPMI-1640 (Gibco, Cat. # 21875034) medium containing 81 
750 U/ml of collagenase I (Gibco, Life Technologies, Cat. # 17018-029) and 100 U/ml of DNase I 82 
(Invitrogen, Cat. # 18047-019), followed by 1 h incubation at 37 qC on an orbital shaker, at 1100 83 
rpm. Suspensions containing digested ear samples were mashed through a 70-µm cell-strainer, mixed 84 
with 10 ml of RPMI-1640 medium containing 35% of isotonic Percoll (Sigma, Cat. # P1644-500ML) 85 
and centrifugated for 10 min at 940 relative centrifugal force (rcf) without use of brake, at 21 qC. 86 
Then the supernatants were removed and the cells were washed with PBS. 87 

To obtain cells from spleen or dLN, organs were mashed through 70-µm cell-strainers and washed 88 
with PBS. 89 

Before antibody staining of prepared cell suspensions, red blood cells (RBC) were lysed with BD 90 
Pharm Lyse (BD Biosciences, Cat. # 555899) and washed twice. The suspensions were then passed 91 
through 70-µm Pre-Separation Filters (Miltenyi, Cat. # 130-095-823) and cells were counted using a 92 
NucleoCounter NC-250 (Chemometec). 93 

For the staining of cell surface markers, the samples were incubated with Zombie Fixable Viability 94 
dye (Suppl. Table 1) and, after one washing step, purified rat anti-mouse CD16/CD32 antibody 95 
(Mouse BD Fc Block) (BD Biosciences, Cat. # 553141) was added to the cell suspension to block 96 
non-specific binding. For intracellular Bcl-6 and Ki-67 staining, Foxp3 / Transcription Factor 97 
Staining Buffer Set (eBioscience, Cat. # 00-5523-00) was used. Then surface or intracellular markers 98 
were stained with monoclonal antibodies (mAbs). The myeloid panel for surface staining of ear 99 
tissue included: CD45, Siglec-F, CD11c, CD11b, Ly6C, Ly6G, as well as dump channel markers 100 
(CD3, CD5, CD19, NK1.1). The lymphoid cells in ear tissue were identified using mAbs to CD45, 101 
NK1.1, CD3, CD4, CD8 and with MHC dextramer H-2Kb/TSYKFESV. For assessment of VACV-102 
specific CD8 T cells in the dLN, the cells were stained with mAbs to CD45, CD19, CD3, CD8 and 103 
with MHC dextramer H-2Kb/TSYKFESV. The panel for identification of germinal center B cells and 104 
follicular helper T lymphocytes in dLNs included mAbs to CD4, CXCR5, PD-1, B220, Bcl-6 and ki-105 
67. Subpopulations of CD4 and CD8 T cells in spleen were determined by staining with mAbs to 106 
CD45, CD3, CD8, CD4, CD62L and CD44 and with MHC dextramer H-2Kb/TSYKFESV. All dyes 107 
and mAbs used in the study are listed in Suppl. Table 1. After final washing steps, cells were 108 
resuspended with PBS containing 4% paraformaldehyde and were analyzed by FACS on a BD 109 
LSRFortessa (BD Biosciences). Gating strategies are shown in Suppl. Figs. 1-5. 110 

For the Trucount assay, blood was collected into Micro K3EDTA Tubes (Sarstedt, Cat. # 111 
41.1395.005) to prevent clot formation. Then, 50 µl of whole blood was pipetted into the bottoms of 112 
BD Trucount Tubes (BD Biosciences, Cat. # 340334), followed by 5 min incubation with Mouse BD 113 
Fc Block. The samples were then stained with mAbs to CD45, CD3, CD4, CD8, CD19, NK1.1, 114 
CD11b and Ly6G (Suppl. Table 1). After RBC lysis, and without washing steps, the absolute 115 
numbers of different leukocyte populations were determined by analysis on a BD LSRFortessa. The 116 
gating strategy is shown in Suppl. Fig. 6. 117 

2.3 Intravascular staining 118 

To discriminate leukocytes resident in ear tissue from cells located in vasculature, intravascular 119 
staining was undertaken as described (29). Briefly, 5 mins before culling, mice were given an 120 
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intravenous infusion into the tail vein of anti-CD45-BV421 mAb (BioLegend, Cat. # 103134). Ears 121 
were then collected, and cells were isolated as described under Flow cytometry above. The cell 122 
suspension from ear tissue was stained with anti-CD45-PE (BioLegend, Cat. # 103106). Blood 123 
leukocytes were gated as double positive (CD45-BV421+ CD45-PE+) cells, while tissue immune cells 124 
were positive only for CD45-PE (see Suppl. Fig. 7). 125 

2.4 Identification of cytokines and chemokines in ear, dNL and lung tissues 126 

Whole ears, dLN or lungs were homogenized in 1.5 ml flat-bottom tubes containing 400 µl of 0.5% 127 
BSA/PBS using an OMNI Tissue Homogenizer with plastic hard tissue probes (OMNI International). 128 
The tissue homogenates were centrifugated at 10,000 rcf for 20 min, at 4 qC and supernatants were 129 
obtained and stored at -70 qC. Magnetic Luminex Mouse Premixed Multi-Analyte kits were 130 
purchased from R&D Systems, to assess levels of IFNJ, TNFD, IL-1E, IL-4, IL-6, IL-10, IL-33, 131 
CCL2, CCL3, CCL4, CCL5, CCL7, CCL20, CXCL1, CXCL2, CXCL5 (LIX) and CXCL10 using a 132 
Luminex 200 analyzer (Luminex Corporation). 133 

2.5 Measurement of viral loads in ear and lung tissues 134 

Whole ears and lungs were homogenized as described above. The homogenates underwent 3 cycles 135 
of freezing-thawing-sonicating to rupture cells and release the virus. Titers of infectious virus in ear 136 
samples were then determined by plaque assay using BSC-1 cell monolayers. 137 

The VACV load in the lungs of vaccinated mice was measured by determining the virus genome 138 
copy number by qPCR as described (30). Genome copy number correlated well with measurement of 139 
virus infectivity by plaque assay (Suppl. Fig. 8). Supernatant samples from lung tissue homogenates 140 
were prepared by centrifugation of samples at 1000 rcf for 5 min, followed by 10-fold dilution of 141 
supernatants with nuclease-free water (Cat. # AM9930, Ambion). The reaction mix for real-time 142 
qPCR included: 2 µl of template, 10 µl of 2x qPCRBIO Probe Mix (Cat. # PB20.21-5, 143 
PCRBiosystems), 0.8 µl of 10 µM VACV gene E9L forward primer 144 
(CGGCTAAGAGTTGCACATCCA), 0.8 µl of 10 µM E9L reverse primer 145 
(CTCTGCTCCATTTAGTACCGATTCT), 0.4 µl of 10 µM E9L probe (TaqMan MGB Probe – 146 
AGGACGTAGAATGATCTTGTA, Applied Biosystems). The reaction volume was adjusted to 20 147 
µl with nuclease-free water. A plasmid containing the VACV E9L gene served as a standard and was 148 
a gift from Brian M Ward, University of Rochester Medical Center, USA. qPCR assays were run on 149 
a ViiA 7 Real-Time PCR System (Applied Biosystems) with the following protocol: initial 150 
denaturation step at 95 qC for 3 min, followed by 40 cycles of denaturation at 95 qC for 5 sec, 151 
annealing and extension at 60 qC for 30 sec. 152 

2.6 Assessment of VACV neutralizing anybody titer in serum 153 

Blood was collected into Microvette CB 300 µl tubes with clot activator (Sarstedt, Cat.# 16.440.100). 154 
Blood samples were left at room temperature for 2 h to allow clot formation. After centrifugation at 155 
10,000 rcf for 5 min at room temperature, serum was collected and stored at -70 qC. Titers of 156 
neutralizing antibodies were assessed by plaque reduction neutralization test as described (31). Serum 157 
samples were incubated at 56 qC for 30 min to inactivate complement, then two-fold serial dilutions 158 
were prepared (1:50, 1:100, 1:200, 1:400, 1:800 and 1:1600) using 2.5% fetal bovine serum 159 
(FBS)/1% PenStrep/DMEM medium. The diluted serum samples, or reference samples (medium 160 
only), were mixed 1:1 with medium containing 3.2 × 102 PFU/ml of VACV WR that had been 161 
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purified by sedimentation through a sucrose density gradient. After 1 h incubation at 37 qC, samples 162 
were titrated by plaque assay and half maximal inhibitory concentrations (IC50) were calculated. 163 

2.7 Statistical analysis 164 

SPSS v.25 and GraphPad Prism v.8 were used for statistical analysis. The Mann–Whitney U-test was 165 
applied for the comparisons of two groups of animals and two-way repeated measures (RM) 166 
ANOVA tests were performed for the analysis of time series data. The Spearman’s correlation test 167 
was used for relation analysis of variables. P values <0.05 were considered significant. 168 

3 Results 169 

Three groups (7, 22 or 54 weeks old [wo]) of female C57BL/6 mice were used representing young 170 
adults, middle-aged and old animals. Fifty-four-wo animals were chosen to represent the elderly 171 
group based on their general appearance (graying coat, thinning hair) and the death rate in the colony 172 
(~10% lethality over a 6-week period not associated with the experiment). One of the features of 173 
immunosenescent phenotype is a decline in naïve T cell numbers, which correlates with increased 174 
morbidity and mortality (32, 33). Notably, the 54-wo mice had significantly decreased absolute 175 
numbers of CD4 and CD8 cells in the blood and spleen in comparison with younger animals (Fig. 176 
2A). This reduction was due to the decline of naïve subpopulations of CD4 and CD8 cells, while 177 
effector T cell numbers were increased in 54- and 22-wo mice in comparison with the 7-wo group 178 
(Fig. 2B, Suppl. Fig. 5). 179 

3.1 Immune response to intradermal infection with VACV is conserved across different age 180 
groups 181 

Intradermal (i.d) infection with VACV leads to the development of skin lesions 5-6 days (d) post 182 
infection that usually heal within 21 d (26). Using this infection model, immune cell recruitment, the 183 
levels of cytokines/chemokines and the viral load in ear tissues 7 d post i.d. infection was analyzed in 184 
three different age groups of mice. 185 

FACS analysis of leukocyte populations in the infected ear showed that ~97% represented cells that 186 
had infiltrated into the tissue, whereas immune cells from blood circulation constituted only 3% of 187 
the total leukocytes (Suppl. Fig. 7). In comparison with 7- and 22-wo mice, infected ear tissues of 54-188 
wo animals showed significantly less infiltration of different leukocyte populations including NK, 189 
CD4 and CD8 T cells, Ly6C+ (inflammatory) monocytes and CD45+CD3-CD5-CD19-NK1.1-Siglec-190 
F-CD11c+ cells, which represent a mixed population of dendritic cells and macrophages (Fig 3A). 191 
The presence of VACV-specific CD8 T cells in infected ear tissue of 54-wo mice was also reduced 192 
compared to the other groups (Fig. 3B). Given that amounts of CD4 and CD8 T cells in the elderly 193 
mice were diminished before the infection (Fig. 2), the lower numbers of lymphoid populations 194 
infiltrating ears are likely reflective of the reduced availability of T cells in the blood circulation. 195 

The levels of cytokines and chemokines detected in ear tissue of the old animals at 7 d after i.d. 196 
infection did not differ greatly from the young and middle-age groups (Fig. 3C). Only the levels of 197 
IL-10 and CCL5 were reduced, while the concentrations of TNFD and IL-6 were increased in 54-wo 198 
mice in comparison with 7- and 22-wo animals. However, the amplitude of these changes did not 199 
exceed 2-fold. In addition, viral loads in infected ear tissues were similar in all groups (Fig. 3D). 200 
Hence, the infected ear tissue was able to respond to the infection via production of inflammatory 201 
mediators and control virus infection to equivalent levels across all age groups. These data provide 202 
further evidence that the lower cell recruitment into the ear tissue of 54-wo mice was likely due to the 203 
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reduced availability of circulating cells rather than due to changes in local responses in the infected 204 
tissue. Thus, functionally, the immune response to i.d. vaccination with VACV was preserved in 54-205 
wo mice, and the ability to control VACV replication at the site of infection was equal across 7-, 22- 206 
and 54-wo groups. 207 

3.2 54-week old mice have enhanced cytokine response to intradermal VACV infection in 208 
draining lymph nodes 209 

To investigate the effect of age on the adaptive immune response to vaccination with VACV, cervical 210 
draining lymph nodes (dLN) were analyzed at 7 d post i.d. infection. This showed a trend in 211 
reduction of absolute numbers of VACV-specific CD8 T cells in the 54-wo mice in comparison with 212 
22- and 7-wo groups (Fig. 4A). However, the amounts of germinal center (GC) B cells and T 213 
follicular helper (Tfh) lymphocytes were not significantly different between all groups (Fig. 4B, C). 214 

Next, the levels of cytokines and chemokines in dLN were measured at 7 d post vaccination. 215 
Amongst 17 different molecules assessed, IFNJ, IL-33, CCL2, CCL3, CCL4, CCL5, CCL7 and 216 
CXCL1 were detectable (Fig. 4D) and the levels of IFNJ, CCL2 and CCL5 were significantly higher 217 
in 54-wo animals than in younger mice, while the others were similar in all groups. Thus, the dLNs 218 
of old animals responded well to VACV vaccination, expressing high levels of inflammatory 219 
mediators and generating appropriate cellular adaptive immune responses. 220 

3.3 VACV vaccination induces strong adaptive immune response in mice of different ages 221 

Next, we compared the cellular and humoral memory responses induced by vaccination with VACV. 222 
Spleens and blood samples were obtained from mice 29 d post vaccination of 7-, 22- and 54-wo as 223 
well as from mock-vaccinated animals. The total numbers of splenic CD8 T cells were equivalent 224 
within the three vaccinated groups, while the absolute numbers of CD4 T cells were slightly reduced 225 
in 54-wo mice in comparison with in 7- and 22-wo groups (Fig. 5A). The most pronounced changes 226 
in numbers of splenic CD8 and CD4 T subsets were observed for effector T cells. In comparison with 227 
baseline parameters before vaccination, effector CD8 and CD4 T lymphocytes increased 228 
considerably as a result of vaccination for all groups of mice (Fig. 2B, Fig. 5B). Notably, effector T 229 
cells in the 54-wo group expanded proportionally greater than in younger groups. However, analysis 230 
of VACV-specific CD8 T cells showed that their absolute counts were comparable within all age 231 
groups (Fig. 5C). As for the humoral immune response, the ability of serum to neutralize VACV was 232 
identical in all three groups (Fig. 5D). These observations show that vaccination with VACV 233 
generates memory immunity in 54-wo mice that is quantitively indistinguishable from that generated 234 
in 7- or 22-wo mice. 235 

3.4 54-week old mice are better protected against VACV intranasal challenge than those 236 
from younger groups 237 

To measure the ability of vaccinated groups to respond to re-infection, the three age groups of 238 
vaccinated animals and young naïve mice were challenged i.n. with a dose of VACV equivalent to ~ 239 
300 LD50. All vaccinated groups had mild or moderate weight loss (about 15% maximum) after 240 
challenge followed by full recovery. In contrast, naïve mock-vaccinated mice had >25% weight loss 241 
and were culled at humane endpoint (Fig. 6A). Notably, following challenge, the 54-wo mice lost 242 
less body weight and recovered faster than young and middle-aged groups. Results of viral load 243 
measurement in the lungs of challenged mice indicated that the 54-wo mice cleared the virus faster 244 
than other groups (Fig. 6B). For the majority of immunized elderly mice, no VACV genome copies 245 
were detected in lungs at 24 h post i.n. challenge. Interestingly, the 22-wo mice were slower than 7- 246 
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and 54- wo groups at clearing the virus, despite the weight loss post challenge being similar between 247 
the 7- and 22-wo groups (Fig. 6A, B). 248 

Lastly, the levels of inflammatory mediators in the lung tissue of vaccinated and naïve mice were 249 
measured (Fig. 7, Suppl. Fig. 9). Baseline levels before i.n. infection did not vary significantly 250 
between groups. In comparison with the naïve mice, all vaccinated animals responded very quickly to 251 
i.n infection. At just 12 h post-challenge, the levels of IFNJ, CCL7, CXCL1, CXCL2, CXCL10 rose 252 
substantially (Suppl. Fig. 9), although there was little variation between the different age groups. 253 
Only CXCL1 was increased in the elderly mice, and IFNJ levels tended to be higher in the old and 254 
middle-aged mice than in young animals. At 24 h post infection, the majority of lung cytokines and 255 
chemokines were reduced in the elderly mice compared with other vaccinated age groups. Moreover, 256 
at 48 h after challenge, the levels of inflammatory mediators in the 54-wo group were decreased 257 
further and started returning to their initial (baseline) concentrations. This may reflect the faster virus 258 
clearance. Therefore, the results of weight loss measurement, viral load and cytokine dynamics in 259 
lungs indicate that mice vaccinated at the age of 54-wo had robust protection against reinfection with 260 
a lethal dose of VACV, and this protection was even stronger than in the mice vaccinated when 7- 261 
and 22-wo. 262 

4 Discussion 263 

In the current study, we show that i.d. vaccination with VACV leads to successful development of 264 
immunological memory in old mice bearing an immunosenescent phenotype. Surprisingly, despite a 265 
general reduction of naïve CD8 and CD4 cells (Fig. 2), reduced recruitment of immune cells into the 266 
site of i.d. infection (Fig. 3A, B) and inflammatory signatures characteristic of a phenomenon 267 
sometimes known as inflammaging (Fig. 3C and 4D), 54-week-old mice demonstrated better 268 
vaccination efficacy against challenge than the younger animals. 269 

Vaccination of humans with VACV results in long lasting immunological memory even after 270 
administration of a single dose of vaccine (23, 24, 34), and its high efficacy has been validated by the 271 
eradication of smallpox. Little information is available concerning VACV vaccine performance in 272 
elderly people or mice. One study has reported that vaccination of aged BALB/c mice with 273 
recombinant VACV expressing influenza hemagglutinin was effective in generating anti-274 
hemagglutinin antibodies and influenza-specific cytotoxic T cells (35). The basis of high 275 
immunogenicity of VACV is not known. However, local immunosuppression by VACV allows the 276 
virus to replicate at the site of infection for at least 12 d post i.d vaccination (26). This extended 277 
replication period provides constant antigen exposure to the immune system, probably facilitating the 278 
generation of strong immunological memory. This immune suppression may be mediated by the 279 
scores of immune modulatory proteins expressed by VACV early after infection (21, 36). Many 280 
VACV immunomodulators target pattern recognition receptor and interferon receptor signaling to 281 
block anti-viral responses in infected cells. In vaccination models, deletion of two or three such genes 282 
leads to enhanced safety but decreased immunogenicity of vaccine and impaired protection against 283 
challenge (28). The highly attenuated VACV strain modified vaccinia Ankara (MVA), which is 284 
replication deficient in many cell types, results in the generation of significantly lower antibody titers 285 
in comparison with WR (37, 38). This may explain the potency of VACV in developing robust 286 
immunological memory even in old mice. However, this does not explain why better protection 287 
against challenge was observed in older mice than in younger counterparts. 288 

One of the features of the immune system in the elderly is the presence of chronic, low grade 289 
inflammation, which is sometimes called inflammaging (39). The characteristics of this phenomenon 290 
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are upregulated activity of NF-κB (40, 41), increased levels of proinflammatory cytokines and 291 
chemokines such as TNFD, IL-1, IL-6, IL-8, IL-12, CCL2, CXCL10 (42), accumulation of damage-292 
associated molecular patterns and dysfunctional organelles (43), as well as changes in gut microbiota 293 
and metabolism (44). This phenomenon may go some way in explaining the enhanced production of 294 
NF-κB-regulated cytokines TNFD and IL-6 in the VACV-infected ear tissue of 54-wo mice (Fig. 3C) 295 
as well as CCL2 in dLNs (Fig. 4D). IL-6 and TNF superfamily ligands act as adjuvants and increase 296 
immunogenicity of vaccines (45, 46). Therefore, in the case of VACV vaccination, inflammaging 297 
might be beneficial by providing additional pro-inflammatory stimulus to drive the cascade of events 298 
leading to immune memory development. 299 

Increased production of TNFD and IL-6 along with low levels of IL-10 (Fig. 3C) in old animals after 300 
i.d. vaccination, might compensate for the reduced recruitment of immune cells into the vaccination 301 
site (Fig. 3A). This might contribute to the control of virus infection after i.d. infection (Fig. 3D) and 302 
provide adequate conditions for the generation of immunological memory. Notably, the numbers of 303 
Tfh and GC B cells in dLN (Fig. 4B, C), as well as VACV-specific CD8 T cells in the spleen and 304 
neutralizing antibody levels (Fig. 5C, D), were similar across all age groups. Nonetheless, it is 305 
unclear how the old mice achieved faster clearance of VACV and reduced weight loss after challenge 306 
(Fig. 6A, B). 307 

Our results show that absolute counts of splenic effector CD8 T cells expanded substantially and 308 
proportionally higher in the elderly group than in the younger mice (Fig. 2B and 5B). This cannot be 309 
explained simply by the increased numbers of splenic VACV-specific CD8 T cells (that have been 310 
identified by MHC-I dextramer staining) because their absolute counts are too low and similar across 311 
all three age groups (Fig. 5C). This difference might be due to the expansion of VACV-specific CD8 312 
T cells against different VACV epitopes and/or the expansion of low-affinity CD8 T cells, which 313 
have not been recognized by the type of MHC-I dextramers used in this study. These cells may 314 
contribute to the rapid clearance of VACV in the elderly after challenge. Also, despite numerous 315 
publications describing functional inefficiency of senescent effector T cells, there are reports that 316 
effector T cells from elderly people can have superior immune response to antigen stimulation than 317 
younger counterparts (47–49). 318 

In conclusion, this study demonstrates that vaccination of elderly mice is very efficient and not 319 
inferior to younger animals. Immunescenescence and inflammaging may be more accurately viewed 320 
as immunoadaptation and immunoremodeling in old age, rather than just a slow decline in immune 321 
system function (50, 51). The majority of vaccines were created for, and are used in, children and 322 
young adults (6), and vaccines designed for the elderly population are needed that consider the 323 
specific characteristics of immune system in old age. Given the performance of VACV vaccination 324 
shown in the current study, further investigation to understand the mechanisms of its high 325 
immunogenicity is warranted. 326 
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Figure 1. Experimental design. Groups (n=4-5) of 7-, 22- and 54-week old C57BL/6 mice were used in 
the study. Various parameters were measured before and at 7 and 29 d after intradermal (i.d.) infection 
with 104 PFU of VACV WR, as well as following intranasal (i.n.) challenge of immunised or naïve mice 
with ~107 PFU of VACV WR.
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Figure 2. Old mice have decreased numbers of naïve CD8 and 
CD4 T cells. The absolute numbers of different subpopulation of 
leukocytes in blood (A) and T cells isolated from the spleen (B) of 
7-, 22- and 54-week old mice (without VACV infection) (4 
animals per group). CM, central memory; Eff, effector. P values 
determined by Mann-Whitney test, * = p<0.05.
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Figure 3. Conservation of the immune response to intradermal infection with VACV across age 
groups. Ear tissues were collected at 7 d post i.d. infection with VACV or PBS (mock-control) from groups 
of 7-, 22- and 54-wo mice (n=4-5 per group). The absolute numbers of (A) different subpopulations of 
leukocytes and (B) VACV-specific CD8 T cells infiltrating ear tissues are shown. DC & MФ, dendritic cells 
and macrophages; Mon, monocytes; p values were determined by the Mann-Whitney test, * = p<0.05. (C) 
The levels of cytokines/chemokines detected by multiplex assay (Luminex) in ear tissues are presented as 
fold change compared with the 7-wo VACV-infected group, which is assigned a value of 1. The means are 
shown; p values were determined by the Mann-Whitney test, * = p<0.05 between 7- and 54-wo animals. # 
= p<0.05 between 22- and 54-wo mice. (D) Titers of VACV in ear tissues at 7 d post i.d. infection with 
VACV. PFU, plaque-forming units; NS – non-significant by Mann-Whitney test. The experiment was 
performed twice and representative data from one experiment are shown.
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Figure 4. Enhanced cytokine production in the draining lymph nodes (dLN) of 54-wo mice following 
intradermal infection with VACV. Groups of 7-, 22- and 54-wo mice (n=4-5 per group) were infected i.d. with 
VACV and at 7 d post infection the dLN were collected. The absolute number of (A) VACV-specific CD8 T cells, (B) 
germinal center B cells and (C) T follicular helper cells were determined by FACS. GC, germinal center; Tfh, T 
follicular helper; NS, non-significant by Mann-Whitney test. (D) The levels of cytokines and chemokines were 
detected by multiplex assay (Luminex) in cervical dLN from mice treated as above. Medians are shown; dashed lines 
indicate limit of sensitivity; p values were determined by the Mann-Whitney test, * = p<0.05. The experiment was 
performed twice and representative data from one experiment are shown.
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Figure 5. Vaccination with VACV induces a robust adaptive immune response in mice of different ages. Spleens and 
serum samples were obtained from vaccinated and naïve (mock-vaccinated) mice of different ages at 29 d post i.d. injection 
(n=4-5 animals per group). (A) The absolute numbers of total splenic CD8 and CD4 T cells, and (B) their subpopulations 
are shown. Naive, central memory (CM) and effector (Eff). (C) Shows VACV-specific CD8 T cells. p values were 
determined by the Mann-Whitney test, * = p<0.05. NS, non-significant. (D) Neutralizing antibody responses determined by 
plaque-reduction neutralization test. IC50, half maximal inhibitory concentration; NS, non-significant by Mann-Whitney 
test. All experiments were performed twice and representative data from one experiment are shown.
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Figure 6. 54-week old mice are better protected against VACV intranasal challenge than mice from younger 
groups. Groups of 7-, 22- and 54-wo C57BL/6 mice (n=4-5 per group) were injected intradermal with 104 PFU (per 
ear, into both ears) of VACV or PBS (mock). These groups were then challenged i.n. with 0.7 × 107 PFU of VACV 
WR at day 33 post vaccination in experiment #1 (left) and with 1.3 × 107 PFU of VACV WR in experiment #2 (right). 
(A) Body weight changes of mice after intranasal challenge with VACV; within each group, data show a comparison 
of the weight or each mouse with the weight of the same animal on day zero. The percentages for each group are 
means with SEM. Statistical analysis by RM ANOVA test. NS, non-significant; * = p<0.05. (B) Viral genome copy 
number in both lungs from mice at 12, 24 and 48 h post i.n. challenge were determined by qPCR. Medians are shown.
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Figure 7. Kinetics of cytokine and chemokine production in lungs after intranasal challenge with 
VACV correlates with the kinetics of virus clearance. Groups (n=4-5) of 7-, 22- and 54-wo C57BL/6 
mice were vaccinated i.d. with 104 PFU (per ear, into both ears) of VACV or PBS (mock-control). Then 33 
d post vaccination animals were challenged i.n. with VACV WR. Lungs of vaccinated and mock-vaccinated 
mice were collected at 12, 24 and 48 h after challenge. The levels of cytokines and chemokines were 
measured by multiplex assay (Luminex). Data are shown as the fold change from the vaccinated 7-wo 
group, which is assigned a value of 1. Means are shown; p values were determined by the Mann-Whitney 
test. * = p<0.05 between 7- and 54-wo animals, # = p<0.05 between 22- and 54-wo mice. The experiment 
was performed twice and data from one representative experiment are shown.
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