1	Metagenomic Next-generation Sequencing of Cerebrospinal Fluid for the
2	Diagnosis of Central Nervous System Infections: A Multicentre Prospective
3	Study
4	
5	Siyuan Fan MD^{1*} , Xiaojuan Wang MD^{2*} , Yafang Hu MD, PhD ³ , Jingping Shi MD^4 ,
6	Yueli Zou MD ⁵ , Weili Zhao, MS ⁶ , Xiaodong Qiao MS ⁶ , Chunjuan Wang, MD ⁷ ,
7	Jerome H. Chin, MD, PhD, MPH ⁸ , Lei Liu MD ⁹ , Lingzhi Qin MD ² , Shengnan Wang
8	MD ³ , Hongfang Li MB ¹⁰ , Wei Yue MD ¹¹ , Weihe Zhang, MD ¹² , Xiaohua Li MM ¹³ ,
9	Ying Ge MD ¹⁴ , Honglong Wu MS ^{15, 16} , Weijun Chen PhD ^{17, 18} , Yongjun Li PhD ¹⁹ ,
10	Tianjia Guan PhD ²⁰ , Shiying Li MM ²¹ , Yihan Wu MD ²² , Gaoya Zhou MM ²³ , Zheng
11	Liu MD ²⁴ , Yushun Piao MD ²⁵ , Jianzhao Zhang MM ²⁶ , Changhong Ren MD ²⁷ , Li Cui,
12	MD, PhD ²⁸ , Caiyun Liu MD ²⁸ . Haitao Ren BS ¹ , Yanhuan Zhao BS ¹ , Shuo Feng MM ²⁶ ,
13	Haishan Jiang MD ³ , Jiawei Wang MD ⁹ , Hui Bu MD ⁵ , Shougang Guo MD ⁷ , Bin Peng
14	MD ¹ , Liying Cui MD ¹ , Wei Li PhD ² , Hongzhi Guan MD ¹ .
15	
16	¹ Department of Neurology, Peking Union Medical College Hospital, Chinese
17	Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
18	² Department of Neurology, People's Hospital of Zhengzhou University, Henan
19	Provincial People's Hospital, Zhengzhou, China.
20	³ Department of Neurology, Nanfang Hospital, Southern Medical University,
21	Guangzhou, China.
22	⁴ Department of Neurology, Affiliated Nanjing Hospital of Nanjing Medical
	1

- 23 University, Nanjing, China.
- ⁵ Department of Neurology, The Second Hospital of Hebei Medical University,
- 25 Shijiazhuang, China.
- ⁶ Department of Neurology, Affiliated Hospital of Chifeng University, Chifeng,
- 27 China.
- ⁷ Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong
- 29 University, Jinan, China.
- ⁸ Department of Neurology, Division of Global Health, New York University Langone
- 31 Health, New York, The United States of America.
- ⁹ Department of Neurology, Beijing Tongren Hospital, Capital Medical University,
- 33 Beijing, China.
- ¹⁰ Department of Neurology, Affiliated Hospital of Jining Medical University, Jining,
- 35 China.
- ¹¹ Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
- ¹² Department of Neurology, China–Japan Friendship Hospital, Beijing, China.
- ¹³ Department of Paediatrics, Affiliated Hospital of Inner Mongolia Medical
- 39 University, Hohhot, China.
- 40 ¹⁴ Department of Infectious Diseases, Peking Union Medical College Hospital,
- 41 Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,
- 42 China.
- 43 ¹⁵ Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, China.
- 44 ¹⁶ Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, China.

- 45 ¹⁷ University of Chinese Academy of Sciences, Beijing, China.
- 46 ¹⁸ Key Laboratory of Genome Sciences and Information, Beijing Institute of
- 47 Genomics, Chinese Academy of Sciences, Beijing, China.
- 48 ¹⁹ BGI genomics, BGI-Shenzhen, Shenzhen, China.
- 49 ²⁰ School of Public Health, Chinese Academy of Medical Sciences and Peking Union
- 50 Medical College, Beijing, China.
- ²¹ Department of Neurology, North China University of Science and Technology,
- 52 Tangshan, China.
- ²² Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China.
- ²³ Department of Neurology, Brain Hospital of Hunan Province, Changsha, China.
- ²⁴ Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing,
- 56 China.
- ²⁵ Department of Neurology, Shenzhen Baoan Shiyan People's Hospital, Shenzhen,
- 58 China.
- ²⁶ Department of Neurology, Capital Institute of Paediatrics, Beijing, China.
- ²⁷ Department of Neurology, Beijing Children's Hospital, Capital Medical University,
- 61 Beijing, China.
- 62 ²⁸ Department of Neurology and Neuroscience Centre, the First Hospital of Jilin
- 63 University, Changchun, China.
- 64
- ^{*} Siyuan Fan and Xiaojuan Wang have contributed equally to this work.
- 66

- 67 Corresponding author: Hongzhi Guan.
- 68 Department of Neurology, Peking Union Medical College Hospital, Chinese Academy
- 69 of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- 70 Telephone Number: (0086) 10-69156371
- 71 Fax Number: (0086) 10-69156371
- 72 Email: guanhz@263.net
- 73
- 74 Corresponding author: Wei Li.
- 75 Department of Neurology, People's Hospital of Zhengzhou University, Henan
- 76 Provincial People's Hospital, Zhengzhou 450003, China.
- 77 Telephone Number: (0086) 13939061069
- 78 Fax Number: (0086) 371-65897739
- 79 Email: <u>liwein@zzu.edu.cn</u>
- 80
- 81 Word Count: 2872
- 82
- 83 Running Title: mNGS of CSF in CNS Infections
- 84

85 ABSTRACT

86	Background: Infectious encephalitis and meningitis are often treated empirically
87	without identification of the causative pathogen. Metagenomic next-generation
88	sequencing (mNGS) is a high throughput technology that enables the detection of
89	pathogens independent of prior clinical or laboratory information.
90	Methods: The present study was a multicentre prospective evaluation of mNGS of
91	cerebrospinal fluid (CSF) for the diagnosis of suspected central nervous system
92	infections.
93	Results: A total of 276 patients were enrolled in this study between Jan 1, 2017 and
94	Jan 1, 2018. Identification of an etiologic pathogen in CSF by mNGS was achieved in
95	101 patients (36.6%). mNGS detected 11 bacterial species, 7 viral species, 2 fungal
96	species, and 2 parasitic species. The five leading positive detections were
97	varicella-zoster virus (17), Mycobacterium tuberculosis (14), herpes simplex virus 1
98	(12), Epstein-Barr virus (12), and Cryptococcus neoformans (7). False positives
99	occurred in 12 (4.3%) patients with bacterial infections known to be widespread in
100	hospital environments. False negatives occurred in 16 (5.8%) patients and included
101	bacterial, viral and fungal aetiologies.
102	Conclusions: mNGS of CSF is a powerful diagnostic method to identify the pathogen
103	for many central nervous system infections.
104	
105	Keywords: encephalitis, meningitis, metagenomic next-generation sequencing,

106 diagnosis

107 1. INTRODUCTION

108	Infectious encephalitis and meningitis are major contributors to the neurological
109	global burden of disease ¹⁻⁴ . Numerous microorganisms, including bacteria, viruses,
110	fungi, and parasites, can cause encephalitis and meningitis in immunocompetent or
111	immunocompromised hosts; but the clinical manifestations of many infections are
112	non-specific. Using comprehensive conventional diagnostic technologies,
113	microbiological detection of the pathogen is achieved in only 50-80% of cases ⁵⁻⁸ . The
114	inability to identify the infectious aetiology of encephalitis and meningitis often
115	results in delayed, inadequate, and/or inappropriate treatment.
116	Metagenomic next-generation sequencing (mNGS) is a novel tool that allows for
117	the simultaneous and independent sequencing of thousands to billions of DNA
118	fragments ⁹ . Cerebrospinal fluid (CSF) is particularly suitable for NGS due to its
119	sterility in healthy individuals. Compared with traditional individual target-specific
120	tests, mNGS can identify pathogens without the input of clinical predictors or prior
121	laboratory results. Several recent studies have demonstrated the capability of mNGS
122	of CSF to identify known and unsuspected pathogens and to discover new
123	microorganisms ¹⁰⁻¹⁸ . mNGS of CSF is being increasingly utilized in routine clinical
124	settings for the rapid diagnosis of central nervous system infections. However, most
125	published studies are retrospective case reports or case series ^{11-17,19-24} , and thus, large
126	prospective studies are needed to demonstrate the clinical impact and
127	cost-effectiveness of mNGS for the diagnosis of meningitis and encephalitis. We
128	undertook a multicentre prospective study to comprehensively evaluate the

- 129 performance of mNGS of CSF for the diagnosis of central nervous system (CNS)
- 130 infections compared to conventional microbiological methodologies.
- 131

132 **2. METHODS**

- 133 2.1 Participants and study design
- 134 This study was a multicentre prospective cohort assessment of the mNGS of CSF for
- the diagnosis of suspected infectious encephalitis or meningitis. The participating
- sites were 20 hospitals located in 10 provinces/municipalities in China. Each hospital
- 137 is a member of the Beijing Encephalitis Group. Adult patients were eligible for
- 138 inclusion in the study if they presented with clinical manifestations consistent with
- 139 either encephalitis or meningitis (Table 1) and if standard diagnostic examinations
- 140 (Supplementary Table 1) failed to identify an etiological cause within 3 days.
- 141 Exclusion criteria are shown in Table 1.
- 142 mNGS were conducted on all CSF specimens. Relevant conventional
- 143 microbiological studies (e.g. staining, culture, polymerase chain reaction [PCR],
- serology) were arranged according to the clinical manifestations and the results of
- 145 mNGS. Conventional microbiological studies were considered the gold standard
- 146 according to relevant guidelines and/or consensus^{2,25-27} to classify the results of
- 147 mNGS as true-positive, false-positive, and false-negative. Detected pathogens were
- 148 classified as etiologic pathogens if the major clinical manifestations of the patient
- 149 were consistent with that pathogen. All patients were treated based on the results of
- 150 conventional microbiological testing (or empirically if results were negative)

151	according to the latest clinical guidelines and/or consensus. Patients were followed for
152	at least 30 days to determine the final diagnosis. Demographic data, medical history,
153	laboratory test results (including all conventional microbiological tests),
154	neuroimaging findings, medical therapy, and response to treatment were collected
155	prospectively. Patients enrolled from Jan 1, 2017 to Jan 1, 2018 were included in the
156	final analyses.
157	This study was approved by the institutional review board of Peking Union
158	Medical College Hospital (no. JS-890). Written informed consent was obtained from
159	each patient or their legal surrogate prior to enrolment.
160	
161	2.2 mNGS of CSF
162	CSF samples were collected according to standard sterile procedures, snap-frozen,
163	and stored at -20° C until they were delivered to the sequencing centre. Because
164	reverse transcription was not performed to prepare DNA libraries, RNA viruses were
165	not investigated in this study. mNGS of the CSF samples was performed using a
166	standard flow that has been successfully used to detect herpes simplex virus 1 (HSV1),
167	HSV2, varicella zoster virus (VZV), Listeria monocytogenes, Brucella, and Taenia
168	solium ¹²⁻¹⁵ .
169	DNA was extracted from 300 μ L of CSF and negative 'no-template' controls
170	(NTCs). Sequencing was performed on the BGISEQ-100 platform with an average of
171	20 million total reads obtained for each sample. The qualified reads were mapped to
172	the human reference genome using the Burrows-Wheeler Aligner to remove human

173	sequences. The remaining reads were aligned to the database of annotation, which
174	includes the NCBI microbial genome database (<u>ftp://ftp.ncbi.nlm.nih.gov/genomes/)</u>
175	to detect pathogens. The sequencing data was analysed in terms of the numbers of raw
176	reads, non-human reads, and reads aligned to the microbial genome database as well
177	as species-specific reads (genus-specific reads for Mycobacterium tuberculosis and
178	Brucella), reads per million (RPM), and genome coverage (%). The results of mNGS
179	were available in less than 48 hrs.
180	
181	2.3 Criteria for positive results of mNGS of CSF samples
182	To reduce the influence of potential contamination, we used the following criteria for
183	positive results of CSF mNGS:
184	1) For extracellular bacteria, fungi (excluding Cryptococcus), and parasites, the
185	result was considered positive if a species detected by mNGS had a species-specific
186	read number (SSRN) \ge 30 (RPM \ge 1.50) that ranked among the top 10 for bacteria,
187	fungi, or parasites. Organisms detected in the NTC or that were present in $\ge 25\%$ of
188	samples from the previous 30 days were excluded but only if the detected SSRN was
189	\geq 10-fold than that in the NTC ²⁸ or other organisms. Additionally, organisms present
190	in \geq 75% of samples from the previous 30 days were excluded.
191	2) For intracellular bacteria (excluding Mycobacterium tuberculosis and Brucella)
192	and Cryptococcus, the result was considered positive if a species detected by NGS
193	had a SSRN $\ge 10 (\text{RPM} \ge 0.50)^{13}$ that ranked among the top 10 for bacteria or fungi.

194 Pathogens detected in the NTC or that were present in $\geq 25\%$ of samples from the

195 j	previous 30 days	were excluded but	only if the	detected S	SSRN was ≥	10-fold than	that
-------	------------------	-------------------	-------------	------------	------------	--------------	------

196 in the NTC or other organisms.

197	3) For viruses, Brucella, and Mycobacterium tuberculosis, the result was
198	considered positive if a species (or genus for Mycobacterium tuberculosis
199	[Mycobacterium tuberculosis complex, MTC] and Brucella) detected by NGS had a
200	SSRN \ge 3 (RPM \ge 0.15) ^{12,28} . Pathogens detected in the NTC were excluded but only
201	if the detected SSRN was \geq 10-fold than that in the NTC. In our previous clinical
202	observations, there were a few cases without Mycobacterium tuberculosis infection
203	which contained MTC-specific reads number of 1 in the mNGS results. To mitigate
204	the possibility of false positives, we adopted the criteria of SSRN \geq 3 rather than
205	SSRN $\ge 1^{24}$ in this study.
206	The performance of the criteria were evaluated at the finally stage of the study,
207	the original results of mNGS and/or clinical manifestations were used to guide the
208	further testing of conventional microbiological studies.
209	
210	2.4 Statistical analysis
211	All statistical analyses were conducted using Statistical Package for the Social

- 212 Sciences (SPSS) version 17.0 and EXCEL 1810. Depending on their distribution, all
- data are expressed as medians with interquartile ranges (IQRs) or as means ± standard
 deviation.
- 215

216 **3. RESULTS**

217 **3.1 Characteristics of the study participants**

 was 42 years (IQR: 26–54 years). The median time from disease-onset to CSF sampling was 10 days (IQR: 5–25 days). The median white blood cell count in CSF 	218	287 patients were screened for inclusion in this study (Fig. 1). 11 patients were
disease. Of these 11 excluded patients, 10 had negative mNGS results, and 1 patient receiving immunosuppressive therapy was positive for BK polyomavirus. The final cohort included 276 patients in the study. 176 (63.8%) were male and the median age was 42 years (IQR: 26–54 years). The median time from disease-onset to CSF sampling was 10 days (IQR: 5–25 days). The median white blood cell count in CSF was 80/mm ³ (IQR: 19–220/mm ³). The median CSF monocyte cell count was 36/mm ³ (IQR: 10–127/mm ³). During a follow-up period of 30 days, nine patients died.	219	initially thought to have CNS infections and mNGS was performed. However, these
receiving immunosuppressive therapy was positive for BK polyomavirus. The final cohort included 276 patients in the study. 176 (63.8%) were male and the median age was 42 years (IQR: 26–54 years). The median time from disease-onset to CSF sampling was 10 days (IQR: 5–25 days). The median white blood cell count in CSF was 80/mm ³ (IQR: 19–220/mm ³). The median CSF monocyte cell count was 36/mm ³ (IQR: 10–127/mm ³). During a follow-up period of 30 days, nine patients died.	220	cases were ultimately excluded following the final diagnosis of a non-infectious
 cohort included 276 patients in the study. 176 (63.8%) were male and the median age was 42 years (IQR: 26–54 years). The median time from disease-onset to CSF sampling was 10 days (IQR: 5–25 days). The median white blood cell count in CSF was 80/mm³ (IQR: 19–220/mm³). The median CSF monocyte cell count was 36/mm³ (IQR: 10–127/mm³). During a follow-up period of 30 days, nine patients died. 	221	disease. Of these 11 excluded patients, 10 had negative mNGS results, and 1 patient
 was 42 years (IQR: 26–54 years). The median time from disease-onset to CSF sampling was 10 days (IQR: 5–25 days). The median white blood cell count in CSF was 80/mm³ (IQR: 19–220/mm³). The median CSF monocyte cell count was 36/mm³ (IQR: 10–127/mm³). During a follow-up period of 30 days, nine patients died. 	222	receiving immunosuppressive therapy was positive for BK polyomavirus. The final
 sampling was 10 days (IQR: 5–25 days). The median white blood cell count in CSF was 80/mm³ (IQR: 19–220/mm³). The median CSF monocyte cell count was 36/mm³ (IQR: 10–127/mm³). During a follow-up period of 30 days, nine patients died. 	223	cohort included 276 patients in the study. 176 (63.8%) were male and the median age
 was 80/mm³ (IQR: 19–220/mm³). The median CSF monocyte cell count was 36/mm³ (IQR: 10–127/mm³). During a follow-up period of 30 days, nine patients died. 	224	was 42 years (IQR: 26–54 years). The median time from disease-onset to CSF
227 (IQR: 10–127/mm ³). During a follow-up period of 30 days, nine patients died.	225	sampling was 10 days (IQR: 5–25 days). The median white blood cell count in CSF
	226	was 80/mm ³ (IQR: 19–220/mm ³). The median CSF monocyte cell count was 36/mm ³
228	227	(IQR: 10–127/mm ³). During a follow-up period of 30 days, nine patients died.
	228	

229 **3.2 Performance of mNGS for diagnosing CNS infections**

230 276 CSF samples were tested by mNGS and conventional microbiological studies. 122
231 samples were positive by mNGS (110 true positive, 12 false positive), 126 were
232 positive by conventional microbiological tests, and 114 total positive results were
233 considered "Etiologic Pathogens" (Table 2). All mNGS results were obtained in less
234 than 48 hours and 101 CSF samples were positive by mNGS before any conventional
235 microbiological tests were positive.
236 Of the patients first diagnosed by mNGS, 16.3% of infections were caused by

237

In total, NGS detected 11 bacterial species, of which *M. tuberculosis* (14 cases,

bacterial, 15.2% by viruses, 2.9% by fungi, and 2.2% by parasites (Fig. 2A).

239	13.9%) and L. monocytogenes (7.9%) were the most common (Fig. 2B), 7 viral
240	species (BK polyomavirus was not the etiologic pathogen), of which VZV (16.8%)
241	and HSV1 (11.9%) were the most common, 2 fungal species, both of which were
242	Cryptococcus (7.9%), and 2 parasitic species, of which T. solium (5.0%) was the most
243	common. Nine co-infections with Epstein-Barr virus (EBV) (three with HSV1, two
244	with Brucella, one with Cryptococcus, one with S. haemolyticus, one with P.
245	aeruginosa, and one with M. tuberculosis), two co-infections with cytomegalovirus
246	(CMV) (one with <i>M. tuberculosis</i> , and one with <i>Cryptococcus</i>), and one co-infection
247	with BK polyomavirus (with HSV1) were detected. The EBV and BK polyomavirus
248	did not appear to be consistent with the clinical manifestations in these two instances
249	of co-infections.
250	

251 **3.3 False positive results of CSF mNGS**

252 In the present study, false positives occurred in 12 (4.3%) patients and were primarily 253 associated with bacterial infections (n=12; Table 2), including E. coli, E. faecium, A. 254 baumannii, S. maltophilia, and P. aeruginosa, and a false positive for Brucella was 255 also seen. Of note, the false-positive samples contained numerous other bacteria, that 256 could be detected simultaneously by NGS. Using our proposed criteria, there were no 257 false positives for viruses, fungi, or parasites. Although EBV was not the etiologic 258 pathogen in most cases, it was present in the CSF of some patients. Additionally, there 259 was some background contamination in most CSF samples (Supplementary Table 2) 260 but these organisms did not meet the criteria for a positive result.

261

262 **3.4 False negative results of CSF mNGS**

- 263 In the present study, false negatives occurred in 16 (5.8%) patients (Table 2) and were
- associated with bacterial, viral and fungal infections. The false negative cases of
- bacterial infection were all treated with antibiotics prior to sequencing. In the false
- 266 negative cases of viral infection, 1 or 2 SSRNs were detected in the samples but did
- 267 not satisfy the proposed criteria for a positive mNGS result. If the criteria for a
- positive result was relaxed to a SSRN ≥ 1 (RPM ≥ 0.05), there were no false negative
- cases of HSV1 or VZV or false positive cases of HSV1, HSV2 or VZV. In this study,
- if we adopted the alternate criteria SSRN ≥ 1 (RPM ≥ 0.05) for viruses and
- 271 *Mycobacterium tuberculosis*, there would be additional potential false positives,
- 272 including 30 EBV, 7 CMV and 5 Mycobacterium tuberculosis infections. It should be
- 273 pointed out that the possibility of *Mycobacterium tuberculosis* infection in the 5 cases
- 274 cannot be ruled out based on the clinical and paraclinical manifestations, because the
- 275 conventional microbiological methods might fail to detect the Mycobacterium
- *tuberculosis*. Of note, there were three false negative cases of *Cryptococcus* infection.

277

278 **4. DISCUSSION**

To the best of our knowledge, the present study is the first to assess the performance of mNGS for pathogen identification in a large prospective cohort of patients with suspected CNS infections. Specifically, our study compared results of mNGS of CSF to conventional microbiological studies and proposed new criteria for validating a

283	mNGS result as positive for therapeutic decision-making. Our results suggest that
284	NGS can provide a quicker and more accurate etiologic pathogen identification than
285	conventional microbiological methods. However, patients in the present study were
286	only eligible to be assessed by mNGS if conventional microbiological studies, e.g.
287	routine bacterial stains and cultures, India ink preparation, targeted PCR tests,
288	serological tests, failed to identify an etiologic cause within 3 days. Thus, the
289	application of CSF mNGS in the clinical setting of this study could be regarded as a
290	quasi-first line method for diagnosing CNS infectious diseases.
291	mNGS is a high-throughput sequencing technique without the requirement of
292	prior information, allowing detection of unsuspected or novel organisms. Importantly,
293	mNGS can detect unsuspected pathogens that clinicians may fail to consider because
294	of atypical clinical manifestations. Many cases of neurological infections have been
295	unexpectedly diagnosed by mNGS of $CSF^{11,22,29,30}$ similar to the present study for the
296	cases of <i>L. monocytogenes</i> , <i>Brucella</i> and <i>T. solium</i> ¹²⁻¹⁴ . In addition, as demonstrated
297	in previous studies ^{10,20,21} and in the present study for the case of encephalitis caused
298	by Suid herpesvirus 1 ³¹ , mNGS of CSF has the ability to identify novel aetiologies of
299	CNS infections. Furthermore, NGS can detect unexpected co-infections that may
300	guide appropriate targeted treatment. For example, we detected co-infections of CMV
301	and Cryptococcus. In routine clinical practice, if conventional microbiological
302	methods detect Cryptococcus, then no further tests for other microorganisms other
303	than HIV are usually performed. Finally, mNGS of CSF may be an appropriate tool
304	for ruling out a broad spectrum of potential CNS infectious diseases prior to

14

305 concluding a final diagnosis of autoimmune diseases, such as autoantibody-negative 306

autoimmune encephalitis.

307	Contamination of samples during specimen collection and/or processing is a
308	major challenge when interpreting mNGS results. To reduce the potential influence of
309	contamination, we defined strict criteria for positive mNGS results. The various types
310	of contamination observed in the present study could be divided into two groups: (1)
311	microorganisms commonly associated with background contamination that did not
312	meet the criteria for a positive result (Supplementary Table 2) and (2) false positive
313	detections that fulfilled our criteria for a positive mNGS result but were not consistent
314	with the patients' clinical presentation and features. The contaminations derived
315	primarily from the following sources: (1) laboratory practices (Parvovirus NIH CQV
316	is a contaminant from silica column-based nucleic acid extraction kits) ³² ; (2) reagents
317	(Bradyrhizobium, Burkholderia and Ralstonia are common contaminants used in
318	industrial ultrapure water systems) ^{33,34} ; (3) environment (E. coli, P. aeruginosa, E.
319	<i>faecium</i> and Torque teno virus are widespread pathogens in hospital environment) ^{35,36} ;
320	(4) skin or other body flora (P. acnes, M. globose, E. coli and S. epidermidis are
321	widely associated with the human skin flora) ^{37,38} . False positive results are very likely
322	to misguide treatment, and therefore, clinicians should be cautious when interpreting
323	positive mNGS detection of extracellular bacteria or fungi that are widespread in
324	hospital environments, especially when many species of bacteria are detected in a
325	single NGS test. On the other hand, positive mNGS detection of viruses and parasites
326	are not likely to be false positives.

327	Negative mNGS results do not necessarily exclude an infectious cause for the
328	patient's illness. In the present study, false negative mNGS results occurred in 5.8% of
329	cases and included bacterial, viral, and fungal infections. The prior use of antibiotics
330	can affect the detection rate of bacteria. Low SSRN values (1 or 2 reads) can be seen
331	in false negative results for virus detection indicating that other microbiological tests
332	should be conducted to confirm a diagnosis when the SSRN is low for viruses. False
333	negative cases have been reported for Cryptococcus due to fungal counts below the
334	lower limit of detection for nucleic acid amplification tests ^{39,40} . The criteria of SSRN
335	\geq 3 rather than SSRN \geq 1 might introduce false-negative cases for <i>Mycobacterium</i>
336	tuberculosis infections. As a screening method, the pathogens detected by mNGS
337	might provide clinical clues for further investigation even if the results do not fulfil
338	the specified criteria for a positive result.
338 339	the specified criteria for a positive result. Our results indicate that mNGS of CSF is a very useful test for the diagnostic
339	Our results indicate that mNGS of CSF is a very useful test for the diagnostic
339 340	Our results indicate that mNGS of CSF is a very useful test for the diagnostic evaluation of patients with suspected CNS infections. mNGS has already become a
339 340 341	Our results indicate that mNGS of CSF is a very useful test for the diagnostic evaluation of patients with suspected CNS infections. mNGS has already become a first-line laboratory method in the response to emerging infectious diseases and
339 340 341 342	Our results indicate that mNGS of CSF is a very useful test for the diagnostic evaluation of patients with suspected CNS infections. mNGS has already become a first-line laboratory method in the response to emerging infectious diseases and outbreaks of infectious diseases ^{41,42} . Moreover, increasing evidence provides a
339 340 341 342 343	Our results indicate that mNGS of CSF is a very useful test for the diagnostic evaluation of patients with suspected CNS infections. mNGS has already become a first-line laboratory method in the response to emerging infectious diseases and outbreaks of infectious diseases ^{41,42} . Moreover, increasing evidence provides a rationale for using mNGS as a first-line diagnostic test for chronic and recurring
 339 340 341 342 343 344 	Our results indicate that mNGS of CSF is a very useful test for the diagnostic evaluation of patients with suspected CNS infections. mNGS has already become a first-line laboratory method in the response to emerging infectious diseases and outbreaks of infectious diseases ^{41,42} . Moreover, increasing evidence provides a rationale for using mNGS as a first-line diagnostic test for chronic and recurring encephalitis and as a second-line test for acute encephalitis ²³ . In the present study,
 339 340 341 342 343 344 345 	Our results indicate that mNGS of CSF is a very useful test for the diagnostic evaluation of patients with suspected CNS infections. mNGS has already become a first-line laboratory method in the response to emerging infectious diseases and outbreaks of infectious diseases ^{41,42} . Moreover, increasing evidence provides a rationale for using mNGS as a first-line diagnostic test for chronic and recurring encephalitis and as a second-line test for acute encephalitis ²³ . In the present study, more than one-third of patients were first diagnosed by mNGS of CSF within 48 hrs,

349	therapy, (2) the clinical manifestations are non-specific and numerous target-specific
350	tests are simultaneously applied to identify an infectious cause, 3) a broad spectrum of
351	potential pathogens needs to be ruled out to diagnose a suspected autoimmune
352	encephalitis, and (4) rare or novel pathogens are suspected for which standard
353	target-specific tests are not available.
354	There are several limitations regarding the current use of mNGS of CSF in
355	routine clinical settings. First, mNGS is not available in many hospitals and the cost is
356	usually much higher than target-specific tests. Second, the detection of DNA of a
357	certain pathogen does not necessarily prove that it is responsible for the patient's
358	clinical presentation and features ^{23,27} . In the present study, some patients were positive
359	for EBV but had other more likely aetiologies of their infections. EBV DNA has often
360	been identified together with other microorganisms in CSF ⁴³ . Finally, mNGS cannot
361	detect microorganisms that are not included in microbial genome databases.
362	Our study has several limitations. Reverse transcription was not performed to
363	construct a DNA library and therefore, RNA viruses could not be detected by mNGS.
364	Next-generation RNA sequencing should be performed in future prospective studies.
365	The number of CNS infections caused by each pathogen were not sufficient to assess
366	the sensitivity and specificity of mNGS for individual pathogens. Finally, we may
367	have underestimated the sensitivity of mNGS of CSF for diagnosing CNS infections
368	by employing strict criteria for a positive mNGS result and using conventional
369	microbiological methods as the gold standard.
070	

371 List of abbreviations

- 372 mNGS: metagenomic next-generation sequencing
- 373 CSF: cerebrospinal fluid
- 374 CNS: central nervous system
- 375 PCR: polymerase chain reaction
- 376 HSV: herpes simplex virus
- 377 VZV: varicella zoster virus
- 378 NTC: 'no-template' controls
- 379 RPM: reads per million
- 380 EBV: Epstein-Barr virus
- 381 CMV: cytomegalovirus
- 382 SSRN: species-specific read number
- 383

384 Declarations

- 385 *Ethics approval and consent to participate*
- 386 This study was approved by the institutional review board of Peking Union Medical
- 387 College Hospital (no. JS-890). Written informed consent was obtained from each
- 388 patient or their legal surrogate prior to enrolment.
- 389 Consent for publication
- 390 Not applicable.

391 Availability of data and materials

392 The datasets used and/or analysed during the current study are available from the

393 corresponding author on reasonable request.

394 Competing interests

- 395 Author Honglong Wu was employed by company BGI-Tianjin and BGI-Shenzhen.
- 396 Author Yongjun Li was employed by company BGI-Shenzhen. All other authors
- 397 declare no competing interests.
- 398 Funding
- 399 This study was funded by the National Key Research and Development Program of
- 400 China (Grant No. 2016YFC0901500); and National Science and Technology Major
- 401 Project of China (Grant No.2018ZX10305409)
- 402 Author's contributions
- 403 HG and SF contributed to the study conception design. All the authors participated in
- 404 the discussion of the study design. SF, XW, YF, JS, YZ, WZ, XQ, CW, LL, LQ, SW,
- 405 HJ, HL, WY, WZ, XL, SL, YW, YP, HR, YZ, JW, BP, LC, WL, and HG enrolled
- 406 patients and collected the clinical data. HW, YL and WC performed NGS,
- 407 bioinformatics analysis, and PCR. SF, HG, XW, and WL analyzed the data. SF wrote
- 408 the first draft of the manuscript after discussions with HG, XW and WL. HW wrote
- 409 portions of the Methods section. HG, JHC, TG and WC contributed to manuscript
- 410 revision. All authors have read and approved the submitted version.
- 411 Acknowledgments
- 412 The authors thank the patients for participating in this study.

413

414 **REFERENCE**

- 415 1. McGill F, Heyderman RS, Panagiotou S, Tunkel AR, Solomon T: Acute
 416 bacterial meningitis in adults. *Lancet* 2016, 388(10063):3036-3047.
- 417 2. Venkatesan A, Tunkel AR, Bloch KC, Lauring AS, Sejvar J, Bitnun A, Stahl JP,
- Mailles A, Drebot M, Rupprecht CE et al: Case definitions, diagnostic
 algorithms, and priorities in encephalitis: consensus statement of the
 international encephalitis consortium. *Clin Infect Dis* 2013, 57(8):1114-1128.
- 3. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al: Global,
 regional, and national burden of neurological disorders, 1990-2016: a
 systematic analysis for the Global Burden of Disease Study 2016 [published
 online March 14, 2019]. *Lancet Neurol.* doi:
- 425 10.1016/S1474-4422(18)30499-X.
- Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM, Abera SF, et al:
 Global, regional, and national burden of neurological disorders during
 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015.
 Lancet Neurol. 2017;16(11):877-897.
- Khatib U, van de Beek D, Lees JA, Brouwer MC. Adults with suspected
 central nervous system infection: A prospective study of diagnostic accuracy. *J Infect.* 2017;74(1):1-9.
- 433 6. Hasbun R, Rosenthal N, Balada-Llasat JM, Chung J, Duff S, Bozzette S,
- 434 Zimmer L, Ginocchio CC: Epidemiology of Meningitis and Encephalitis in the
- 435 United States, 2011-2014. *Clin Infect Dis.* 2017;65(3):359-363.

436	7.	Granerod J,	Ambrose	HE,	Davies	NW,	Clewley	JP,	Walsh	AL,	Morgan	D,
-----	----	-------------	---------	-----	--------	-----	---------	-----	-------	-----	--------	----

- 437 Cunningham R, Zuckerman M, Mutton KJ, Solomon T et al: Causes of
 438 encephalitis and differences in their clinical presentations in England: a
 439 multicentre, population-based prospective study. *Lancet Infect Dis.*440 2010;10(12):835-844.
- 441 8. Glaser CA, Honarmand S, Anderson LJ, Schnurr DP, Forghani B, Cossen CK,
 442 Schuster FL, Christie LJ, Tureen JH: Beyond viruses: clinical profiles and
 443 etiologies associated with encephalitis. *Clin Infect Dis.*
- 444 2006;43(12):1565-1577.
- Gu W, Miller S, Chiu CY. Clinical Metagenomic Next-Generation Sequencing
 for Pathogen Detection. *Annu Rev Pathol.* 2019;24(14):319-338.
- 447 10. Wilson MR, Suan D, Duggins A, Schubert RD, Khan LM, Sample HA, Zorn
- 448 KC, Rodrigues Hoffman A, Blick A, Shingde M et al: A Novel Cause of
 449 Chronic Viral Meningoencephalitis: Cache Valley Virus. *Ann Neurol.*450 2017;82(1):105-114.
- 451 11. Mongkolrattanothai K, Naccache SN, Bender JM, Samayoa E, Pham E, Yu G,

452 Dien Bard J, Miller S, Aldrovandi G, Chiu CY: Neurobrucellosis: Unexpected

- Answer From Metagenomic Next-Generation Sequencing. J Pediatric Infect
 Dis Soc. 2017;6(4):393-398.
- 455 12. Fan S, Ren H, Wei Y, Mao C, Ma Z, Zhang L, Wang L, Ge Y, Li T, Cui L et al:
 456 Next-generation sequencing of the cerebrospinal fluid in the diagnosis of
- 457 neurobrucellosis. *Int J Infect Dis.* 2018;67:20-24.

458	13.	Yao M, Zhou J, Zhu Y, Zhang Y, Lv X, Sun R, Shen A, Ren H, Cui L, Guan H
459		et al: Detection of Listeria monocytogenes in CSF from Three Patients with
460		Meningoencephalitis by Next-Generation Sequencing. J Clin Neurol.
461		2016;12(4):446-451.
462	14.	Fan S, Qiao X, Liu L, Wu H, Zhou J, Sun R, Chen Q, Huang Y, Mao C, Yuan J
463		et al: Next-Generation Sequencing of Cerebrospinal Fluid for the Diagnosis of
464		Neurocysticercosis. Front Neurol. 2018;9:471.
465	15.	Guan H, Shen A, Lv X, Yang X, Ren H, Zhao Y, Zhang Y, Gong Y, Ni P, Wu H
466		et al: Detection of virus in CSF from the cases with meningoencephalitis by
467		next-generation sequencing. J Neurovirol. 2016;22(2):240-245.
468	16.	Wilson MR, Shanbhag NM, Reid MJ, Singhal NS, Gelfand JM, Sample HA,
469		Benkli B, O'Donovan BD, Ali IK, Keating MK et al: Diagnosing Balamuthia
470		mandrillaris Encephalitis With Metagenomic Deep Sequencing. Ann Neurol.
471		2015;78(5):722-730.
472	17.	Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H, Yu G, Salamat
473		SM, Somasekar S, Federman S, Miller S et al: Actionable diagnosis of

- 474 neuroleptospirosis by next-generation sequencing. N Engl J Med.
 475 2014;370(25):2408-2417.
- 476 18. Parize P, Muth E, Richaud C, Gratigny M, Pilmis B, Lamamy A, Mainardi JL,
- 477 Cheval J, de Visser L, Jagorel F et al: Untargeted next-generation
 478 sequencing-based first-line diagnosis of infection in immunocompromised
 479 adults: a multicentre, blinded, prospective study. *Clin Microbiol Infect.*

480 2017;23(8):574.e1-574.e6.

481	19.	Naccache SN, Peggs KS, Mattes FM, Phadke R, Garson JA, Grant P, Samayoa
482		E, Federman S, Miller S, Lunn MP et al: Diagnosis of neuroinvasive astrovirus
483		infection in an immunocompromised adult with encephalitis by unbiased
484		next-generation sequencing. Clin Infect Dis. 2015;60(6):919-923.
485	20.	Hoffmann B, Tappe D, Hoper D, Herden C, Boldt A, Mawrin C,
486		Niederstrasser O, Muller T, Jenckel M, van der Grinten E et al: A Variegated
487		Squirrel Bornavirus Associated with Fatal Human Encephalitis. N Engl J Med.
488		2015;373(2):154-162.
489	21.	Brown JR, Morfopoulou S, Hubb J, Emmett WA, Ip W, Shah D, Brooks T,
490		Paine SM, Anderson G, Virasami A et al: Astrovirus VA1/HMO-C: an
491		increasingly recognized neurotropic pathogen in immunocompromised
492		patients. Clin Infect Dis. 2015;60(6):881-888.
493	22.	Wilson MR, O'Donovan BD, Gelfand JM, Sample HA, Chow FC, Betjemann
494		JP, Shah MP, Richie MB, Gorman MP, Hajj-Ali RA et al: et al. Chronic
495		Meningitis Investigated via Metagenomic Next-Generation Sequencing. JAMA
496		Neurol. 2018;75(8):947-955.
497	23.	Brown JR, Bharucha T, Breuer J: Encephalitis diagnosis using metagenomics:
498		application of next generation sequencing for undiagnosed cases. J Infect.
499		2018;76(3):225-240.

500 24. Miao Q, Ma Y, Wang Q, Pan J, Zhang Y, Jin W, Yao Y, Su Y, Huang Y, Wang
501 M et al: Microbiological Diagnostic Performance of Metagenomic

502	Next-generation	Sequencing	When	Applied	to	Clinical	Practice.	Clin	Infect

- 503 *Dis.* 2018;67(suppl_2):S231-s240.
- 504 25. Solomon T, Michael BD, Smith PE, Sanderson F, Davies NW, Hart IJ, Holland
- 505 M, Easton A, Buckley C, Kneen R et al: Management of suspected viral 506 encephalitis in adults--Association of British Neurologists and British
- 507 Infection Association National Guidelines. *J infect.* 2012;64(4):347-373.
- 508 26. Tunkel AR, Glaser CA, Bloch KC, Sejvar JJ, Marra CM, Roos KL, Hartman
- 509 BJ, Kaplan SL, Scheld WM, Whitley RJ: The management of encephalitis:
- 510 clinical practice guidelines by the Infectious Diseases Society of America.
 511 *Clin Infect Dis.* 2008;47(3):303-327.
- 512 27. Granerod J, Cunningham R, Zuckerman M, Mutton K, Davies NW, Walsh AL,
- 513 Ward KN, Hilton DA, Ambrose HE, Clewley JP et al: Causality in acute 514 encephalitis: defining aetiologies. *Epidemiol Infect*. 2010;138(6):783-800.
- 515 28. Schlaberg R, Chiu CY, Miller S, Procop GW, Weinstock G: Validation of
 516 Metagenomic Next-Generation Sequencing Tests for Universal Pathogen
 517 Detection. *Arch Pathol Lab Med.* 2017;141(6):776-786.
- 518 29. Perlejewski K, Popiel M, Laskus T, Nakamura S, Motooka D, Stokowy T, 519 Lipowski D, Pollak A, Lechowicz U, Caraballo Cortes K et al: 520 Next-generation sequencing (NGS) in the identification of 521 encephalitis-causing viruses: Unexpected detection of human herpesvirus 1 522 while searching for RNA pathogens. J Virol Methods. 2015;226:1-6.
- 523 30. Beck ES, Ramachandran PS, Khan LM, Sample HA, Zorn KC, O'Connell EM,

524	Nash T, Reich DS, Venkatesan A, DeRisi JL et al: Clinicopathology
525	conference: 41-year-old woman with chronic relapsing meningitis. Ann Neurol.
526	2019:85(2):161-169.

- 527 31. Zhao W, Wu Y, Li H, Li S, Fan S, Wu H, Li Y, Lu Y, Han J, Zhang W et al: 528 Clinical experience and next-generation sequencing analysis of encephalitis 529 caused by pseudorabies virus. National Medical Journal of China. 530 2018;98(15):6.
- 531 32. Strong MJ, Xu G, Morici L, Splinter Bon-Durant S, Baddoo M, Lin Z, Fewell
- 532 C, Taylor CM, Flemington EK: Microbial contamination in next generation 533 sequencing: implications for sequence-based analysis of clinical samples. 534 PLoS Pathog. 2014;10(11):e1004437.
- 535 Laurence M, Hatzis C, Brash DE: Common contaminants in next-generation 33. 536 sequencing that hinder discovery of low-abundance microbes. PLoS One. 537 2014;9(5):e97876.
- 538 34. Kulakov LA, McAlister MB, Ogden KL, Larkin MJ, O'Hanlon JF: Analysis of 539 bacteria contaminating ultrapure water in industrial systems. Appl Environ 540 Microbiol. 2002;68(4):1548-1555.
- 541 35. Hocquet D, Muller A, Bertrand X: What happens in hospitals does not stay in 542 hospitals: antibiotic-resistant bacteria in hospital wastewater systems. J Hosp 543 Infect. 2016;93(4):395-402.
- 544 36. Verani M, Bigazzi R, Carducci A: Viral contamination of aerosol and surfaces 545 through toilet use in health care and other settings. Am J Infect Control.

546 2014;42(7):758-762.

nmapped
0808.
dermidis
reen R:
cus PCR
Infect.
s disease
Methods.
itzgerald
ology of
Acad Sci
ontrol in
Control.
cteristics
fect Dis.

569 Table 1. Case definitions and exclusion criteria for encephalitis and meningitis

Case definitions for encephalitis

Major criteria (required)

Patients presenting to medical attention with altered mental status (decreased or altered level of consciousness or personality change) lasting ≥ 24 hrs with no alternative cause identified, and/or generalized or partial seizures not fully attributable to a pre-existing seizure disorder or a simple febrile seizure.

Minor criteria (≥ 2 points)

Documented fever ≥ 38 within the 72 hrs before or after presentation New onset of focal neurologic findings

CSF WBC count \geq 5/cubic mm

Abnormality of brain parenchyma on neuroimaging suggestive of encephalitis that is either new from prior studies or appears acute in onset

Abnormality on EEG that is consistent with encephalitis and not attributable to another cause.

Exclusion criteria for encephalitis

 \leq 28 days of age

Non-infectious encephalitis, such as autoimmune disorders, paraneoplastic syndromes, NMOSD, neuropsychiatric involvement of rheumatic diseases HIV or syphilis infection History of recent (within 4 weeks before the onset of disease) vaccination Meningitis without clinical brain parenchyma involvement Absolute contraindications for lumbar puncture; Traumatic LP with obvious blood-contaminated CSF Pregnancy Refusal to sign the informed consent

Case definitions for meningitis

Patients presenting to medical attention with at least two of the four symptoms of headache, fever (documented fever $\geq 38 \square$ within the 72 hrs before or after presentation), neck stiffness, decreased level of consciousness (defined by a Glasgow Coma Scale score below 14)

CSF white blood cell count \geq 5/cubic mm

Exclusion criteria for meningitis

≤ 28 days of age
 HIV or syphilis infection
 Meningeal malignancy confirmed by CSF cytology
 Traumatic LP with obvious blood-contaminated CSF
 Pregnancy
 Refusal to sign the informed consent

570 **Table 2.** Performance of mNGS of CSF compared to conventional microbiological

	TP^*	FP	FN	Etiologic Pathogen
Bacteria				
Mycobacterium tuberculosis	14	0	1	15
Listeria monocytogenes	8	0	0	8
Brucella	7	1	1	8
Streptococcus pneumoniae	5	0	0	5
Klebsiella pneumoniae	3	0	0	3
Streptococcus intermedius	2	0	0	2
Haemophilus influenzae	2	0	0	2
Vibrio vulnificus	1	0	0	1
Staphylococcus hominis	1	0	0	1
Escherichia coli	0	2	0	0
Enterococcus faecium	0	2	0	0
Acinetobacter baumannii	1	2	0	1
Stenotrophomonas maltophilia	1	1	0	1
Pseudomonas aeruginosa	0	4	1	1
Staphylococcus aureus	0	0	1	1
Staphylococcus haemolyticus	0	0	1	1
DNA Viruses				
Varicella-zoster virus	17	0	4	21
Herpes simplex virus 1	12	0	1	13
Epstein-Barr virus	12	0	3	6
Cytomegalovirus	4	0	0	2
Herpes simplex virus 2	2	0	0	2
Suid herpesvirus 1	2	0	0	2
BK polyomavirus	1	0	0	0
John Cunningham virus	1	0	0	1
Fungi				
Cryptococcus neoformans	7	0	3	10
Cryptococcus gattii	1	0	0	1
Parasites				
Taenia solium	5	0	0	5
Angiostrongylus cantonensis	1	0	0	1
Totals	110	12	16	114

571 studies (gold standard) for the diagnosis of CNS infections

^{*}TP: true-positive; FP: false-positive; FN: false-negative; mNGS: metagenomic

573 next-generation sequencing; CSF: cerebrospinal fluid; CNS: central nervous system

574 Figure legends

575 **Figure 1.** Flowchart of patient enrolment and exclusion.

576

- 577 Figure 2. Distribution of causative pathogens in patients with suspected CNS
- 578 infections initially detected by NGS of CSF. (A) Of the 36.6% patients first diagnosed
- 579 with NGS of CSF, 16.3% were diagnosed with bacterial infections, 15.2% with viral
- 580 infections, 2.9% with fungal infections, and 2.2% with parasitic infections. (B) NGS
- 581 detected 11 bacterial species, the most common of which were *M. tuberculosis*
- 582 (13.9%) and L. monocytogenes (7.9%), 7 viral species, the most common of which
- 583 were VZV (16.8%) and HSV1 (11.9%), 2 fungal species, both of which were
- 584 *Cryptococcus* (7.9%) species, and 2 parasitic species, the most common of which was
- 585 *T. solium* (5.0%).

287 patients screened and sequenced

276 patients included

11 patients excluded: Systematic vasculitis: 2 patients Rusmussen encephalitis: 1 patient Neuromyelitis optica spectrum disorders: 1 patient Idiopathic hypertrophic pachymeningitis: 1 patient ► Sjogren's syndrome: 1 patient Autoinflammatory diseases: 1 patient Glioma: 1 patient Neuro-Behcets's syndrome: 1 patient

- Primary central nervous system lymphoma: 1 patient
- Primary angiitis of the central nervous system: 1 patient

