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Abstract1

Humans divide their attention among multiple visual targets in daily life, and visual search gets more difficult as2

the number of targets increases. The biased competition hypothesis (BC) has been put forth as an explanation for3

this phenomenon. BC suggests that brain responses during divided attention are a weighted linear combination of4

the responses during search for each target individually. Furthermore, this combination is biased by the intrinsic5

selectivity of cortical regions. Yet, it is unknown whether attentional modulations of semantic representations of6

cluttered and dynamic natural scenes are consistent with this hypothesis. Here, we investigated whether BC accounts7

for semantic representation during natural category-based visual search. Human subjects viewed natural movies, and8

their whole-brain BOLD responses were recorded while they attended to “humans”, “vehicles” (i.e. single-target9

attention tasks), or “both humans and vehicles” (i.e. divided attention) in separate runs. We computed a voxelwise10

linearity index to assess whether semantic representation during divided attention can be modeled as a weighted11

combination of representations during the two single-target attention tasks. We then examined the bias in weights of12

this linear combination across cortical ROIs. We find that semantic representations during divided attention are linear13

to a substantial degree, and that they are biased toward the preferred target in category-selective areas across ventral14

temporal cortex. Taken together, these results suggest that the biased competition hypothesis is a compelling account15

for attentional modulations of semantic representation across cortex.16

Significance Statement17

Natural vision is a complex task that involves splitting attention between multiple search targets. According to the18

biased competition hypothesis (BC), limited representational capacity of the cortex inevitably leads to a competition19

among representation of these targets and the competition is biased by intrinsic selectivity of cortical areas. Here20

we examined BC for semantic representation of hundreds of object and action categories in natural movies. We21

observed that: 1) semantic representation during simultaneous attention to two object categories is a weighted linear22

combination of representations during attention to each of them alone, and 2) the linear combination is biased toward23

semantic representation of the preferred object category in strongly category-selective areas. These findings suggest24
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BC as a compelling account for attentional modulations of semantic representation across cortex in natural vision.25

Introduction26

In daily life, humans frequently search for a multitude of objects in their visual environment. Yet, attending to multiple27

objects becomes more difficult as the number of targets increases. Psychophysical studies showed that reaction time28

and error rate during visual search systematically increase with growing number of items to be attended (Eckstein29

et al., 2000; Wolfe, 2012; Reynolds and Chelazzi, 2004; Luck et al., 1997). The biased competition hypothesis30

(BC) has been proposed to account for this performance decline (Duncan, 1984). BC reasons that the brain has31

limited representational capacity. Thus, simultaneous search for multiple visual objects results in a competition among32

their representations. Moreover, task demands due to spatial (Keitel et al., 2013; Kastner et al., 1998), feature-based33

(McMains and Kastner, 2011; Bichot et al., 2005; Boynton, 2005), and object-based (Gentile and Jansma, 2010;34

Reddy et al., 2009) attention can bias this competition in favor of the target (Desimone, 1998).35

Several neuroimaging studies provided evidence for competition among cortical representations of multiple objects36

across visual cortex in the absence of specific task demands (Kastner et al., 1998; MacEvoy and Epstein, 2009;37

Gentile and Jansma, 2010; Nagy et al., 2011; Baeck et al., 2013; Jeong and Xu, 2017). Gentile and Jansma (2010)38

measured average BOLD responses in fusiform face area (FFA) while subjects viewed a single face image or a pair39

of face images. Response to a pair of faces was lower than the summation of the responses when each of the faces40

were presented individually. Similarly, Nagy et al. (2011) presented four equispaced isolated images of faces or noise41

images. The number of face images was increased systematically from zero to four. They reported that responses in42

FFA and lateral occipital complex (LOC) to multiple faces were lower than the summation of the responses to individ-43

ual faces. MacEvoy and Epstein (2009) suggested a linear model of representational competition among objects. The44

authors presented either a single or a pair of isolated images of objects from four categories (shoes, chairs, cars, or45

brushes). Using multivoxel pattern analysis, they showed that the response pattern in object-selective areas in ventral46

temporal cortex when subjects viewed pairs of objects can be approximated by the mean of response patterns when47

they viewed each of the objects in isolation. These results were interpreted to imply the existence of competition48
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among representations.49

Recent studies also provided evidence for top-down influences in BC during divided attention to multiple objects50

(Reddy et al., 2009; Gentile and Jansma, 2010). Reddy et al. (2009) studied BOLD responses while subjects attended51

to a single or a pair of object categories among four alternatives (faces, houses, shoes, or cars). A multivoxel pattern52

analysis in category-selective areas in ventral temporal cortex revealed that the response pattern during divided at-53

tention to two object categories was a weighted linear combination of response patterns while attending to individual54

targets. Furthermore, the authors reported that in PPA (preferentially responsive to houses) and in FFA (preferentially55

responsive to faces), combination weights were biased toward the preferred object category. Similarly, Gentile and56

Jansma (2010) reported that during attention to one of the faces in a pair of face images, FFA responses were biased57

toward the responses recorded when the target was presented in isolation.58

Previous studies on BC have provided evidence for competition in representation of isolated static objects. Yet,59

natural scenes are intrinsically dynamic and cluttered with many objects and actions. It has recently been suggested60

that thousands of visual categories are embedded in a continuous semantic space across cortex (Huth et al., 2012), and61

that category-based visual search causes broad modulations in these semantic representations (Çukur et al., 2013). It62

is currently unknown whether BC can account for modulations in semantic representation during natural visual search63

for object categories.64

Here we questioned whether BC can account for semantic representation of object-action categories during divided65

attention in natural visual search. To address this question, we conducted a functional magnetic resonance imaging66

(fMRI) experiment (Fig.1). Five human subjects viewed 72 min of natural movies while performing three separate67

tasks in different runs: attend to “humans”, attend to “vehicles”, and attend to “humans and vehicles” (i.e., divided68

attention). Whole-brain BOLD responses were recorded and category responses for 831 objects and actions were69

measured separately for each task and each individual subject (Nishimoto et al., 2011). Semantic tuning was estimated70

via principle component analysis on the response profiles. To test whether the semantic tuning during divided attention71

can be approximated by a weighted linear combination of the tuning during single-target tasks, ordinary least squares72
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was used among semantic tuning profiles for the three tasks. To reveal the interactions between the attentional bias in73

semantic tuning and the intrinsic selectivity of brain areas, the semantic tuning distribution during divided attention74

was regressed onto tuning distributions during the two single-target tasks.75

Materials and Methods76

Subjects. Five healthy adult volunteers (four males, one female) with normal or corrected-to-normal vision partic-77

ipated in this study: S1 (age 32), S2 (age 28), S3 (age 28), S4 (age 28), S5 (age 28). Data were collected at the78

University of California, Berkeley. The main experiment contained three sessions. Functional localizers were col-79

lected in two sessions. The protocols for these experiments were approved by the Committee for the Protection of80

Human Subjects at the University of California, Berkeley. Written informed consent was obtained from all subjects81

before scanning.82

Stimuli. Continuous natural movies were used as the stimulus in the main experiment. Three 8 min movies were83

compiled from short clips. Movie clips were selected from a wide variety of sources as detailed in Nishimoto et84

al. (2011). High-definition movie frames were cropped into a square frame and downsampled to 512× 512 pixels,85

covering a 24◦× 24◦ field of view. Subjects were directed to fixate on a color square of 0.16◦× 0.16◦ at the center.86

The color of the fixation dot was changing at 1 Hz to ensure visibility. The stimulus was presented at a rate of 15 Hz87

using an MRI-compatible projector (Avotec) and a custom-built mirror arrangement.88

Experiment design. The main experiment was performed in a single session consisting of nine 8 min runs. Four89

mutually exclusive classes of stimuli (only humans, only vehicles, both humans and vehicles, and neither humans90

nor vehicles) were randomly interleaved and evenly distributed within and across the runs. Subjects were instructed91

to covertly search for the target categories in the movies. A cue word was displayed before each run to indicate the92

attention task: “humans”, “vehicles”, or “humans and vehicles”. In the attend to humans task, subjects searched for93

human categories (e.g. woman, man, boy). For the attend to vehicles task, subjects searched for vehicle categories94

(e.g. car, truck, bus). Subjects searched for targets from either of the human or vehicle categories in the divided95
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attention task. To minimize subject expectation bias, the order of search tasks was interleaved across runs. To maintain96

vigilance, subjects were asked to press a button when they detected a target on the screen. BOLD responses were97

recorded from the whole brain. To minimize the effect of transient confounds, data from the first 20 seconds and the98

last 30 seconds of each run were discarded. These procedures resulted in 690 data samples for each attention task.99

Definition of functional areas. Functional regions of interest (ROIs) were identified in individual subjects using100

functional localizers (Huth et al., 2012). Localizer experiments for category-selective areas (fusiform face area, FFA;101

extrastriate body area, EBA; parahippocampal place area, PPA; retrosplenial cortex, RSC; lateral occipital complex,102

LOC) were performed in six 4.5 min runs of 16 blocks (Huth et al., 2012). Subjects passively viewed 20 random static103

images from one of the objects, scenes, body parts, faces, or spatially scrambled objects groups in each block. Each104

image was shown for 300 ms following a 500 ms blank period. Scene-selective ROIs (PPA, RSC) were identified as105

voxels with positive scene versus objects contrast (t-test, p < 10−4, uncorrected). FFA, EBA, and LOC were defined106

using face-versus-object, body-part-versus-object and object-versus-scrambled-object contrasts respectively (t-test,107

p < 10−4, uncorrected). Localizer experiment for attentional-control areas (intraparietal sulcus, IPS; frontal eye field,108

FEF; frontal operculum, FO) contained one 10 min run. In each 20 sec block, either a self-generated saccade task109

or a resting task was prescribed (Corbetta et al., 1998). The run contained 30 blocks. Attentional-control areas were110

localized using saccade-versus-rest contrast (t-test, p < 10−4, uncorrected). ROIs were refined to voxels with contrast111

level more than half of the maximum near a 2 mm neighborhood of the cortical surface.112

MRI protocols. Data were collected using a 3T Siemens Tim Trio MRI scanner (Siemens Medical Solutions) using113

a 32-channel receiver coil. Functional data were collected using a T2*-weighted gradient-echo echo-planar-imaging114

pulse sequence with the following parameters: TR = 2 sec, TE = 33 msec, water-excitation pulse with flip angle =115

70◦, voxel size = 2.24 mm×2.24 mm×4.13 mm, field of view = 224 mm×224 mm, 32 axial slices. To construct cor-116

tical surfaces, anatomical data were collected using a three-dimensional T1-weighted magnetization-prepared rapid-117

acquisition gradient-echo sequence with the following parameters: TR = 2.3 sec, TE = 3.45 msec, flip angle = 10◦,118

voxel size = 1 mm×1 mm×1 mm, field of view = 256 mm×212 mm×256 mm.119
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Data preprocessing. Functional images collected in the main experiment were motion corrected. Using the SPM12120

software package (Friston et al., 1995), the functional images were aligned to the first image from the first session of121

the main experiment. Three subjects that participated in this study were common with a previous study (Çukur et al.,122

2013). Functional images of these subjects were aligned to the reference images from that previous study. Non-brain123

tissues were removed using the brain extraction tool (BET) from the FSL software package (Smith, 2002). Within124

each run, low-frequency drifts were removed from BOLD responses in each voxel using a second order Savitzky-125

Golay filter over a 240 sec temporal window. The resulting voxelwise time series were z-scored to attain zero mean126

and unity variance.127

Voxelwise category model. For each voxel, response profiles were determined by fitting category models that rep-128

resented hundreds of objects and actions in natural movies. As a first step, each 1sec clip of the movie stimulus was129

manually labeled for presence of 831 distinct object and action categories (Huth et al., 2012). Presence of superordi-130

nate categories was inferred from the terms in the WordNet lexicon, a lexical database that groups words based on their131

semantic relationships (Miller, 1995). This procedure yielded time courses for 831 model features (i.e. categories).132

Each time course was then downsampled to 0.5 Hz to match the acquisition rate of fMRI. Separate finite impulse133

response (FIR) filters were used for each model feature to capture the hemodynamic response. Filter delays were set134

to 4, 6, and 8 secs. This is equivalent to concatenating feature vectors that are delayed by two, three, and four samples.135

To prevent head-motion and physiological noise confounds, estimates of these nuisance factors were regressed out136

of the BOLD responses. Six affine motion time courses estimated during the motion-correction stage were taken137

as the head-motion regressors. Two regressors to capture respiration and nine regressors to capture cardiac activity138

were estimated using the data collected via a pulse oximeter and a pneumatic belt during the main experimental runs139

(Verstynen and Deshpande, 2011).140

To reduce spurious correlations between model features and global motion-energy of the movie stimulus, a nuisance141

regressor was included that reflected the total motion-energy. The motion-energy time course was formed by tak-142

ing the mean motion-energy in each one second movie clip. Movie frames were transformed into the International143
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Commission on Illumination LAB color space, and the luminance channel was extracted. The luminance was then144

passed through the motion-energy filter bank. The motion-energy filter bank contained 2139 Gabor filters. Filters145

were computed at eight directions (0 to 315◦, in 45◦ steps), three temporal frequencies (0, 2, and 4 Hz) and six spatial146

frequencies (0, 1.5, 3, 6, 12, and 24 cycles/image). Filters were placed on a square grid spanning the 24◦×24◦ field of147

view. Finally, the motion-energy time course was assessed by squaring and summing outputs of quadrature filter pairs,148

and the results were passed through a logarithm compressive nonlinearity and temporally downsampled to match the149

fMRI acquisition rate (Nishimoto et al., 2011).150

To account for potential correlations between target detection and BOLD responses, a target-presence regressor was151

included in the model. The target-presence regressor contained category regressor for “person” during attend to152

humans task and the category regressor for “conveyance” during attend to vehicles task. The target-presence regressor153

during divided attention task contained the binary union of the “person” and “conveyance” category regressors. The154

described regressors were aggregated and used as the stimulus matrix.155

Model fitting and testing. Voxelwise models were fit using regularized linear regression with an `2 penalty to avoid156

overfitting. To prevent bias, model fitting for the three attention tasks was performed concurrently. To do this, the157

stimulus and BOLD response matrices were aggregated across tasks (Fig.2). Note that this procedure ensures that the158

same regularization parameter will be used in each voxel across the three tasks. Furthermore, using the aggregated159

stimulus matrix enables employing the target regressor.160

A nested cross-validation (CV) procedure was used to estimate response profiles for each voxel. Data were segmented161

into 58 25sec blocks. In each of the 20 outer folds, 6 blocks were randomly held-out as validation data and the162

remaining blocks were used for parameter optimization and fitting models on the inner folds. In each of the 20163

inner folds, blocks were randomly shuffled and split to 40 blocks as training data and 12 blocks as test data. Models164

were fit on the training data for regularization parameters in the range [2−3,220]. Using the weights found for each165

regularization parameter, responses were predicted for the test data. Prediction scores were separately computed for166

each voxel, taken as the Pearson’s correlation between actual and predicted responses. Prediction scores were then167
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averaged across the inner CV folds. Regularization parameters maximizing the average prediction score were selected168

in each voxel. Nuisance regressors were discarded from further analyses. Afterwards, optimized parameters were used169

to fit models on the union of training and test data in each outer fold, yielding category response profiles. To assess170

model performance, responses were predicted for the validation data using the fit models and prediction scores of each171

voxel were averaged across the attention tasks. Finally, response profiles and prediction scores for each voxel were172

averaged across the outer folds. Model fitting was performed using custom-written software in Matlab (MathWorks173

MA).174

Significance of the fit models. Significance of the estimated category response profiles was assessed using a boot-175

strapping procedure on the validation data held-out in the model fitting stage. A 20-fold CV procedure was imple-176

mented to assess significance of the fit models. In each fold, the corresponding fit models and validation data from the177

model fitting stage were used. Responses were predicted for the validation data using the fit models. Prediction score178

was calculated in each fold and averaged across CV folds to get the mean score. In each fold, predicted responses179

were resampled 500 times with replacement. We assumed the null hypothesis that attention does not alter response180

profiles of voxels. Thus, under the null hypothesis, response profiles would be the same across the three attention tasks181

(Çukur et al., 2013). To get the prediction score distribution under the null hypothesis, resampled predicted responses182

were shuffled across the attention tasks, and prediction scores were computed. The p-value was taken as the fraction183

of samples for which the average prediction score across CV folds was lower than that under the null hypothesis.184

Semantic representation of objects and actions. To obtain a quantitative description of the individual subjects’185

semantic spaces, principal component analysis (PCA) was performed on estimated response profiles in individual186

subjects (Huth et al., 2012). To prevent bias, PCA was performed on response profiles for the two single-target187

attention tasks pooled together. The collection of principal components (PCs) that described at least 90% of the188

variance in response profiles was selected. This resulted in L ∈ [36,47] PCs for the five subjects. The semantic189

representation of individual object or action categories can then be assessed in individual subjects by projecting the190

response profiles onto the PCs.191
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Linearity of semantic tuning during divided attention. To test whether semantic tuning during divided attention192

could be predicted using a weighted linear combination of semantic tuning during the two single-target tasks, we193

compared voxelwise semantic tuning across search tasks. A mask vector, m∈R1×831, was used to select the categories194

of interest among 831 categories. Elements of m were one for categories of interest and zero elsewhere. Masked195

response profiles, w′ti, were obtained by element-wise multiplication196

w′ti = wti�m (1)

where wti is the response profile for voxel i and task t ∈ {H,V,B} denoting attend to “humans”, attend to “vehicles”,197

and attend to “both humans and vehicles” (Fig.2), and � represents element-wise multiplication. Masked response198

profiles were then projected onto the PCs to assess semantic tuning profiles, Sti199

Sti = w′tiT (2)

where T ∈R831×L is the matrix of L PCs. Semantic tuning profile during divided attention was predicted as a weighted200

linear combination of semantic tuning during the two single-target tasks using ordinary least-squares. A voxelwise lin-201

earity index (LI) was then quantified as the Pearson’s correlation coefficient between measured and predicted semantic202

tuning during divided attention (ŜBi; Fig.4a)203

LIi = corr(SBi, ŜBi) (3)

An LI of 1 indicates that semantic tuning during divided attention can be completely described as a weighted linear204

combination of the tuning profiles during the two single-target tasks. Whereas, an LI of 0 means that semantic tuning205

during divided attention can not be described linearly in terms of tuning profiles during the two single-target tasks. To206

study the linearity of the semantic representation during divided attention in an ROI, LIs were averaged across voxels207

with significant prediction scores within the ROI.208

Bias in semantic representation during divided attention. We questioned whether semantic representation during209

the divided attention task was biased toward any of the single-target attention tasks. To address this issue, we stud-210

ied the distribution of semantic representation within an ROI for each individual task. Semantic tuning profiles of211
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significantly predicted voxels within each ROI were pooled to obtain the distribution of tuning profiles212

St = [St1|St2| . . . |Stn], t ∈ {H,V,B} (4)

where SH , SV , SB represent distribution of tuning profiles for attend to “humans”, attend to “vehicles”, and attend to213

“both humans and vehicles” tasks, and n is the number of significantly predicted voxels within the ROI. Note that St214

can also be expressed as215

St = [PT
t1|P

T
t2| . . . |P

T
tL]

T , t ∈ {H,V,B} (5)

where Pt j ∈ R1×n is a row vector that represents the projections of the response profiles for task t ∈ {H,V,B} on the216

jth PC across ROI voxels. To emphasize semantic axes that explain higher variance, projections (Pt j) were weighted217

by the explained variance of the corresponding PCs. This yielded the semantic tuning distribution, S′t . The tuning218

distribution during divided attention was then regressed onto the distributions during the two single-target tasks219

S′B = bHS′H +bV S′V (6)

The bias index (BI) was quantified (Fig.5a) as220

BI =
bH −bV

|bH |+ |bV |
(7)

Bias toward the attend to humans task would yield BI ∈ (0,1]. A BI of 0 means that the tuning distribution during221

divided attention is not biased toward any of the single-target attention tasks. Whereas, a BI of 1 means that tuning222

distribution during divided attention is completely biased toward attend to humans task. Similarly, bias toward the223

attend to vehicles task would yield BI ∈ [−1,0) where a BI of −1 means that tuning during distribution divided224

attention is completely biased toward attend to vehicles task. Note that since the response profiles for the three tasks225

were projected onto the same PCs the calculated BI is immune to changes in the direction of PCs.226

Visualization on cortical surfaces. Cortical flatmaps were generated by projecting voxelwise results on individual227

subject flattened cortical surfaces. Cortical surfaces were constructed for each subject using T1-weighted anatomical228

brain scans. Freesurfer software was used to construct surfaces (Reuter et al., 2012). Surfaces were then flattened229

using Pycortex (Gao et al., 2015).230
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Results231

Representation of categories during visual search232

A recent study showed that thousands of object and action categories in natural scenes are embedded in a semantic233

space the axes of which are mapped continuously across the cortex (Huth et al., 2012). Moreover, in a previous study234

from our lab we reported that category-based attention warps this space to expand the representation of targets (Çukur235

et al., 2013). Yet, attentional modulation of semantic representations during attention to multiple targets remains un-236

derstudied. To investigate this issue, we estimated voxelwise tuning for hundreds of object and action categories across237

neocortex. Five human subjects viewed 72 minutes of natural movies while they attended to “humans”, “vehicles” (i.e.238

single-target attention tasks), or “both humans and vehicles” (i.e. divided attention task) in separate runs. Separate239

models were fit for each voxel and attention task. This enabled us to measure responses to 831 distinct object and240

action categories in the three attention tasks (Fig.2, see Materials and Methods). We find that the category model241

accurately predicts responses in many voxels across ventral-temporal, parietal and prefrontal cortices (Fig.3).242

We hypothesized that if the category responses get modulated by attention task, the fit models during the three attention243

tasks would predict better than a null model fit by pooling data across tasks. To investigate this issue, we compared244

the average prediction score in the three attention tasks with that of a null model. To obtain the null model, predicted245

responses were shuffled across tasks and prediction scores were computed afterwards. We found that attention signif-246

icantly modulates category responses in 77.03± 5.47% of cortical voxels (mean±s.d. across five subjects; bootstrap247

test, p < 0.05). This result implies that attention modulates category responses across visual and non-visual areas.248

Linearity of semantic tuning during divided attention249

We hypothesized that if the attentional modulations during search for multiple targets are mediated by BC, semantic250

tuning profile during divided attention should be a weighted linear combination of tuning profiles during isolated at-251

tention to individual targets. To test this prediction, we projected category response profiles onto individual subjects’252

semantic spaces. The semantic space was constructed via principal component analysis (PCA) on voxelwise response253

profiles pooled across the single-target attention tasks. A collection of 36-47 PCs that accounted for over 90% of254
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the variance were selected. To obtain semantic representations of specific categories, the categories of interest were255

masked in the response profiles. Ordinary least-squares was then used to predict voxelwise semantic tuning profile dur-256

ing divided attention as a weighted linear combination of semantic tuning profiles during the two single-target attention257

tasks. Linearity index (LI) was taken as Pearson’s correlation coefficient between the predicted and measured seman-258

tic tuning during divided attention (Fig.4a, see Materials and Methods). We find that LI for target categories (union259

of human and vehicle categories) is 0.81± 0.02 in category-selective areas (FFA, PPA, EBA, and RSC; mean±s.d.),260

0.86± 0.02 in general object-selective area LOC (mean±s.e.m), and 0.88± 0.02 in attentional-control areas (IPS,261

FEF, and FO; mean±s.d.; Fig.4b). LI is significantly greater than zero in all of the studied functional areas (bootstrap262

test, p < 10−4). These results imply that a substantial portion of semantic tuning during divided attention is linearly263

described as a weighted linear combination of tuning during attention to individual targets. In LOC, LI is significantly264

higher than that of category-selective areas (bootstrap test, p = 0.023). Moreover, LI in attentional-control areas is sig-265

nificantly higher than that of category-selective areas (bootstrap test, p = 0.004). These results suggest that semantic266

tuning for target categories better conform to the weighted linear combination model in general object-selective area267

and in later stages of visual processing compared to visual areas that have strong category preference.268

A recent study from our laboratory showed that during category-based attention voxelwise tuning for nontarget cat-269

egories that are semantically similar to targets shifts toward target categories (Çukur et al., 2013). We thus asked270

whether the prediction performance of the weighted linear combination for nontarget categories that are semantically271

similar to targets is similar to that for targets. To answer this question, we calculated LI separately for nontarget272

categories that are semantically similar to targets (i.e. animals, social places, devices, and buildings), and for non-273

target categories that are dissimilar to targets (all categories except the union of animals, devices, buildings, social274

places, and target categories). LI for similar categories is 0.64±0.02 in category-selective areas, 0.67±0.05 in LOC,275

and 0.71± 0.02 in attentional-control areas. LI for dissimilar categories is 0.50± 0.01 in category-selective areas,276

0.54± 0.06 in LOC, and 0.56± 0.03 in attentional-control areas. LI for similar categories is higher than that for277

dissimilar categories in all functional ROIs (bootstrap test, p < 10−4). This finding suggests that during divided at-278

tention to multiple targets, the competition in representation of nontarget visual objects is carried over to objects that279
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are similar to targets (McMains and Kastner, 2010; Beck and Kastner, 2007). LI is significantly lower in category-280

selective areas than in LOC (bootstrap test, p = 0.048 for similar categories, p = 0.001 for dissimilar categories), and281

in attentional-control areas (bootstrap test, p = 0.007 for similar categories, p = 0.019 for dissimilar categories). This282

result implies that similar to target categories, semantic tuning for nontarget categories is more linear in LOC and in283

later stages of visual processing compared to visual areas that have strong category preference.284

Bias in semantic representation during divided attention285

BC observes that inherent selectivity of cortical areas during passive viewing can bias the competition in favor of the286

preferred target during visual search (Desimone and Duncan, 1995). To study the interactions between the attentional287

bias in semantic representation and the intrinsic category-selectivity of cortical areas, we expressed the semantic rep-288

resentation during divided attention task as a weighted linear combination of the semantic representations during the289

two single-target tasks in individual cortical areas. We then investigated whether weights in the weighted linear com-290

bination were biased toward any of the single-target attention tasks. Masked response profiles across voxels within the291

ROI were projected onto individual subjects’ semantic spaces to assess the semantic tuning distribution. We regressed292

the semantic tuning distribution during divided attention onto distributions during the two single-target tasks. We then293

quantified a bias index (BI) using the regression weights. According to this index, bias in the semantic representation294

during divided attention task toward the attend to humans task versus attend to vehicles task was represented as posi-295

tive versus negative BI in the range [−1,1] (Fig.5a, see Materials and Methods). We find that BI for target categories296

is 0.32± 0.09 in human-selective areas (FFA and EBA), and −0.29± 0.12 in scene-selective areas (PPA and RSC;297

mean±s.d.; bootstrap test, p < 10−4; Fig.5b). BI is non-significant in attentional-control areas (IPS, FEF, FO) and the298

general object-selective area LOC (bootstrap test, p > 0.05). These results suggest that the competition in represen-299

tation of target categories during divided attention is biased in favor of the preferred target in cortical areas that are300

strongly selective for targets. On the contrary, semantic representation is not biased in the areas without any specific301

category preference.302

In a previous study we showed that attention shifts semantic tuning for both target and nontarget categories (Çukur303
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et al., 2013). Thus, we asked if there is any bias in representation of nontarget categories during divided attention.304

To answer this question we separately calculated BI for nontarget categories that are similar to targets and nontarget305

categories that are dissimilar to targets. BI for similar categories is 0.38±0.25 in human-selective areas, and −0.11±306

0.38 in scene-selective areas (mean±std.; bootstrap test, p < 10−4; non-significant in RSC (p = 0.288)). BI is non-307

significant in attentional-control areas and in LOC (bootstrap test, p > 0.05). Meanwhile, BI for nontarget dissimilar308

categories is 0.32± 0.37 in human-selective areas, and −0.11± 0.27 in scene-selective areas (mean±std.; bootstrap309

test, p< 0.05; non-significant in EBA (p= 0.610) and in RSC (p= 0.754)). BI is non-significant in attentional-control310

areas and in LOC (bootstrap test, p > 0.05). These results indicate that representation of nontarget categories that are311

similar to targets is biased in favor of the preferred target in category-selective areas. Yet, representation of nontarget312

categories that are dissimilar to targets is only biased in areas that are strongly selective for the targets and not in areas313

that are selective for categories that are semantically similar to targets.314

The target categories used here (i.e. humans and vehicles) show high semantic dissimilarity. This raises the possibility315

that the biases in semantic representation differ between human categories and vehicle categories. To examine this316

issue, we compared BI for human and vehicle categories separately. We find that BI for human categories is 0.59±0.31317

in human-selective areas, and−0.02±0.08 in scene-selective areas (mean±std.; bootstrap test, p< 10−4 in FFA, EBA;318

non-significant in PPA (p= 0.88), and in RSC (p= 0.94)). Whereas, BI for vehicle categories is 0.38±0.29 in human-319

selective areas, and−0.50±0.01 in scene-selective areas (mean±std.; bootstrap test, p< 10−4; non-significant in EBA320

(p= 0.62)). BI in human-selective areas is significantly positive for both human categories and vehicle categories. Yet,321

it is stronger for human categories compared to vehicle categories. Whereas, in scene-selective areas, bias is significant322

only for vehicle categories. These results imply that scene-selective areas have a more dynamic representation of their323

nonpreferred object categories compared to human-selective areas during divided attention.324

Among the attentional-control areas, BI is significant for both human and vehicle categories only in IPS (bootstrap test,325

p < 10−4). In IPS, BI is −0.48± 0.13 for human categories, and 0.60± 0.14 for vehicle categories (mean±s.e.m).326

This result indicates that in IPS, representation of human categories is biased toward vehicles and representation327

of vehicle categories is biased toward humans. Previous studies suggest that IPS is involved in neural circuits that328
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enhance detection of distractors (Greenberg et al., 2010; Mevorach et al., 2010; Sakai et al., 2002; Bledowski et al.,329

2004). In line with these studies, this finding suggests that IPS is involved in category-based attention by enhancing330

the representation of distractors.331

Discussion332

In this study, we tested whether the biased competition hypothesis can account for modulation of semantic represen-333

tations during a divided attention task. We fit a category model to characterize category responses of single voxels334

during search for “humans”, “vehicles”, and “both humans and vehicles”. We found that the category model explains335

significant response variance in many voxels across ventral-temporal, parietal, and prefrontal cortices. We estimated336

the semantic space underlying category models, and then assessed semantic representations by projecting the category337

responses for the three search tasks onto the semantic space.338

Linearity of the semantic representation during divided attention339

We find that a large portion of the variance in semantic tuning during divided attention can be explained using a340

weighted linear combination of tuning during isolated attention to individual targets. We find that semantic tuning for341

target categories is more accurately predicted via the weighted linear combination relationship compared to semantic342

tuning for nontarget categories. In a recent study, we reported that attention shifts semantic tuning for target categories343

to a higher degree compared to that for nontarget categories (Çukur et al., 2013). Thus, our results can be attributed to344

the higher degree of attentional tuning shift for target categories compared to that for nontarget categories.345

Several previous studies have investigated differences in the level of competition between strongly category-selective346

areas and areas without specific category preference. Reddy and Kanwisher (2007) and MacEvoy and Epstein (2009)347

showed that response patterns to a pair of objects can be better predicted by a linear combination of responses to con-348

stituent objects in LOC compared to in FFA or PPA. In line with these studies, here we find that semantic representation349

is more linear in LOC compared to that in category-selective areas. These results raise the possibility that semantic350

representation may also be more linear in attentional-control areas which are not selective for any specific categories351
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compared to strongly category-selective areas (Çukur et al., 2013). Here we find that semantic representations of352

target and nontarget categories during divided attention are better explained using the weighted linear combination of353

representations during search for individual targets in attentional-control areas compared to category-selective areas.354

Our results suggest that higher order areas that are not tuned for specific categories have a more flexible representation355

of natural scenes during divided attention.356

Bias in semantic representation during divided attention357

Category-selective areas. The bias in the competition among representation of multiple objects have been investi-358

gated in several previous studies. Reddy et al. (2009) reported that BOLD responses to multiple static images of faces,359

houses, shoes, or cars in category-selective areas, FFA and PPA, are biased toward the preferred target. In line with this360

finding, here we find that semantic representation of target categories during divided attention in category selective ar-361

eas FFA, EBA, RSC, and PPA is biased toward the preferred category. We have previously shown that category-based362

attention shifts semantic tuning not only for the target, but also for nontarget categories that are semantically similar363

to the target (Çukur et al., 2013). Consistent with this view, here we find that semantic representations of nontarget364

categories that are similar to targets in FFA and PPA are also biased toward the preferred target. Furthermore, repre-365

sentation of nontarget categories that are dissimilar to targets is biased in FFA and PPA, albeit to a lower degree. This366

finding suggests that in category-selective areas, semantic similarity to targets enhances the level of bias in semantic367

representation.368

In human-selective areas, we find that the semantic representations of target categories (both humans and vehicles)369

during divided attention is biased toward the representation during the attend to humans task. Meanwhile, in vehicle-370

selective areas, the representation of vehicles but not humans is biased toward the representation during the attend371

to vehicles task. This suggests a differential role for human- and vehicle-selective areas in representing nonpreferred372

targets during divided attention. A potential explanation of this result is that vehicle-selective areas have a more373

dynamic representation of nonpreferred targets compared to human-selective areas (Grill-Spector et al., 2004).374
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Attentional-control areas. We did not observe bias in semantic representation of targets toward any of the target375

categories in the prefrontal areas that are considered to be part of the attentional-control network. This is expected376

considering the lack of tuning to specific categories in these areas (Huth et al., 2012). In IPS, we find that semantic377

representation of humans during divided attention is biased toward the representation during the attend to vehicles task378

and that the representation of vehicles during divided attention is biased toward the representation during the attend379

to humans task. Several previous studies suggest that areas in parietal cortex including IPS enhance visual search by380

maintaining the representation of distractors (Mevorach et al., 2010; Bledowski et al., 2004), in addition to spatial381

guidance of attention toward targets (Ptak, 2012; Preston et al., 2013). Consistent with this hypothesis, our results can382

be interpreted to imply that IPS facilitates natural visual search by maintaining representations of distractor categories.383

Limitations and future work384

Natural stimuli contain correlations among various levels of features (Hamilton and Huth, 2018). For instance, there385

might be correlations among low-level visual features of natural scenes and object categories within these scenes386

(Lescroart et al., 2015). Such correlations can then bias the category responses that we estimated here, which lead387

to a biased assessment of semantic representations. To minimize correlations between category features and global388

motion-energy of the movie clips, we used a motion-energy regressor in our modeling procedure. However, we do389

not rule out the possibility that there might be residual correlations between category features and intermediate fea-390

tures of the movie stimuli, such as object shape characteristics (Op de Beeck et al., 2008) and scene layout (Mullally391

and Maguire, 2011). Note that it is perhaps impossible to create natural stimuli completely free from these correla-392

tions. However, future studies may mitigate this problem by compiling more controlled natural stimuli that minimize393

stimulus correlations while maintaining high variance in individual categories.394

Here we examined weighted linear combination as a competition model for the attentional modulation of semantic395

representation during divided attention. However, nonlinear models of competition have also been proposed for single396

neuron responses in primates. Heuer and Britten (2002) found that in macaque area MT, responses to a pair of Gabor397

patches with high versus low contrast was similar to the responses to the Gabor patch with high contrast. Gawne and398
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Martin (2002) showed that in macaque area V4, responses to a pair of checkerboard patterns is similar to the maximum399

of the responses to individual patterns in the pair. Further work is needed to investigate possible nonlinear models of400

competition in semantic representations.401

In conclusion, our results imply the presence of biased competition not only at the level of individual objects but402

also at the level of high-level semantic representations. This competition is evident not only among targets but also403

among nontarget categories in natural scenes. Yet, the linearity and bias in representation of nontargets depend on404

their semantic similarity to targets. Overall, these results help explain the human ability to perform concurrent search405

for multiple targets in complex visual environments.406
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Figure 1. Hypothesized changes in semantic representation during divided attention. Previous studies have

proposed that the human brain represents thousands of object and action categories by embedding them in a low-

dimensional space based on their semantic similarity. It has been shown that attention warps semantic representation

in favor of the target and semantically similar nontargets. Biased competition hypothesis predicts that semantic rep-

resentation during divided attention is a weighted linear combination of representations during attention to individual

targets.
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Figure 2. Experimental and modeling procedures. Subjects viewed 72 minutes of natural movies. BOLD responses

were recorded using functional MRI (fMRI) while subjects performed covert search for “humans”, “vehicles” (i.e.

single-target attention tasks), or “humans and vehicles” (i.e. divided attention task) in the movies. Movies were

labeled for presence of object and action categories. Presence of superordinate categories was inferred using the

WordNet lexicon that resulted in a total of 831 object and action categories. A target-presence regressor was used to

account for BOLD response modulations resulting from detection of targets in the scenes. Target-presence regressor

comprised of the human regressor (red series), vehicle regressor (blue series), and the binary union of the two (cyan

series) to indicate the presence of “humans”, “vehicles”, and “humans and vehicles”, respectively. Nuisance regressors

were used to account for physiological noise. Category models were fit independently for each voxel using regularized

linear regression. Category responses represent the contribution of each of 831 object-action categories to BOLD

responses. Models for the three attention tasks were fit simultaneously using the aggregated stimulus and BOLD

response matrices (wH , wV , and wB for the attend to “humans”, attend to “vehicles”, and attend to “humans and

vehicles” tasks, respectively).
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Figure 3. Prediction performance of the category model. To assess the performance of the category model, BOLD

responses were predicted using the estimated category responses in each voxel. Pearson’s correlation coefficient

between the predicted and measured BOLD responses was taken as the prediction score. (a) Prediction score in

functional cortical areas (mean±s.e.m. across five subjects). FFA, fusiform face area; EBA, extrastriate body area;

PPA, parahippocampal place area; RSC, retrosplenial cortex; LOC, lateral occipital complex; IPS, intraparietal sulcus;

FEF, frontal eye fields; FO, frontal operculum. (b) Cortical flat map of the prediction score for a representative subject.

Prediction scores are shown in the right hemisphere. Voxels with high prediction scores appear in yellow color and

voxels that have low prediction scores appear in dark gray color. Most voxels in the occipitotemporal cortex, parietal

cortex, and prefrontal cortex are well modeled.
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Figure 4. Linearity of semantic tuning during divided attention. (a) Masked category responses for the three

attention tasks were projected onto subjects’ semantic spaces to estimate the voxelwise semantic tuning profiles. The

semantic spaces were estimated by performing principal component analysis (PCA) on response profiles pooled during

the two single target attention tasks in individual subjects. The collection of principal components (PCs) explaining

at least 90% of the variance in the data was selected. Semantic tuning profile during divided attention was predicted

via a weighted linear combination of tuning profiles during the two single target tasks (dashed lines indicate predicted

tuning; solid lines indicate measured tuning). Pearson’s correlation coefficient between the predicted and measured

semantic tuning during divided attention was taken as the linearity index (LI). (b) LI in functional cortical areas

(mean±s.e.m. across five subjects) for target categories (left), nontarget categories that are semantically similar to

targets (middle), and nontarget categories that are dissimilar to targets (right). A substantial portion of semantic

tuning during divided attention is described as a weighted linear combination even in the absence of target categories.

For all cases, LI is significantly higher in attentional-control areas (IPS, FEF and FO; p = 0.004 for target categories,

p = 0.005 for similar nontarget categories, p = 0.036 for dissimilar nontarget categories) and in LOC (p = 0.023 for

target categories, p = 0.048 for similar nontarget categories, p = 0.001 for dissimilar nontarget categories) than in

category-selective areas (FFA, EBA, PPA, and RSC).
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Figure 5. Bias in semantic representation during divided attention. (a) To assess the bias in semantic represen-

tation during divided attention, masked category responses for the three attention tasks were projected onto semantic

spaces in individual subjects. Projections were weighted by the explained variance of PCs to yield the semantic tuning

distributions. Semantic tuning distribution during divided attention was then regressed onto tuning distributions during

the two single target tasks. Regression weights were used to calculate a bias index (BI). (b) BI in functional cortical

areas (mean±s.e.m. across five subjects) for target categories (left), nontarget categories that are similar to targets

(middle), and nontarget categories that are dissimilar to targets (right). Blue versus red bars indicate bias toward

attend to humans versus attend to vehicles tasks. Semantic representation of target categories in category-selective

areas (FFA, EBA, PPA, and RSC) is biased toward the preferred object-category. Bias is non-significant in attentional-

control areas (IPS, FEF and FO) and general object-selective area LOC (bootstrap test, p > 0.05). Representation of

nontarget categories is also biased toward the preferred target in FFA and PPA.
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Figure 6. Bias in representation of human and vehicle categories. BI for human categories (left), and vehicle

categories (right) in functional cortical areas (mean±s.e.m. across five subjects). Representations of both human and

vehicle categories in FFA are biased toward the attend to humans task. Meanwhile, representation of vehicles but

not humans is biased toward the attend to vehicles task in PPA. Representations of both of the target categories are

not significantly biased in attentional-control areas in prefrontal cortex. Representation in IPS is biased toward the

distractor category.
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