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Abstract 

The simultaneous quantification of protein and RNA makes possible the inference of past, present and 

future cell states from single experimental snapshots. To enable such temporal analysis from 

multimodal single-cell experiments, we introduce an extension of the RNA velocity method that 

leverages estimates of unprocessed transcript and protein abundances to extrapolate cell states. We 

apply the model to four datasets and demonstrate consistency among landscapes and phase portraits. 

Main text 

Recent technological innovations that allow for assaying multiple modes of cell states at single-cell 

resolution are creating opportunities for more detailed biophysical modeling of the molecular biology of 

cells. Specifically, genome-wide probing of molecular states is revealing detailed information about the 

functional diversity of cells as determined by gene regulation, transcription, processing, and translation. 

The ability to probe cell states has been driven by improvements in single-cell RNA sequencing (scRNA-

seq) methods1 and advances in multiomics2. These methods allow researchers to quantify mRNA and 

protein expression levels in individual cells3-5. Furthermore, scRNA-seq can discriminate between 

nascent and processed transcripts. The recently described RNA velocity6 method takes advantage of this 

feature of single-cell RNA-seq to fit a first-order system of ordinary differential equations describing 

gene-specific splicing7 and to infer kinetic trajectories of single cells.  

The RNA velocity method uses inferences of abundance of unprocessed transcripts to predict future 

states of cells with respect to the transcriptional state inferred from the abundance of spliced 

transcripts. With respect to this reference frame, protein abundances contain information about the 

abundances of spliced transcripts in the past8. To leverage this information, we extend the RNA velocity 

kinetic model to protein translation, and use single-cell multiomics data with protein quantification to 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/658401doi: bioRxiv preprint 

https://doi.org/10.1101/658401
http://creativecommons.org/licenses/by/4.0/


3 
 

infer, along with the present and future state of cells, the past state of each cell in four peripheral blood 

mononuclear cell (PBMC) datasets (Fig. 1a). 

The net accumulation or depletion of unspliced mRNA, spliced mRNA, and protein, scales with distance 

from an estimated expression equilibrium (Fig. 1b, Supplementary Note). Briefly, if a gene’s current (t0) 

unspliced mRNA level is high relative to equilibrium, we infer that the gene is currently upregulated and 

future (t1) spliced mRNA level will be high. Analogously, if the current protein level is high, we infer that 

the gene is currently downregulated and past (t-1) spliced mRNA level was high. Unlike methods that 

require time-series measurements9-11, our method estimates protein translation dynamics from a single 

time-point.  

The approximately linear gene-specific phase plots (Supplementary Figs. 1-4) are qualitatively consistent 

with a first-order model of protein production, although we do observe some deviations by cell type. A 

subset of high-abundance gene/protein pairs were used to estimate the gene-specific protein 

accumulation rates (Supplementary Table 1). For comparison, the immunoglobulin-coding RNA phase 

plots (Supplementary Figs. 5-8) are quite sparse; for RNA velocity, we used a broad panel of genes with 

robust unspliced detection. We extrapolated the cell states assuming constant rates, then embedded 

them in a projection.  
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Figure 1. Model structure and parameter inference. (a) A single gene’s information transfer through transcription 

at rate 𝛼, splicing at rate 𝛽𝑠 ⋅ 𝑢, and translation at rate 𝛽𝑝 ⋅ 𝑠. (b) Estimation of equilibrium states 𝑢 = 𝛾𝑠 ⋅ 𝑠 and 

𝑠 = 𝛾𝑝 ⋅ 𝑝 (black, dashed) from imputed gene-specific population data (light brown), followed by calculation of 

gene- and cell-specific distance from equilibrium (RNA: red, protein: blue) and inference of cell-specific mobility in 

state space (RNA: red arrow, protein: blue arrow, combined: grey curved arrow). 

 

The cell type-specific RNA velocities (Supplementary Figs. 9-12) depict a highly directional landscape. 

The corresponding protein velocities (Supplementary Figs. 13-16) are much noisier as a result of sparser 

data collection (dozens of proteins vs. thousands of genes). We used a Gaussian kernel to determine the 

net velocities at regular grid points. The RNA and protein velocity fields (Supplementary Figs. 17-20), 

suggest that alignment between the two is strongly associated with cell type. The combination of RNA 

and protein velocities reveals the curvature of the cell state landscape. With respect to reference frame 

of unspliced transcripts, the protein inferences correspond to second-order protein acceleration of 

unspliced transcript counts. We visualize cell movement in the spliced mRNA using a Bezier curve 

calculated from three points corresponding to past, present, and future. 
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The protein acceleration landscape for the CITE-seq data shows a diversity of dynamics (Fig. 2a). B cells 

and a subset of T lymphocytes exhibit strong protein acceleration. This behavior may reflect recent 

findings12 that describe mRNA transcript “pile-up” due to heavily suppressed translation in naïve CD4+ T 

cells. The unidirectional monocyte velocity suggests response or plasticity13. However, due to the 

imperfect separation of cell types in the embedding, we caution against over-interpretation of 

aggregated velocities.  

REAP-seq results show similar T lymphocyte circulation and partitioning into static and mobile 

populations (Supplementary Fig. 21), albeit with noisier data than CITE-seq. ECCITE-seq yields sparse 

velocity landscapes (Supplementary Figs. 22-23), which result from the very shallow sequencing of 

spliced transcripts: we confirmed that ECCITE-seq captures 1-2 orders of magnitude fewer RNA 

molecules per cell than CITE-seq or REAP-seq, which is consistent with Fig. 1b of Mimitou et al.5 

(Supplementary Fig. 24). In addition to using genes with linear behavior to infer velocity, we 

qualitatively confirmed consistency between datasets for the gene CD4, which does not follow linear 

behavior (Fig. 2b). 
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Figure 2. Protein acceleration visualization. (a) CITE-seq PBMC protein acceleration, visualized on a grid in principal 

component space. (b) Splicing and translation phase portraits of CD4 in three of the analyzed PBMC datasets.  

 

Our qualitative protein acceleration framework does not attempt to account for regulatory differences 

between cell types. Future work may involve better measurements that enable inference of parameters 

for a more gene-specific model of regulation that takes into account specific biochemical modulators. 

Current protein quantification protocols are adapted for histological markers on the cell surface; 

technology that can quantify dissolved protein could aid in more extensive studies of cell state and 

kinetics. 
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Methods 

Data were acquired from the Gene Expression Omnibus (GEO). We used the following matched RNA/protein 

datasets. CITE-seq: GSM2695381, GSM2695382. REAP-seq: GSM2685238, GSM2685243. ECCITE-seq ctrl: 

GSM3596095, GSM3596096. ECCITE-seq CTCL: GSM3596100, GSM3596101. Reads were aligned to the GRCh38 

genome reference using the Cell Ranger pipeline with default settings whenever aligned sequence files were not 

already available through GEO. Cell Ranger 2.2.0 was used to align CITE-seq reads; Cell Ranger 3.0.0 was used for 

ECCITE-seq. 

The aligned data were processed with the velocyto command-line interface. The resulting velocyto loom files with 

spliced and unspliced RNA counts assigned to each gene-cell pair were compared to the protein counts to identify 

common cells (n = 1780 cells for CITE-seq, 3158 for REAP-seq, 5084 for ECCITE-seq control, 5329 for ECCITE-seq 

CTCL). Protein counts were normalized to the median total protein number in each dataset. k-nearest neighbor 

imputation was performed on the logarithm of normalized protein counts to compute a graph of k nearest 

neighbors (k = 400 for CITE-seq, 800 for REAP-seq and ECCITE-seq) using the scikit-learn 0.20.0 Python package. For 

each cell, unspliced RNA, spliced RNA, and protein counts were assigned the mean value of the k neighbor cells. 

For ease of visualization, Louvain clustering was performed on the graph to identify cell clusters using the louvain 

0.6.1 Python package.  The ModularityVertexPartition model was used for CITE-seq and ECCITE-seq CTCL; 

RBERVertexPartition was used for REAP-seq and ECCITE-seq control. Cell types were manually assigned based on 

markers (Supplementary Table 2) reported in CITE-seq and REAP-seq publications3,4 (Supplementary Figs. 25-28). 

To calculate RNA velocity, the velocyto 0.17 workflow with default settings was used to fit extreme quantiles of the 

phase plot and extrapolate deviations from the equilibrium line. Normalized spliced expression was projected into 

an embedding for visualization. CITE-seq and REAP-seq data were embedded into the principal component space 

(PC2/PC3). ECCITE-seq data were embedded into a t-Distributed Stochastic Neighbor Embedding (t-SNE) calculated 

from the first 25 principal components. The scikit-learn package was used for PCA and t-SNE calculations. 

Transition probabilities to each cell’s embedding neighborhood of m cells were calculated, then aggregated for 

projection and visualization (m = 500 for CITE-seq, 200 for REAP-seq, 300 for ECCITE-seq). The embedding-specific 

future cell state was estimated by adding the projected displacement to the present cell state. Grid arrows were 
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generated by applying a Gaussian kernel to the cell-specific velocities of j nearest neighbor cells (j = 100 for CITE-

seq and REAP-seq, 500 for ECCITE-seq). The aggregated future state corresponding to each grid point was 

calculated by adding this RNA forward velocity vector to the grid point. 

To calculate protein velocity, pairs of proteins and source spliced RNA consistent with the linear model hypothesis 

were manually selected to stand in for spliced and unspliced RNA. These were identically projected onto the same 

embedding (m = 499). Forward grid arrows were generated by applying a Gaussian kernel to the cell-specific 

velocities of l nearest neighbor cells (l = 200). The aggregated past state corresponding to each grid point was 

calculated by subtracting this protein forward velocity vector from the grid point. Curved arrows corresponding to 

the entire trajectory were produced by fitting a second-order Bézier curve to the sequence of past, present, and 

future states of each grid point using the bezier 0.9.0 Python package.   

Scripts to reproduce the results of this paper are available at https://github.com/pachterlab/GSP_2019. 
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