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Abstract
Motivation: Convolutional neural networks (CNNs) have outperformed conventional methods in modeling
the sequence specificity of DNA-protein binding. While previous studies have built a connection between
CNNs and probabilistic models, simple models of CNNs cannot achieve sufficient accuracy on this problem.
Recently, some methods of neural networks have increased performance using complex neural networks
whose results cannot be directly interpreted. However, it is difficult to combine probabilistic models and
CNNs effectively to improve DNA-protein binding predictions.
Results: In this paper, we present a novel global pooling method: expectation pooling for predicting
DNA-protein binding. Our pooling method stems naturally from the EM algorithm, and its benefits can
be interpreted both statistically and via deep learning theory. Through experiments, we demonstrate that
our pooling method improves the prediction performance DNA-protein binding. Our interpretable pooling
method combines probabilistic ideas with global pooling by taking the expectations of inputs without
increasing the number of parameters. We also analyze the hyperparameters in our method and propose
optional structures to help fit different datasets. We explore how to effectively utilize these novel pooling
methods and show that combining statistical methods with deep learning is highly beneficial, which is
promising and meaningful for future studies in this field.
Contact: dengmh@pku.edu.cn, gaog@mail.cbi.pku.edu.cn
Supplementary information: All code is public in https://github.com/gao-lab/ePooling

1 Introduction
DNA-binding proteins play important roles in gene regulation. The
transcription of each gene is controlled by a regulatory region of
DNA placed relatively near the start of the transcription site. Several
experimental methods, such as ChIP-Seq(Zhang et al., 2008), have been
proposed to detect protein-DNA bindings in vivo. Convolutional neural
networks (CNNs) have been successfully used to identify functional
motifs in massive genomic databases(Alipanahi et al., 2015; Zhou and
Troyanskaya, 2015). Analogous to the computer vision task for two label
image classification, genomic sequences are first encoded (in one-hot
format); then, the 2-D convolution operation is transformed into a 1-D

convolution with 4 channels. Following a convolutional layer, pooling
layers have been widely applied as effective feature extractors to 1) reduce
the feature size and 2) gain invariance to small input transformations to
increase model robustness.

While multiple pooling strategies have been proposed(Lu et al., 2015;
Lee et al., 2016; Zeiler and Fergus, 2013; Zhai et al., 2017; Huang et al.,
2018; Graham, 2014; He et al., 2014; Gulcehre et al., 2014; Xie et al.,
2015), max pooling and average pooling are popularly utilized in practical
models(LeCun et al., 1990, 1998; Boureau et al., 2008; Jarrett et al.,
2009). Max pooling is done by applying a max filter to subregions of
the initial representation and global pooling utilizes a average filter. It
has been theoretically shown that max pooling improves discriminability
over average pooling(Boureau et al., 2010) though max pooling causes
overfitting easily. Global max pooling(Lin et al., 2013) are mostly utilized
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in models of motif detecting, because it has a reasonable statistical meaning
of choose the biggest score after convolution. However, max pooling
which loses some information may be not optimal and lack of the better
interpretation of probability(Alipanahi et al., 2015) on motif inference.

Inspired by the expectation-maximization (EM) algorithm, we propose
a new global pooling method: expectation pooling. Evaluations on
both simulated and real-world data demonstrate that expectation pooling
improves motif identification performance significantly. We further
analyze the hyperparameters used in our method and propose optional
structures to help fit different datasets. Expectation pooling is both
mathematically sound and provides a plausible statistical interpretation
for a CNN. All the code used to implement expectation pooling and
reproductions of all figures in the manuscript are publicly available at
https://github.com/gao-lab/ePooling.

2 Materials and methods
2.1 Detecting sequence motifs with CNN

Our baseline neural network architecture for motif detection is the simplest
model, without a fully connected layer (see the Supplementary Notes), as
shown in Figure 1(a). The inputs are DNA sequences; however, the neural
network model requires numerical input. Consequently, each sequence
is transformed into a one-hot format. Specifically, the sequences are
transformed into 4 ⇥ L matrices where each base pair in a sequence is
denoted as one of four one-hot vectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]
and [0, 0, 0, 1]. The first layer is a 1-D convolutional layer with ReLU
activation(Radford et al., 2015), which can be considered as a motif
scanner. The second layer is our expectation pooling layer, which will
be discussed in the next section. The last layer is a fully connected layer
with one output. We use sigmoid activation to obtain the probability of a
sample being positive.

2.2 Expectation pooling

Briefly, expectation pooling calculates the weighted average of locally
max pooled values. Specifically, the expectation pooling consists of two
sublayers: the first sublayer is a 1-D local max pooling with a window size
of qwith zero padding, and the output length is1/q of the origin length. The
second sublayer is a dense layer of size 1 with nonparameterized weights,
which ensures that the whole pooling layer has no additional parameter.
Overall, the output of the expectation pooling layer is a weighted linear
combination of the larger part of its input; the tendency is that for larger
input values result in larger weight assignments. The mathematical formula
is shown below:

Input of expectation pooling (output of 1 filter) : Input = Ai, i = 1, · · · , L,
(1)

First sub-layer : Bi = max
k=0,1,··· ,q�1

{Aqi�k}, i = 1, · · · , L/q, (2)

Second sub-layer : Output =

L/qX

i

wiBi,where wi =
1

Z
exp{m(Bi�B̄)},

(3)
where Z =

P
exp{m(Bi � B̄)},m > 0, B̄ refers refers to the

average of all scores of the layer, and m and q are hyperparameters
determined by validation. The l1 penalty is added to the weights to help
the model to assign insignificant input features with zero weight and avoid
overfitting(Tibshirani, 1996). If necessary, zero padding can be added to
the end of Ai.

(a) Neural network architecture

(b) Kernel score curve

Fig. 1. (a): The first layer is a convolutional layer followed by a ReLU activation function.
The next layer is the proposed expectation pooling, which is explained in the next section.
The third layer is a dense layer that linearly combines the outputs of all the kernels. The last
is a sigmoid function that converts the values obtained in the dense layer to a probability
between 0 and 1. The expectation pooling layer architecture is as follows: First, we use
a local max pooling to filter noise. Then, we calculate the probability at each position
and obtain the approximate expectation of the log probability using Equation 3. (b): After
calculating the distribution of latent variables, the red curve is the score curve, which is
equivalent to the curve of the probability that some positions are motif starting points.

2.3 Implementation of the parameterized convolutional
neural networks

The hyperparameters for simulated datasets in the convolutional layer
include the number and length of convolution kernels, the number of
epochs, the training batch size and the optimizer [see Table 1]. The
hyperparameters in the pooling layer include the standard window width
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for local max pooling and the weight-scale parameter m used for
expectation pooling (if m is not learnable).

For training, we used cross-entropy as a loss function without any
weight decay, and the models were trained using the standard error
backpropagation algorithm and the Adam optimizer(Kingma and Ba,
2014).

We utilized the area under the ROC (AUC)(Davis and Goadrich,
2006; Fawcett, 2004) to assess the prediction performance. Our model
is implemented using Keras(Chollet et al., 2015) for Python.

2.4 Datasets

2.4.1 Simulated dataset
For the simulations, we used the TRANSFAC(Wingender et al., 1996)
database to evaluate whether expectation pooling improves model
performance. Each simulated dataset includes both negative and positive
samples (i.e., sequences). Each negative sample consists of i.i.d.
nucleotides conforming to a multinomial distribution with a probability of
0.25 for each of {A,C, T,G}. A positive sample is constructed the same
way as a negative sample except that sequences from certain motif(s) are
inserted at random locations. Specifically, the sequences inserted in the
positive samples for each of the three simulated datasets are as follows:

• simulated dataset 1: a sequence generated from the first, shorter
motif;

• simulated dataset 2: a sequence generated from the second, longer
motif;

• simulated dataset 3: a sequence generated from either the first or
the second motif; the choice of motif for each positive sample is
determined randomly with equal probability.

It should be emphasized that simulated dataset 3 is an important
pattern in omics data: a protein is likely to bind to more than one motif in
the DNA sequence.

2.4.2 Real dataset
We chose the 690 ChIP-seq ENCODE datasets tested by the DeepBind
model(Alipanahi et al., 2015). Each of these datasets corresponds to
a specific DNA-binding protein (e.g., transcription factor); its positive
samples are 101 bp DNA sequences that were experimentally confirmed
to bind to a given protein, and its negative samples were created by
shuffling the positive samples. All the datasets were downloaded from
http://cnn.csail.mit.edu/.

3 Results
3.1 Expectation pooling performs better than global max or

average pooling on this simulated data

In this section, we compare expectation pooling with global max and
average pooling on the simulated datasets. We first selected the simplest
CNN model with no hidden layers, with m = 1, local window size = 10,
batch size = 32, kernel length = 24, and kernel number = 128 (the
same specifications listed in Table 1). Immediately after the convolutional
layer we appended one of the three different pooling methods above to
assess which pooling method achieved a better performance. We set several
random seeds to evaluate the robustness of the model’s performance on
the simulated datasets.

We found that compared to global max or average pooling, expectation
pooling improved the motif finding performance on all three simulated
datasets [Figure 2](a)]. Specifically, the model with expectation pooling
resulted in a considerable reduction in accuracy variance (measured by
AUC) than did the models with global max or average pooling, which

suggests that it is more robust to different random seeds. Moreover, we
found that the difference between training loss and testing loss was still
moderate for the expectation pooling-based model after tens of epochs and
it was smaller than that of the models with global max/average pooling,
further suggesting that less overfitting occurred during training (see Figure
2](b)).

The performance improvement was especially evident on simulated
dataset 3 with a hard model, reflecting the superiority of expectation
pooling in cases with complex motif settings. Clearly, on complex datasets,
the huge fluctuation in the original model, it does not satisfy the need for
fitting for low accuracy and it lacks robustness to initialization. On these
simple simulated datasets, we can see that even a minor accuracy increase
compared to the original model yields good performance.

3.2 Performance of real datasets

Having demonstrated the superior performance of expectation pooling
on the simulated datasets, we next tested whether it could maintain this
performance level on real-world cases. The neural network models differed
only in their use of different pooling methods (i.e., global max pooling
(baseline) and expectation pooling, respectively). We used the same model
structures and parameter settings as in the preceding simulated unless
explicitly stated otherwise. The window size of local max pooling was
set to 10. The number of kernels varied from 8 to 128. The two models
can be compared because expectation pooling does not increase the number
of parameters.

The results show that when the number of kernels is limited
(e.g., 8), the model with expectation pooling achieves a statistically
significant improvement in AUC (one-sided Wilcoxon signed-rank test,
p=4.01e�84); in particular, it achieved a better performance on
583(84.5%) of the datasets (see Table 2). However, its accuracy was
lower on (107 approximately 15.5%) of the datasets, which does not
match the theoretical analysis above. Because neural networks are not
convex models, they do not necessarily obtain a global optimum. We
selected the datasets on which our model’s performance was lower and
chose several different random seeds for initialization. Subsequently, we
found that the mean performance between the two models was almost
identical (see the Supplementary Notes). In the DeepBind model, kernel
length has a significant performance effects; thus, we considered another
smaller representative number. We found that when the kernel length was
set to 15, the baseline attained a better performance [Table 3], and our
method achieved a greater improvement in average AUCs.

3.3 Varying the hyperparameters in our model

Next, we studied the effects of the hyperparameters on the performance
of our model. In this section, we discuss the two newly added
hyperparameters in our model.

3.3.1 Varying m

The hyperparameter m controls the weights of each score: the larger m is,
the greater the weights assigned to the high scores are during expectation
pooling.

In this experiment, we also utilized one of the simulated datasets to
determine the general rules ofm for the models. From Figure 3, it is evident
that after m is sufficiently large, the AUC of the model will decrease if m
grows larger, which proves that the model with global max pooling is not
optimal for motif finding (i.e., our model degrades to the baseline as m

approaches infinity). In addition, a steep fluctuation is apparent when m

becomes relatively small (i.e., between 1 and 5). We also note that, given
that m is derived in the loss function, it could be learned from the data
directly via the classical backpropagation algorithm, which would change
m from a hyperparameter to a learnable parameter.
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(a) The performances of models with different types of pooling on the
simulated data

(b) The training loss with different types of pooling on the simulated data

Fig. 2. Expectation pooling performs better and is more robust to random seeds than are global max and average pooling (a), and expectation pooling suffers less from overfitting than global
max pooling (b). Here (a) shows the AUCs of models with different pooling methods on the simulated datasets 1 (short motif), 2 (long motif) and 3 (mixed motifs). The mean AUCs on
these datasets are 0.795774, 0.866507, and 0.720751 for models with global max pooling, 0.81092, 0.870577, and 0.801181 for expectation pooling, and 0.545254, 0.636738, and
0.53726 for global average pooling, respectively. (b) shows the learning curves for models with different pooling methods. The difference between training and testing loss for the model
with expectation pooling is still moderate after 20–40 epochs; in contrast, the difference for the model with max pooling becomes very large immediately after 5 epochs. In addition, the
model with global average pooling is difficult to fit and leads to low performance, while the methods with expectation pooling require more than 20 epoch to fit, and a slight overfitting
occurs after 40 epochs.

Table 1. CNN parameter settings for the simulated datasets

Name Possible Values
kernel number 128
kernel length 24
training batch size 32
number of epoch 100
optimizer Adam( lr = 0.01, beta1 = 0.9, beta2 = 0.999, epsilon = None, decay = 0.0, amsgrad = False)
random seed 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 30, 40, 50, 100, 200, 300, 400, 500,600, 1000

3.3.2 Varying the window sizes of local max pooling
The window sizes used for local max pooling are also significant in our
model. Because two regions of the motif cannot be located in too-close
proximity, we need to calculate the max score of a local window, which
means we must select a score to represent the whole window. In addition,
a large window size requires fewer calculations. The other parameters

(including batch size, kernel length, kernel number, batch size) are fixed
to the same values shown in Table 1.

We trained models with different window sizes. the results in Figure
4 show that the AUCs generally increase when the window size increases
from 1 to 15; subsequently, the model performance remains relatively
stable. When the local window size is sufficiently large, expectation

Table 2. Performances on real data

Kernel number Local window size Maxpooling AUC(%) ExpectationPooling AUC(%) The percentage of improved dataset(%) p value(wilcoxon)

8 10 82.3 83.9 84.5 4.01E-84
16 10 84.1 85.5 88.6 4.853E-95
32 10 85.2 86.2 79.9 6.960E-72
64 10 86.1 86.5 65.3 5.10E-30
128 10 86.4 86.8 71.0 5.12E-33

Table 3. Performances on real data (kernel length=15)

Option structure Kernel number Local window size Maxpooling AUC(%) ExpectationPooling AUC(%) The percentage of improved dataset(%) p value

optional structure 32 10 0.86174 0.87368 94.6 5.29E-103
no optional structure 32 10 0.87289 93.5 6.58E-98
optional structure 64 10 0.87094 0.88043 93.3 3.22E-96
no optional structure 64 10 0.87725 82.9 1.70E-74
optional structure 128 10 0.87579 0.88256223 87.4 1.02E-78
no optional structure 128 10 0.87832 71.1 4.37E-28
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pooling degenerates into global max pooling. Consequently, we set the
local window size to approximately 10 (this is approximately the median
length of the motifs in the TRANSFAC database) or set it through
validation.

Fig. 3. The AUCs of the model with varying m (violin plot). Note that when m = 0,
expectation pooling is equivalent to average pooling, so the performance is worse than
when m > 0. As m increases, the average AUCs also increase. When m reaches
approximately 1, the performance is both stable and good. When m becomes too large,
there is no difference between global max pooling and expectation pooling. Consequently,
the performance degrades.

Fig. 4. The AUCs of models with different local window sizes (box plot): The performance
increases initially, but when the local window size exceeds approximately 5, the
performance becomes almost stable. Finally, when the local window size approaches
the sequence length (which means expectation pooling becomes equivalent to global max
pooling) the performance equally as bad as that of global max pooling.

3.4 Model visualization

In this section, we show that the model with expectation pooling can
recover the underlying motifs more accurately. Here, we used simulated
data because we do not know the true motifs in real world datasets. We
generated the sequence logos from kernels as described in Section 10.2
of the DeepBind Supplementary Notes(Alipanahi et al., 2015). The best-
recovered motifs (in the sense of information content) are compared to

the true motifs utilized in the simulated data by calculating their similarity
(E-value) with the Tomtom(Gupta et al., 2007) algorithm.

The motifs recovered by our model and the model with global max
pooling are both aligned to the true motifs. (Figure 5). However, based on
the E-value, we found that the sequence logos generated by our model
are more informative and better match the ground truth. This result
demonstrates that our model is able to find more accurate motifs. In
addition, expectation pooling can clearly distinguish the motif regions
from other regions (obeying the background distribution). In Figure 5 (b),
the motif recovered by the origin model contains obvious noise in addition
to the eight positions corresponding to the true motif, while in Figure 5(d),
the noise is not obvious in our model.

4 Discussion
4.1 Expectation pooling as the E-step in an

(object-optimized) EM algorithm

In the context of sequence motif detection (see Supplementary Notes
for a brief summary on the typical CNN architecture used for motif
detection), expectation pooling can be interpreted as an (object-optimized)
EM algorithm.

Briefly, given a particular motif represented as as a position weighted
matrix(Stormo, 2000) (PWM) M, the i-th sequence Xi (positive sample)
and the motif location Zi = j(Zi = j if motif starts at position j in
sequence i), we obtain

Pr (Xi, Zi = j|M) =
j�1Y

k=1

pck,0

j+w�1Y

k=j

pck,k�j+1

LY

k=j+w

pck,0

(4)
where ck is the character at position k in sequence i, pck,0 is the

probability of ck in the background distribution, pck,i(i > 0) is the
probability of ck in the distribution of the i-th position in the motif region.
Here, if PWM M is given, we have the following E-step(Buhler and
Tompa, 2002; Dempster et al., 1977; Lawrence and Reilly, 1990):

Zij = Pr (Zi = j|Xi,M)

=
Pr (Xi, Zi = j|M)

Pr (Xi|M)

=
Pr (Xi, Zi = j|M)

PL�w+1
k=1 Pr (Xi, Zi = k|M)

(5)

in which Zi is the latent variable (i.e., the start position Zi = j

is unknown) and Zij represents the likelihood of Xi’s motif starting at
position j. TheZi = {Zij} represents the distribution of starting position
of Xi’s motif. Next, we update PWM using the M-step and iterate until
convergence.

Given the exact transformation between the convolutional layer kernels
and PWM(Ding et al., 2018), the log-likelihood of the resulting PWM of
any DNA sequence is exactly the sum of a constant and the convolution
of the original kernel on the same sequence.

The formula is as follows:

conv(Xij) = loga(Pr (Xi, Zi = j|M)) + constant (6)

,Pr (Xi, Zi = j|M) =
a
conv(Xij)

P
k aconv(Xik)

(7)

where conv(Xij) represents the convolution result of the subsequence
starting at position j of sequence Xi with some kernel and is the same as
Ai, the input to the pooling layer, and a is a given constant.
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(a) Global max pooling (b) Expectation pooling (c) Real motifs

(d) Global max pooling (e) Expectation pooling (f) Real motifs

Fig. 5. Motifs recovered by our model (middle row) and by CNNs with global max pooling (top row) compared to the true motifs (bottom row). As a result, the E-values of the motifs
recovered by our model are 2.04 ⇥ 10�19, 1.66 ⇥ 10�8 , respectively, while the ones recovered by CNNs with global max pooling are 1.59 ⇥ 10�17, 2.55 ⇥ 10�6 , respectively

As a result, the pooling layer input is a score vector equivalent to the
log-likelihood, namely, the larger the score, the more ”similar” the motif
is to the specific sequence fragment it aligns to and the more likely it is to
have a positive label.

Next, we derive that our expectation pooling is equivalent to the
expectation of the log probability of the motif in sequence Xi given
a = e

m:

pooling value

=
X

j

conv(Xij)
exp(m(conv(Xij)� conv(Xi)))

P
k exp(m(conv(Xik)� conv(Xi)))

=
X

j

[log(Pr (Xi, Zi = j|M)) + constant]
Pr (Xi, Zi = j|M)

P
k Pr (Xi, Zi = k|M)

/
X

j

[log(Pr (Xi, Zi = j|M)) + constant] Pr (Xi, Zi = j|M)

= E
j⇠Zi

log(Zij) + constant

(8)
Eq.8 shows that the output of the expectation pooling is proportional to
the expectation of the motif in a sample when m is appropriate from the
statistical model perspective. Similar to the E-step of the EM algorithm,
which utilizes a distribution of Zi and the calculation expectations
combined with the distribution, expectation pooling not only considers the
highest peak of the score curve but also considers every other score (see
Figure 1(b)) but with less emphasis. In contrast, max pooling considers
only the highest score, which can be affected by false positives caused

by random fluctuations of the background distribution (see Figure 1(b)).
Given the short lengths of sequence motifs, there is a high probability that
a high score will correspond to the real PWM by coincidence given the
background distribution for negative samples.

However, calculating the expected value directly leads to
underestimation and requires excessive computation, which is not
desirable if many more kernels are utilized. To solve this problem, we
conduct local max pooling (i.e., the first sublayer of expectation pooling)
before calculating the expected value. Furthermore, local max pooling
filters the majority of small scores, which offsets the disadvantage of taking
the expectation of all the scores and leads to a phenomenon referred to as
"trimming the hills and filling the valleys."

After local max pooling, the probability (i.e., the weight) set for
each score is an exponent (i.e., weight, exp{m(Bi � B̄)} without
normalization, in which m is an adjustable parameter. Thus, if m tends
toward infinity or zero, expectation pooling will obviously be reduced to
either max pooling or average pooling, respectively, which also shows that
our expectation pooling is an improvement from a probability viewpoint,
but differs from stochastic pooling due to its forms of expectation.

4.2 Benefits of expectation pooling

We know that the Gaussian mixture model is often referred to as a soft
clustering method, while K-means is comparatively hard (Friedman et al.,
2001; MacQueen et al., 1967) because the Gaussian mixture model does
not directly yield sample labels according to the minimal distance; instead,
it applies labels from the viewpoints of probability and expectation.
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Actually, expectation pooling inherits ideas from the Gaussian mixture
model and it yields a “soft” maximum of the scores while pooling.

Expectation pooling provides two main benefits. On one hand,
expectation pooling considers all the scores rather than only the maximal
score, which improves model robustness. This point is significant because
a motif-detection model is a probabilistic model with high randomness.
For example, for one positive and one negative sample, if the highest scores
of a kernel of two models are nearly the same, the outputs of expectation
pooling are obviously distinguishable when the positive sample has more
high scores. On the other hand, expectation pooling can be shown to play
a role in reducing overfitting. Overfitting is a modeling error that occurs
when a function is too closely fit to a limited set of data points. It has
been shown that max pooling has the drawback of overfitting easily, while
average pooling avoids this problem. Consequently, our neural network
models do not overfit easily without a dropout layer(Srivastava et al., 2014)
for regularization, which is essential for DeepBind. Actually, our method
of pooling combines average pooling with max pooling in a reasonable way
whose probability interpretation corresponds to that of the EM algorithm.

The first sublayer of expectation pooling is also essential not only for
reducing calculation time but also for overcoming the drawback of the
underestimation of the second sublayer, which can occur because many
zero elements are included in the scores after ReLU activation. From a
statistical viewpoint, it is abnormal to regard two close positions as two
different motif start positions and to consider their scores twice. As a
result, expectation pooling is a balanced global max pooling with clear
interpretability.

4.3 The effect of kernel numbers on motif inference

By experimenting with different hyperparameters, Zeng et al. (2016)
demonstrated that including more kernels in convolutional layers can
lead to better performance. However, although many kernels may be
utilized, the truly effective and significant kernels are limited after
training according to model visualization. Considering the limited number
of effective kernels, using fewer kernels is reasonable from a model
perspective, considering the number of required calculations and model
visualization. However, extra kernels may affect the optimization process
by avoiding premature convergence due to becoming trapped in a local
minimum of the loss function. The results show that increasing in the
number of convolutional kernels has a smaller impact on performance, but
is significant in the model with global max pooling. Therefore, our model
with expectation pooling is robust to the number of kernels (also see the
Supplementary Notes).

4.4 Optional structures

We also notice that the expression in the second sublayer (optional
structure) can be modified as follows:

wi =
1

Z
exp{m(Bi � B̄)}IBi>B̄

where Z =
P

exp{m(Bi � B̄)}IBi>B̄ ,m > 0 and I represents an
indicator function to increase the sensitivity for motifs with only a few
conserved residents (i.e., when the pooling layer input consists of a few
large numbers but many small numbers. In Figure6, expectation pooling
attains a better performance on 94.6% of the datasets when the optional
structure contains 32 kernels; these configurations resulted in the best
AUCs among the different hyperparameter values[Table 3].

Moreover, a hidden layer with a dropout layer can be introduced after
expectation pooling to increase model learning ability. A dropout layer is
applied to a hidden layer to randomly mask portions of its output to avoid
overfitting. The introduction of the hidden layer sacrifices some portion

Fig. 6. The performance of our model utilizing expectation pooling on real datasets, where
the window size = 10, m = 1, kernel number = 8, kernel size = 15 and the optional
structures are utilized. Expectation pooling increases the AUC on real datasets. The x axis
shows the AUC difference under expectation pooling and max pooling. The models with
expectation pooling are better than are the models with max pooling on 653 datasets but
worse than the models with max pooling on 37 datasets. This figure clearly shows that
expectation pooling achieves better performances

of model interpretability but helps in modeling complex datasets without
prior model assumptions.

4.5 Summary

In this paper, we introduced a novel pooling method, termed expectation
pooling, to improve the performance of DNA sequence-related prediction
tasks. Expectation pooling is divided into two sublayers, a local max
pooling layer and a “dense” layer without additional hyperparameters
(other than m). Expectation pooling is a novel combination of average
pooling and max pooling, and its performance in other fields should be
investigated. In this paper, we show that expectation pooling improves
model performance compared with global max pooling. Our method
improves the performance only from the aspect of the meaning of
the model results—without increasing parameters or requiring data
augmentation—and allows the neural network model to be related to a
probabilistic model.

In addition to the experimental results presented here, expectation
pooling is more suitable for the model of motif finding from two
perspectives: those of deep learning and those of statistical models.
From a statistical perspective, expectation pooling actually calculates
the expectation of kernel scores; it is evident that expectation pooling
matches what MEME does better than does max pooling. From the of
deep learning perspective, the drawback of max pooling is overfitting
and overestimation, while the drawback of global average pooling is
underestimation. Thus, we combine these two pooling methods to
introduce our new expectation pooling method. Additionally, considering
all the scores improves our model’s robustness. From the analysis above,
the experimental performances are expected and can be interpreted from
many aspects.

We also considered probabilistic pooling methods, which yield a
random largest score rather than a weighted average of the large scores.
Probabilistic pooling means that we consider the weight to be the
probability selected as the final output. Actually, our expectation pooling
uses the output expectation for convenience and robustness without
randomness, which is how ’expectation’ is formed. Thus, our results tend
to be more stable and robust. However, we believe that the probabilistic
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pooling mentioned above can be utilized during the training process, for
example, in dropout(Srivastava et al., 2014), to enhance regularization and
prevent CNNs from overfitting.

The motif finding problem remains unsolved. Deep learning is magical
when dealing with large datasets and intricate structures, and it has
dramatically improved the state-of-the-art in many fields. Neural networks
have achieved numerous successes, such as DeepBind(Alipanahi et al.,
2015) for motif inference. Nevertheless, despite its great achievements,
deep learning is also blamed for its lack of interpretability(Zou et al.,
2018; Castelvecchi, 2016). Recently, many novel neural networks(He
et al., 2016) have been proposed based on intuition rather than through
logical derivation. Because the original models we utilized are simple and
related to the probabilistic model of motif finding, expectation pooling
is a natural improvement informed by the probabilistic model utilized in
MEME(Bailey et al., 2006). Obviously, global max pooling does not match
the statistical model particularly well; thus, we add the idea of expectation
to the model. As mentioned before, expectation pooling is a promising
modification of global max pooling that transitions from “hard” pooling
to “soft” pooling from a statistical viewpoint. We believe that the problem
of motif finding implies a simple statistical model and consequently, that
simple neural network models can be applied to analyze this problem.
Under simple models, statistical methods can be utilized reasonably
while still obtaining some seemingly magical performances. Finally,
the interpretation of expectation pooling enhances model understanding;
therefore, we recover more accurate motifs as expected.

Recently, many works have been conducted to investigate the
interpretation of neural networks and to improve the prediction accuracy
in the motif-finding field(Cao and Zhang, 2018; Pan and Shen, 2018;
Pan et al., 2018; Zuallaert et al., 2018). These works have given us
more knowledge about the CNNs utilized in these models. Moreover,
many recent statistical methods such as clustering have also been used
to construct successful motif-finding applications(Munteanu et al., 2018).
These works inspired us to combine statistical models with motif finding
rather than experiment blindly with new deep learning models. From a
statistical viewpoint, many novel and reasonable technologies may be
proposed for this problem and utilized in deep learning, such as dropout and
expectation pooling. Furthermore, our pooling method has a significant
statistical relationship with the EM algorithm, which gives our model better
interpretability. Better interpretability, we believe is more impactful than
experimental performance because it allows us to understand biological
models from their statistical models and provides interesting ideas from a
probability viewpoint. Our work in this paper is generally instructive for
applications of statistical methods in the motif-finding field. We believe
that statistical methods combined with deep learning forms a substantial
advancement by will making deep learning an even more powerful tool
for bioinformatics.
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