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Abstract 17 

The human brain differs from that of other primates, but the genetic basis of these differences 18 

remains unclear. We investigated the evolutionary pressures acting on almost all human 19 

protein-coding genes (N=11,667; 1:1 orthologs in primates) on the basis of their divergence 20 

from those of early hominins, such as Neanderthals, and non-human primates. We confirm 21 

that genes encoding brain-related proteins are among the most strongly conserved protein-22 

coding genes in the human genome. Combining our evolutionary pressure metrics for the 23 

protein-coding genome with recent datasets, we found that this conservation applied to genes 24 

functionally associated with the synapse and expressed in brain structures such as the 25 

prefrontal cortex and the cerebellum. Conversely, several of the protein-coding genes that 26 

diverge most in hominins relative to other primates are associated with brain-associated 27 

diseases, such as micro/macrocephaly, dyslexia, and autism. We also showed that cerebellum 28 

granule neurons express a set of divergent protein-coding genes that may have contributed to 29 

the emergence of fine motor skills and social cognition in humans. This resource is available 30 

from http://neanderthal.pasteur.fr and can be used to estimate evolutionary constraints acting 31 

on a set of genes and to explore their relative contributions to human traits.  32 
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Introduction 33 

Modern humans (Homo sapiens) can perform complex cognitive tasks well and communicate 34 

with their peers [1]. Anatomic differences between the brains of humans and other primates 35 

are well documented (e.g. cortex size, prefrontal white matter thickness, lateralization), but 36 

the way in which the human brain evolved remains a matter of debate [2]. A recent study of 37 

endocranial casts of Homo sapiens fossils indicates that, brain size in early Homo sapiens, 38 

300,000 years ago, was already within the range of that in present-day humans [3]. However, 39 

brain shape, evolved more gradually within the Homo sapiens lineage, reaching its current 40 

form between about 100,000 and 35,000 years ago. It has also been suggested that the 41 

enlargement of the prefrontal cortex relative to the motor cortex in humans is mirrored in the 42 

cerebellum by an enlargement of the regions of the cerebellum connected to the prefrontal 43 

cortex [4]. These anatomic processes of tandem evolution in the brain paralleled the 44 

emergence of motor and cognitive abilities, such as bipedalism, planning, language, and 45 

social awareness, which are particularly well developed in humans. 46 

 Genetic differences in primates undoubtedly contributed to these brain and cognitive 47 

differences, but the genes or variants involved remain largely unknown. Indeed, 48 

demonstrating that a genetic variant is adaptive requires strong evidence at both the genetic 49 

and functional levels. Only few genes have been shown to be human-specific. They include 50 

SRGAP2C [5], ARHGAP11B [6] and NOTCH2NL [7], which emerged through recent gene 51 

duplication in the Homo lineage [8]. Remarkably, the expression of these human specific 52 

genes in the mouse brain expand cortical neurogenesis [6,7,9,10]. Several genes involved in 53 

brain function have been shown to display accelerated coding region evolution in humans. 54 

For example, FOXP2 has been associated with verbal apraxia and ASPM with microcephaly 55 

[11,12]. Functional studies have also shown that mice carrying a “humanized” version of 56 

FOXP2 display qualitative changes in ultrasonic vocalization [13]. However, these reports 57 
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targeting only specific genes sometimes provide contradictory results [14]. Other studies 58 

have reported sequence conservation to be stronger in the protein-coding genes of the brain 59 

than in those of other tissues [15–17], suggesting that the main substrate of evolution in the 60 

brain is regulatory changes in gene expression [18–20] and splicing [21]. In addition, several 61 

recent studies have recently explored the genes subjected to the highest degrees of constraint 62 

during primate evolution or in human populations, to improve estimations of the 63 

pathogenicity of variants identified in patients with genetic disorders [22,23]. By contrast, 64 

few studies have systematically detected genes that have diverged during primate evolution 65 

[24,25].  66 

We describe here an exhaustive screening of all protein-coding genes for conservation 67 

and divergence from the common primate ancestor, making use of rich datasets of brain 68 

single-cell transcriptomics, proteomics and imaging to investigate the relationships between 69 

these genes and brain structure, function, and diseases.  70 
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 71 

Figure 1 Evolution of protein-coding genes across tissues and biological functions. (a) 72 

Analysis pipeline for the extraction of ωGC12, a corrected and normalized measurement 73 

of evolution of protein-coding genes that behaves like a Z-score and takes into account 74 

the GC content of codons. (b) Hierarchical clustering, on the basis of ωGC12, across all 75 

protein-coding genes (1:1 orthologs in hominins with medium coverage; See 76 

Supplementary Table 1). (c) Gene ontology (GO) enrichments for the red and blue 77 

clusters in panel b (See Supplementary Table 2 for all GO terms). Horizontal lines 78 

indicate the 95% confidence intervals. (d) Funnel plot summarizing the evolution of 79 

protein-coding genes specifically expressed in different tissues of the human body 80 

(Supplementary Table 3). The dashed horizontal line indicates the threshold for 81 

significance after Bonferroni correction. Stars indicate the set of genes for which 82 

statistical significance was achieved in multiple comparisons after correction, with a 83 

bootstrap taking GC12 content and coding sequence length into account. HS: Homo 84 

sapiens; 6-EPO ancestor: the reconstructed ancestral genome of primates based on 85 

alignments of human, chimpanzee, gorilla, orangutan, rhesus macaque, and marmoset 86 

genomes. 87 
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Results 88 

Strong conservation of brain protein-coding genes  89 

We first compared the sequences of modern humans, archaic humans, and other primates to 90 

those of their common primate ancestor (inferred from the Compara 6-way primate Enredo, 91 

Pecan, Ortheus multiple alignments [26]), to extract a measurement of evolution for 11,667 92 

of the 1:1 orthologs across primates, selected from the 17,808 protein-coding genes in the 93 

modern human genome (Fig. 1a, see also Supplementary Fig. 1 and 2; 27). This resource is 94 

available online from http://neanderthal.pasteur.fr. Our measurement is derived from one of 95 

the most widely used and reliable measurements of evolutionary pressure on protein-coding 96 

regions, the dN/dS ratio [28], also called ω. This measurement compares the rates of non-97 

synonymous and synonymous mutations of coding sequences. If there are more non-98 

synonymous mutations than expected, there is divergence, if fewer, there is conservation. We 99 

first estimated dN and dS for all 1:1 orthologous genes, because the evolutionary constraints 100 

on duplicated genes are relaxed [29] (note: only the Y chromosome was excluded from these 101 

analyses). We then adjusted the dN/dS ratio for biases induced by variations of mutations rate 102 

with the GC content of codons. Finally, we renormalized the values obtained for each taxon 103 

across the whole genome. The final ωGC12 obtained took the form of Z-score corrected for GC 104 

content that quantified the unbiased divergence of genes relative to the ancestral primate 105 

genome [27]. 106 

Using the ωGC12 for all protein-coding genes in Homo sapiens, Denisovans, 107 

Neanderthals, and Pan troglodytes, we identified two distinct clusters in hominins (Fig. 1b 108 

and Supplementary Table 1): one containing divergent protein-coding genes, enriched in 109 

olfactory genes (OR=1.48, p=8.4e-9), and one with conserved protein-coding genes, enriched 110 

in brain-related biological functions (Fig. 1c and Supplementary Table 2). This second cluster 111 
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revealed a particularly strong conservation of genes encoding proteins involved in nervous 112 

system development (OR=1.2, p=2.4e-9) and synaptic transmission (OR=1.35, p=1.7e-8). 113 

We investigated the possible enrichment of specific tissues in conserved and 114 

divergent proteins by analyzing RNAseq (Illumina Bodymap2 and GTEx), microarray and 115 

proteomics datasets (Methods). For expression data, we evaluated the specificity of genes by 116 

normalizing their profile across tissues (Supplementary Fig. 3). The results confirmed a 117 

higher degree of conservation for protein-coding genes expressed in the brain (Wilcoxon rank 118 

correlation (rc)=-0.1, p=4.1e-12, bootstrap corrected for gene length and GC content) than for 119 

those expressed elsewhere in the body, with the greatest divergence observed for genes 120 

expressed in the testis (Wilcoxon rc=0.3, p=7.8e-11, bootstrap corrected for gene length and 121 

GC content; Fig. 1d, see also Supplementary Fig. 4 and 5). This conservation of brain 122 

protein-coding genes was replicated with two other datasets (MicroArray: Wilcoxon OR=-123 

0.18, p=1.8e-12; mass spectrometry: Wilcoxon rc=-0.21, p=1.55e-9; bootstrap corrected for 124 

gene length and GC content). 125 

 126 

Conservation of protein-coding genes relating to nervous system substructure and 127 

neuronal functions  128 

We then used microarray [30] and RNAseq [31] data to investigate the evolutionary pressures 129 

acting on different regions of the central nervous system. Three central nervous system 130 

substructures appeared to have evolved under the highest level of purifying selection at the 131 

protein sequence level (ωGC12<2, i.e. highly conserved): (i) the cerebellum (Wilcoxon rc=-132 

0.29, p=5.5e-6, Bonferroni corrected) and the cerebellar peduncle (Wilcoxon rc=-0.11, 133 

p=3.2e-4, bootstrap corrected for gene length and GC content), (ii) the amygdala (Wilcoxon 134 

rc=-0.11, p=4.1e-6, bootstrap corrected for gene length and GC content), and, more 135 
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surprisingly, (iii) the prefrontal cortex (Wilcoxon rc=-0.1, p=5.7e-10, bootstrap corrected for 136 

gene length and GC content; Fig. 2a, see also Supplementary Table 3). Indeed, it has been 137 

suggested that the prefrontal cortex is one of the most divergent brain structure in human 138 

evolution [32], this diversity being associated with high-level cognitive function [33]. Only 139 

one brain structure was more divergent than expected: the superior cervical ganglion 140 

(Wilcoxon rc=0.22, p=1e-6, bootstrap corrected for gene length and GC content). This 141 

structure provides sympathetic innervation to many organs and is associated with the archaic 142 

functions of fight-or-flight response. The divergent genes expressed in the superior cervical 143 

ganglion include CARF, which was found to be specifically divergent in the genus Homo. 144 

This gene encodes a calcium-responsive transcription factor that regulates the neuronal 145 

activity-dependent expression of BDNF [34] and a set of singing-induced genes in the song 146 

nuclei of the zebra finch, a songbird capable of vocal learning [35]. This gene had a raw 147 

dN/dS of 2.44 (7 non-synonymous vs 1 synonymous mutations in Homo sapiens compared to 148 

the common primate ancestor) and was found to be one of the most divergent protein-coding 149 

genes expressed in the human brain. 150 

We then investigated the possible enrichment of conserved and divergent genes in 151 

brain-specific gene ontology terms. All pathways displayed high overall levels of 152 

conservation, but genes encoding proteins involved in glutamatergic and GABAergic 153 

neurotransmission were generally more conserved (Wilcoxon rc=-0.25; p=9.8e-6, Bonferroni 154 

corrected) than those encoding proteins involved in dopamine and peptide neurotransmission 155 

and intracellular trafficking (Fig. 2b, see also Supplementary Fig. 6 and Supplementary Table 156 

3). The recently released ontology of the synapse provided by the SynGO consortium 157 

(http://syngoportal.org) was incorporated into this analysis, not only confirming the globally 158 

strong conservation of the synapse, but also revealing its close relationship to trans-synaptic 159 

signaling processes (Wilcoxon rc=-0.21, p=4.5e-5, Bonferroni corrected) and to postsynaptic 160 
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(rc=-0.56, p=6.3e-8, Bonferroni corrected) and presynaptic membranes (Wilcoxon: rc=-0.56, 161 

p=7e-8, Bonferroni corrected ; Fig. 2c,d). 162 

 163 

 164 

Figure 2 Evolution of brain-related protein-coding genes. (a) Funnel plot summarizing 165 

the evolution of protein-coding genes specifically expressed in brain substructures; the 166 

dashed horizontal line indicates the threshold for significance after Bonferroni 167 

correction. Stars indicate sets of genes for which statistical significance was achieved for 168 

multiple comparisons with bootstrap correction; (b) Matrix summarizing the effect size 169 

of the difference in protein-coding gene divergence between synaptic functions; colored 170 

cells indicate Mann-Whitney comparisons with a nominal p-value <0.05. Black dots 171 

indicate comparisons satisfying the Bonferroni threshold for statistical significance. (c, 172 
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d) SynGO sunburst plots showing nested statistically conserved (blue) biological 173 

processes and cellular components of the synapse. 174 

 175 

Divergent protein-coding genes and their correlation with brain expression and 176 

function 177 

We focused on the genes situated at the extremes of the ωGC12 distribution (>2SD; 178 

Fig. 3a; Supplementary Table 4) and those fixed in the modern Homo sapiens population 179 

(neutrality index<1), to ensure that we analyzed the most-divergent protein-coding genes. 180 

Only 126 of these 352 highly divergent protein-coding genes were brain-related 181 

(impoverishment for brain genes, Fisher’s exact test OR=0.66, p=1e-4), listed as synaptic 182 

genes [36,37], specifically expressed in the brain (+2SD for specific expression) or related to 183 

a brain disease (extracted systematically from Online Mendelian Inheritance in Man - 184 

OMIM: https://www.omim.org and Human Phenotype Ontology - HPO: 185 

https://hpo.jax.org/app/). For comparison, we also extracted the 427 most strongly conserved 186 

protein-coding genes, 290 of which were related to the brain categories listed above 187 

(enrichment for brain genes, Fisher’s exact test OR=1.26, p=0.0032). 188 
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 189 

Figure 3 Brain protein-coding genes and human diseases. (a) Distribution of ωGC12 and 190 

Venn diagrams describing the most conserved and divergent protein-coding genes 191 

specifically expressed in the brain, related to the synapse, or brain diseases 192 

(Supplementary Table 4). (b) Odds ratios for protein-coding gene sets related to brain 193 

diseases (Fisher’s exact test; Asterisks indicate p-values significant after Bonferroni 194 

correction; horizontal lines indicate 95% confidence intervals) (c) Protein-protein 195 

interaction (PPI) network for the most conserved and divergent protein-coding genes 196 

associated with brain diseases. The RSPH1 gene has accumulated variants with a high 197 

combined annotation-dependent depletion (CADD) score, which estimates the 198 

deleteriousness of a genetic variant. 199 
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Using these 427 highly conserved and 352 highly divergent genes, we first used the 200 

Brainspan data available from the specific expression analysis (SEA) to confirm that the 201 

population of genes expressed in the cerebellum and the cortex was enriched in conserved 202 

genes (Supplementary Figure 7).  Despite this conservation, based on the adult Allen Brain 203 

atlas, we identified a cluster of brain subregions (within the hypothalamus, cerebral nuclei, 204 

and cerebellum) more specifically expressing highly divergent genes (Supplementary Figure 205 

8). Analyses of the prenatal human brain laser microdissection microarray dataset [38] also 206 

revealed an excess of divergent protein-coding genes expressed in the medial ganglionic 207 

eminence (MGE; OR=2.78[1.05, 7.34], p=0.039; Supplementary Table 5) which is 208 

implicated in production of GABAergic interneurons and their migration to neocortex during 209 

development [39]. 210 

 211 

 212 

Figure 4 Evolution of protein-coding genes expressed in different cerebellum cell types. 213 

(a) Funnel plot summarizing the evolution of protein-coding genes specifically expressed 214 

in different cell types within the cerebellum (Supplementary Table 6). (b) Venn diagram 215 

summarizing the divergent protein-coding genes of Homo sapiens (HS), Neanderthals 216 

(NH), Denisovans (DS), and Pan troglodytes (PT) specifically expressed in Cluster 47, so-217 

called “ciliated cells” [40]. 218 
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 219 

In single-cell transcriptomic studies of the mouse cerebellum [40,41], we found that cells 220 

expressing cilium marker genes, such as DYNLRB2 and MEIG1, were the principal cells with 221 

higher levels of expression of the most divergent protein-coding genes (after stringent 222 

Bonferroni and bootstrap correction for gene length and GC content, Fig. 4a). Those “ciliated 223 

cells” were not anatomically identified in the cerebellum [40], but their associated cilium 224 

markers were found to be expressed at the site of the cerebellar granule cells [42]. These cells 225 

may, therefore, be a subtype of granule neurons involved in cerebellar function. The most 226 

divergent proteins in these ciliated cells code for the tubulin tyrosine ligase like 6 (TTLL6), 227 

the DNA topoisomerase III alpha (TOP3A), the dynein cytoplasmic 2 light intermediate 228 

chain 1 (DYNC2LI1) and the lebercilin (LCA5) localized to the axoneme of ciliated cells. 229 

Given that most protein coding divergence occurs in testes and that the flagella of sperm and 230 

cilia of other cells are structurally related, is it possible that the enrichment of ciliated cells 231 

among the most divergent genes could be another feature of testis rather than brain 232 

divergence. However, only TTLL6 is highly expressed in testes, suggesting a neural relevance 233 

for DYNC2LI1, LCA5, and TOP3A. Interestingly, some of these protein coding genes are also 234 

involved in human brain-related ciliopathies such as Joubert syndrome [43] and microcephaly 235 

(see below). A similar single-cell transcriptomic analysis of the human cerebral cortex [41] 236 

revealed no such strong divergent pattern in any cell type (Supplementary Figure 9). 237 

Finally, we assessed the potential association with brain functions, by extracting 19,244 brain 238 

imaging results from 315 fMRI-BOLD studies (T and Z score maps; see Supplementary 239 

Table 7 for the complete list) from NeuroVault [44] and comparing the spatial patterns 240 

observed with the patterns of gene expression in the Allen Brain atlas [45,46]. The 241 

correlation between brain activity and divergent gene expression was stronger in subcortical 242 

structures than in the cortex (Wilcoxon rc=0.14, p=2.5e-248). The brain activity maps that 243 
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correlate with the expression pattern of the divergent genes (see Supplementary Table 8 for 244 

details) were enriched in social tasks (empathy, emotion recognition, theory of mind, 245 

language; Fisher’s exact test p=2.9e-20, OR=1.72, CI95%=[1.53, 1.93]; see Supplementary 246 

Figure 10 for illustration). 247 

Divergent protein-coding genes and their relationship to brain disorders 248 

Our systematic analysis revealed that highly constrained protein-coding genes were more 249 

associated with brain diseases or traits than divergent protein-coding genes, particularly for 250 

microcephaly (p=0.002, OR=0.37, CI95%=[0.16, 0.69], Bonferroni-corrected), intellectual 251 

disability (p=7.91e-05, OR=0.30 CI95%=[0.16, 0.57], Bonferroni-corrected) and autism 252 

(p=0.0005, OR=0.26, CI95%=[0.11, 0.59], Bonferroni-corrected) and for diseases associated 253 

with myelin (Fisher’s exact test p=0.005, OR=0.09, CI95%=[0.01, 0.72], uncorrected) and 254 

encephalopathy (Fisher’s exact test p=0.045, OR=0.22, CI95%=[0.05, 1.0], uncorrected; 255 

Figure 3b). The highly conserved protein-coding genes associated with brain diseases 256 

included those encoding tubulins (TUBA1A, TUBB3, TUBB4A), dynamin (DNM1), 257 

chromatin remodeling proteins (SMARCA4) and signaling molecules, such as AKT1, DVL1, 258 

NOTCH1 and its ligand DLL1, which were associated with neurodevelopmental disorders of 259 

different types (Supplementary Table 4). We also identified 31 highly divergent protein-260 

coding genes associated (based on OMIM and HPO data) with several human diseases or 261 

conditions, such as micro/macrocephaly, autism or dyslexia.  262 

A comparison of humans and chimpanzees with our common primate ancestor 263 

revealed several protein-coding genes associated with micro/macrocephaly with different 264 

patterns of evolution in humans and chimpanzees (Fig. 5). Some genes displayed a 265 

divergence specifically in the hominin lineage (AHI1, ASXL1, CSPP1, DAG1, FAM111A, 266 

GRIP1, NHEJ1, QDPR, RNF135, RNF168, SLX4, TCTN1, and TMEM70) or in the 267 

chimpanzee (ARHGAP31, ATRIP, CPT2, CTC1, HDAC6, HEXB, KIF2A, MKKS, MRPS22, 268 
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RFT1, TBX6, and WWOX). The PPP1R15B phosphatase gene associated with microcephaly 269 

diverged from the common primate ancestor in both taxa. None of the genes related to 270 

micro/macrocephaly was divergent only in Homo sapiens (Fig. 5).  271 

 272 

 273 

Figure 5. Evolution of the protein-coding genes associated with micro- or macrocephaly 274 

in humans. Comparison of ωGC12 across taxa for the microcephaly- and macrocephaly-275 

associated genes. Venn diagrams for the conserved (a) and divergent (c) protein-coding 276 

genes for Homo sapiens (HS), Neanderthals (NH), Denisovans (DS), and Pan troglodytes 277 

(PT). (b) Violin plots of ωGC for protein-coding genes associated with microcephaly 278 

(purple), macrocephaly (green) or both (gray). Scatter plots of ωGC for the same genes, 279 

comparing Homo sapiens with either Neanderthals (d) or Pan troglodytes (e). 280 

 281 
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We also identified divergent protein-coding genes associated with communication 282 

disorders (Fig. 3c), such as autism (CNTNAP4, AHI1, FAN1, SNTG2 and GRIP1) and 283 

dyslexia (KIAA0319). Interestingly, these genes diverged from the common primate ancestor 284 

only in the hominin lineage, and were strongly conserved in all other taxa (Fig. 6). They all 285 

have roles relating to neuronal connectivity (neuronal migration and synaptogenesis) and, 286 

within the human brain, were more specifically expressed in the cerebellum, except for 287 

GRIP1, which was expressed almost exclusively in the cortex.  288 

 289 

Figure 6. Examples of brain disorder-associated protein-coding genes displaying 290 

specific divergence in hominins during primate evolution. (a) Representation of 16 291 

genes with dN/dS>1 in Homo sapiens and archaic hominins but dN/dS<1 for other 292 

primates. (b) Representation of hominin-specific variants of the AHI1 gene, showing the 293 

correspondence with the protein; note how two variants lie within the WP40 functional 294 

domains. Red stars indicate variants (CADD>5) relative to the ancestor present in 295 

Homo sapiens, Neanderthals, and Denisovans, but not in Pan troglodytes. 296 

 297 
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The genes associated with autism include CNTNAP4, a member of the neurexin 298 

protein family involved in correct neurotransmission in the dopaminergic and GABAergic 299 

systems [47]. SNTG2 encodes a cytoplasmic peripheral membrane protein that binds to 300 

NLGN3 and NLGN4X, two proteins associated with autism [48], and several copy-number 301 

variants affecting SNTG2 have been identified in patients with autism [49]. GRIP1 (glutamate 302 

receptor-interacting protein 1) is also associated with microcephaly and encodes a synaptic 303 

scaffolding protein that interacts with glutamate receptors. Variants of this gene have 304 

repeatedly been associated with autism [50].  305 

We also identified the dyslexia susceptibility gene KIAA0319, encoding a protein 306 

involved in axon growth inhibition [51,52], as one of the most divergent brain protein-coding 307 

genes in humans relative to the common primate ancestor (raw dN/dS=3.9; 9 non-308 

synonymous vs 1 synonymous mutations in Homo sapiens compared to the common primate 309 

ancestor). The role of KIAA0319 in dyslexia remains a matter of debate, but its rapid 310 

evolution in the hominoid lineage warrants further genetic and functional studies. 311 

Finally, several genes display very high levels of divergence in Homo sapiens, but 312 

their functions or association with disease remain unknown. For example, the zinc finger 313 

protein ZNF491 (raw dN/dS=4.7; 14 non-synonymous vs 1 synonymous mutations in Homo 314 

sapiens compared to the common primate ancestor) is specifically expressed in the 315 

cerebellum and is structurally similar to a chromatin remodeling factor, but its biological role 316 

remains to be determined. Another example is the CCP110 gene, encoding a centrosomal 317 

protein resembling ASPM, but not associated with a disease. Its function suggests that this 318 

divergent protein-coding gene would be a compelling candidate for involvement in 319 

microcephaly in humans. A complete list of the most conserved and divergent protein-coding 320 

genes is available in Supplementary Table 4 and on the companion website. 321 
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Discussion 322 

Divergent protein-coding genes and brain size in primates 323 

Several protein-coding genes are thought to have played a major role in the increase in brain 324 

size in humans. Some of these genes, such as ARHGAP11B, SRGAP2C and NOTCH2NL [7], 325 

are specific to humans, having recently been duplicated [53]. Other studies have suggested 326 

that a high degree of divergence in genes involved in micro/macrocephaly may have 327 

contributed to the substantial change in brain size during primate evolution [24,54]. Several 328 

of these genes, such as ASPM [55] and MCPH1 [56], seem to have evolved more rapidly in 329 

humans. However, the adaptive nature of the evolution of these genes has been called into 330 

question [57] and neither of these two genes were on the list of highly divergent protein-331 

coding genes in our analysis (their raw dN/dS value are below 0.8). 332 

Conversely, our systematic detection approach identified the most divergent protein-333 

coding genes in humans for micro/macrocephaly, the top 10 such genes being FAM111A, 334 

AHI1, CSPP1, TCTN1, DAG1, TMEM70, ASXL1, RNF168, NHEJ1, GRIP1. This list of 335 

divergent protein-coding genes associated with micro/macrocephaly in humans can be used 336 

to select the best candidate human-specific gene/variants for further genetic and functional 337 

analyses, to improve estimates of their contribution to the emergence of anatomic difference 338 

between humans and other primates. 339 

Some of these genes may have contributed to differences in brain size and to 340 

differences in other morphological features, such as skeleton development. For example, the 341 

divergent protein-coding genes FAM111A (raw dN/dS=2.99; 7 non-synonymous vs 1 342 

synonymous mutations in Homo sapiens compared to the common primate ancestor) and 343 

ASXL1 (raw dN/dS=1.83; 12 non-synonymous vs 3 synonymous mutations in Homo sapiens 344 

compared to the common primate ancestor) are associated with macrocephaly and 345 
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microcephaly, respectively. Patients with dominant mutations of FAM111A are diagnosed 346 

with Kenny-Caffey syndrome (KCS). They display impaired skeletal development, with 347 

small dense bones, short stature, primary hypoparathyroidism with hypocalcemia and a 348 

prominent forehead [58]. The function of FAM111A remains largely unknown, but this 349 

protein seems to be crucial to a pathway governing parathyroid hormone production, calcium 350 

homeostasis, and skeletal development and growth. By contrast, patients with dominant 351 

mutations of ASXL1 are diagnosed with Bohring-Opitz syndrome, a malformation syndrome 352 

characterized by severe intrauterine growth retardation, intellectual disability, trigonocephaly, 353 

hirsutism, and flexion of the elbows and wrists with deviation of the wrists and 354 

metacarpophalangeal joints [59]. ASXL1 encodes a chromatin protein required to maintain 355 

both the activation and silencing of homeotic genes. 356 

Remarkably, three protein-coding genes (AHI1, CSPP1 and TCTN1) in the top 5 of 357 

the most divergent protein-coding genes, with raw dN/dS>2, are required for both cortical 358 

and cerebellar development in humans. They are also associated with Joubert syndrome, a 359 

recessive disease characterized by an agenesis of the cerebellar vermis and difficulties 360 

coordinating movements. AHI1 is a positive modulator of classical WNT/ciliary signaling. 361 

CSPP1 is involved in cell cycle-dependent microtubule organization and TCTN1 is a 362 

regulator of Hedgehog during development. 363 

AHI1 was previously identified as a gene subject to positive selection during 364 

evolution of the human lineage [60,61], but, to our knowledge, neither CSPP1 nor TCTN1 365 

has previously been described as a diverging during primate evolution. It has been suggested 366 

that the accelerated evolution of AHI1 required for ciliogenesis and axonal growth may have 367 

played a role in the development of unique motor capabilities, such as bipedalism, in humans 368 

[54]. Our findings provide further support for the accelerated evolution of a set of genes 369 

associated with ciliogenesis. Indeed, we found that three additional genes involved in Joubert 370 
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syndrome, CSPP1, TTLL6, and TCTN1, were among the protein-coding genes that have 371 

diverged most during human evolution, and our single-cell analysis revealed that ciliated 372 

cells (a subtype of granule neurons) were the main category of cerebellar cells expressing 373 

divergent genes. 374 

 375 

The possible link between a change in the genetic makeup of the cerebellum and the 376 

evolution of human cognition  377 

The emergence of a large cortex was undoubtedly an important step for human cognition, but 378 

other parts of the brain, such as the cerebellum, may also have made major contributions to 379 

both motricity and cognition. In this study, we showed that the protein-coding genes 380 

expressed in the cerebellum were among the most conserved in humans. However, we also 381 

identified a set of divergent protein-coding genes with relatively strong expression in the 382 

cerebellum and/or for which mutations affected cerebellar function. As discussed above, 383 

several genes associated with Joubert syndrome, including AHI1, CSPP1, TTLL6, and 384 

TCTN1, have diverged in humans and are important for cerebellar development. Furthermore, 385 

the most divergent protein-coding genes expressed in the brain include CNTNAP4, FAN1, 386 

SNTG2, and KIAA0319, which also display high levels of expression in the cerebellum and 387 

have been associated with communication disorders, such as autism and dyslexia. 388 

In humans, the cerebellum is associated with higher cognitive functions, such as 389 

visuo-spatial skills, the planning of complex movements, procedural learning, attention 390 

switching, and sensory discrimination [62]. It plays a key role in temporal processing [63] 391 

and in the anticipation and control of behavior, through both implicit and explicit 392 

mechanisms [62]. A change in the genetic makeup of the cerebellum would therefore be 393 
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expected to have been of great advantage for the emergence of the specific features of human 394 

cognition. 395 

Despite this possible link between the cerebellum and the emergence of human 396 

cognition, much less attention has been paid to this part of the brain than to the cortex, on 397 

which most of the functional studies investigating the role of human-specific genes/variants 398 

have focused. For example, SRGAP2C expression is almost exclusively restricted to the 399 

cerebellum in humans, but the ectopic expression of this gene has been studied in mouse 400 

cortex [5,10], in which it triggers human-like neuronal characteristics, such as an increase in 401 

dendritic spine length and density. We therefore suggest that an exploration of human 402 

genes/variants specifically associated with the development and functioning of the 403 

cerebellum might shed new light on the evolution of human cognition. 404 

 405 

Limitations 406 

The present results have potential limits in their interpretations. Sources of error in the 407 

alignments (e.g. false orthologous, segmental duplications, errors in ancestral sequence 408 

reconstruction) are still possible and can result in inflated dN/dS. Moreover, methods to 409 

estimate the proteins evolution are expected to give downwardly biased estimates [64]. 410 

However, our GC12 normalization have already proved to correct for most of those biases in 411 

systematic analyses [27] and our raw dN/dS values highly correlate with other independent 412 

studies on primates [65]. Moreover, for the enrichment analyses, we used bootstrapping 413 

techniques to better control for potential biases induced by differences in GC content and 414 

gene length, especially for genes implicated in brain disorders [66]. Finally, our data are 415 

openly available on the companion website and allow to check at the variant level which 416 

amino acids changed. 417 
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 418 

 419 

Perspectives 420 

Our systematic analysis of protein sequence diversity confirmed that protein-coding genes 421 

relating to brain function are among the most highly conserved in the human genome. The set 422 

of divergent protein-coding genes identified here may have played specific roles in the 423 

evolution of human cognition, by modulating brain size, neuronal migration and/or synaptic 424 

physiology, but further genetic and functional studies would shed new light on the role of 425 

these divergent genes. Beyond the brain, this resource will be also be useful for estimating 426 

the evolutionary pressure acting on genes related to other biological pathways, particularly 427 

those displaying signs of positive selection during primate evolution, such as the reproductive 428 

and immune systems. 429 

 430 

Materials and Methods  431 

Genetic sequences 432 

Alignments with the reference genome: We collected sequences and reconstructed 433 

sequence alignments with the reference human genome version hg19 (release 19, 434 

GRCh37.p13). For the primate common ancestor sequence, we used the Ensemble 6-way 435 

Enredo-Pecan-Ortheus (EPO) [26] multiple alignments v71, related to human (hg19), 436 

chimpanzee (panTro4), gorilla (gorGor3), orangutan (ponAbe2), rhesus macaque (rheMac3), 437 

and marmoset (calJac3). For the two ancestral hominins, Altai and Denisovan, we integrated 438 

variants detected by Castellano and colleagues [67] into the standard hg19 sequence 439 

(http://cdna.eva.mpg.de/neandertal/, date of access 2014-07-03). Finally, we used the whole-440 
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genome alignment of all the primates used in the 6-EPO from the UCSC website 441 

(http://hgdownload.soe.ucsc.edu/downloads.html, access online: August 13th, 2015). 442 

VCF annotation: We combined the VCF file from Castellano and colleagues [67] with the 443 

VCF files generated from the ancestor and primate sequence alignments. The global VCF 444 

was annotated with ANNOVAR [68] (version of June 2015), using the following databases: 445 

refGene, cytoBand, genomicSuperDups, esp6500siv2_all, 1000g2014oct_all, 446 

1000g2014oct_afr, 1000g2014oct_eas, 1000g2014oct_eur, avsnp142, ljb26_all, gerp++elem, 447 

popfreq_max, exac03_all, exac03_afr, exac03_amr, exac03_eas, exac03_fin, exac03_nfe, 448 

exac03_oth, exac03_sas. We also used the Clinvar database 449 

(https://ncbi.nlm.nih.gov/clinvar/, date of access 2016-02-03). 450 

ωGC12 calculation 451 

Once all the alignments had been collected, we extracted the consensus coding sequences 452 

(CCDS) of all protein-coding genes referenced in Ensembl BioMart Grc37, according to the 453 

HGNC (date of access 05/05/2015) and NCBI Consensus CDS protein set (date of access 454 

2015-08-10). We calculated the number of non-synonymous mutations N, the number of 455 

synonymous mutations S, the ratio of the number of nonsynonymous mutations per non-456 

synonymous site dN, the number of synonymous mutations per synonymous site dS, and their 457 

ratio dN/dS —also called �—between all taxa and the ancestor, using the yn00 algorithm 458 

implemented in PamL software [69]. We avoided infinite and null results, by calculating a 459 

corrected version of dN/dS. If S was null, we set its value to one to avoid having zero as the 460 

numerator. The obtained values were validated through the replication of a recent systematic 461 

estimation of dN/dS between Homo Sapiens and two great apes [65] (Pan troglodytes and 462 

Pongo abelii; Pearson's r>0.8, p<0.0001; see Fig. S2). Finally, we obtained our ωGC12 value 463 

by correcting for the GC12 content of the genes with a generalized linear model and by 464 

calculating a Z-score for each taxon [27]. GC content has been associated with biases in 465 
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mutation rates, particularly in primates [70] and humans [71]. We retained only the 11667 466 

genes with 1:1 orthologs in primates (extracted for GRCh37.p13 with Ensemble Biomart, 467 

access online: February 27th, 2017). 468 

Gene sets 469 

We used different gene sets, starting at the tissue level and then focusing on the brain and key 470 

pathways. For body tissues, we used Illumina Body Map 2.0 RNA-Seq data, corresponding to 471 

16 human tissue types: adrenal, adipose, brain, breast, colon, heart, kidney, liver, lung, 472 

lymph, ovary, prostate, skeletal muscle, testes, thyroid, and white blood cells (for more 473 

information: https://personal.broadinstitute.org/mgarber/bodymap_schroth.pdf; data 474 

preprocessed with Cufflinks, accessed May 5, 2015 at http://cureffi.org ). We also used the 475 

microarray dataset of Su and colleagues [30] (Human U133A/GNF1H Gene Atlas, accessed 476 

May 4, 2015 at http://biogps.org). Finally, we also replicated our results with recent RNAseq 477 

data from the GTEx Consortium [31] (https://www.gtexportal.org/home/). 478 

For the brain, we used the dataset of Su and colleagues and the Human Protein Atlas data 479 

(accessed November 7, 2017 at https://www.proteinatlas.org). For analysis of the biological 480 

pathways associated with the brain, we used KEGG (accessed February 25, 2015, at  481 

http://www.genome.jp/kegg/), synaptic genes curated by the group of Danielle Posthuma at 482 

Vrije Universiteit (accessed September 1, 2014, at https://ctg.cncr.nl/software/genesets), and 483 

mass spectrometry data from Loh and colleagues [72]. Finally, for the diseases associated 484 

with the brain, we combined gene sets generated from Human Phenotype Ontology (accessed 485 

April 5, 2016, at http://human-phenotype-ontology.github.io) and OMIM (accessed April 5, 486 

2016, at https://omim.org), and curated lists: the 65 risk genes proposed by Sanders and 487 

colleagues [73] (TADA), the candidate genes for autism spectrum disorders from SFARI 488 

(accessed July 17, 2015 at https://gene.sfari.org), the Developmental Brain Disorder or DBD 489 

(accessed July 12, 2016 at https://geisingeradmi.org/care-innovation/studies/dbd-genes/), and 490 
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Cancer Census (accessed November 24, 2016 at cancer.sanger.ac.uk/census) data. Note that 491 

the combination of HPO & OMIM is the most exhaustive, making it possible to avoid 492 

missing potential candidate genes, but this combination does not identify specific 493 

associations. 494 

SynGO was generously provided by Matthijs Verhage (access date: January 11, 2019). This 495 

ontology is a consistent, evidence-based annotation of synaptic gene products developed by 496 

the SynGO consortium (2015-2017) in collaboration with the GO-consortium. It extends the 497 

existing Gene Ontology (GO) of the synapse and follows the same dichotomy between 498 

biological processes (BP) and cellular components (CC).  499 

For single-cell transcriptomics datasets, we identified the genes specifically highly expressed 500 

in each cell type, following the same strategy as used for the other RNAseq datasets. The 501 

single-cell data for the developing human cortex were kindly provided by Maximilian 502 

Haeussler (available at https://cells.ucsc.edu; access date: October 30, 2018). The single-cell 503 

transcriptional atlas data for the developing murine cerebellum [40] were kindly provided by 504 

Robert A. Carter (access date: January 29, 2019). For each cell type, we combined expression 505 

values cross all available replicates, to guarantee a high signal-to-noise ratio. We then 506 

calculated the values for the associated genes in Homo sapiens according to the paralogous 507 

correspondence between humans and mice (Ensembl Biomart accessed on February 23, 508 

2019). 509 

Gene nomenclature 510 

We extracted all the EntrezId of the protein-coding genes for Grc37 from Ensembl Biomart. 511 

We used the HGNC database to recover their symbols. For the 46 unmapped genes, we 512 

searched the NCBI database manually for the official symbol. 513 
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McDonald-Kreitman-test (MK) and neutrality index (NI) 514 

We assessed the possible fixation of variants in the Homo sapiens population by first 515 

calculating the relative ratio of non-synonymous to synonymous polymorphism (pN/pS) from 516 

the 1000 Genomes VCF for all SNPs, for SNPs with a minor allele frequency (MAF) <1% 517 

and >5%. SNPs were annotated with ANNOVAR across 1000 Genomes Project (ALL+5 518 

ethnicity groups), ESP6500 (ALL+2 ethnicity groups), ExAC (ALL+7 ethnicity groups), and 519 

CG46 (see http://annovar.openbioinformatics.org/en/latest/user-guide/filter/#popfreqmax-520 

and-popfreqall-annotations for more details). We then performed the McDonald–Kreitman 521 

test by calculating the neutrality index (NI) as the ratio of raw pN/pS and dN/dS values [74]. 522 

We considered the divergent genes to be fixed in the population when NI < 1. 523 

Protein-protein interaction network 524 

We plotted the protein-protein interaction (PPI) network, by combining eight human 525 

interactomes: the Human Integrated Protein-Protein Interaction Reference (HIPPIE) 526 

(accessed August 10, 2017 at http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/), the 527 

Agile Protein Interactomes DataServer (APID) (accessed September 7, 2017 at 528 

http://cicblade.dep.usal.es:8080/APID/), CORUM – the comprehensive resource of 529 

mammalian protein complexes (accessed July 13, 2017 at http://mips.helmholtz-530 

muenchen.de/corum/), and five PPI networks from of the Center for Cancer Systems Biology 531 

(CCSB) (accessed July 12, 2016 at http://interactome.dfci.harvard.edu/index.php?page=home 532 

): four high-quality binary protein-protein interaction (PPI) networks generated by a 533 

systematic primary yeast two-hybrid assay (Y2H): HI-I-05 from Rual and colleagues [75], 534 

Venkatesan-09 from Venkatesan and colleagues [76], Yu-11 from Yu and colleagues [77] 535 

and HI-II-14 from Rolland and colleagues [78], plus one high-quality binary literature dataset 536 

(Lit-BM-13) from Rolland and colleagues [78], comprising all PPIs that are binary and 537 

supported by at least two traceable pieces of evidence (publications and/or methods). 538 
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NeuroVault analyses 539 

We used the NeuroVault website [44] to collect 19,244 brain imaging results from fMRI-540 

BOLD studies (T and Z score maps) and their correlation with the gene expression data [46] 541 

of the Allen Brain atlas [45]. The gene expression data of the Allen Brain atlas were 542 

normalized and projected into the MNI152 stereotactic space used by NeuroVault, using the 543 

spatial coordinates provided by the Allen Brain Institute. An inverse relationship between 544 

cortical and subcortical expression dominated the pattern of expression for many genes. We 545 

therefore calculated the correlations for the cortex and subcortical structures separately. 546 

Allen Brain data 547 

We downloaded the Allen Brain atlas microarray-based gene data from the Allen Brain 548 

website (accessed January 19, 2018 at http://www.brain-map.org). Microarray data were 549 

available for six adult brains; the right hemisphere was missing for three donors so we 550 

considered only the left hemisphere for our analyses. For each donor, we averaged probes 551 

targeting the same gene and falling in the same brain area. We then subjected the data to log 552 

normalization and calculated Z-scores: across the 20787 genes for each brain region to obtain 553 

expression levels; across the 212 brain areas for each gene to obtain expression specificity. 554 

For genes with more than one probe, we averaged the normalized values over all probes 555 

available. As a complementary dataset, we also used a mapping of the Allen Brain Atlas onto 556 

the 68 brain regions of the Freesurfer atlas [79] (accessed April 4, 2017 at 557 

https://figshare.com/articles/A_FreeSurfer_view_of_the_cortical_transcriptome_generated_fr558 

om_the_Allen_Human_Brain_Atlas/1439749). 559 

Statistics 560 

Enrichment analyses: We first calculated a two-way hierarchical clustering on the 561 

normalized dN/dS values (ωGC) across the whole genome (see Fig. 1b; note: 11,667 genes 562 
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were included in the analysis to ensure medium-quality coverage for Homo sapiens, 563 

Neanderthals, Denisovans, and Pan troglodytes; see Supplementary table 2). According to 30 564 

clustering indices [80], the best partitioning in terms of evolutionary pressure was into two 565 

clusters of genes: constrained (N=4825; in HS, mean=-0.88 median=-0.80 SD=0.69) and 566 

divergent (N=6842; in HS, mean=0.60 median=0.48 sd=0.63. For each cluster, we calculated 567 

the enrichment in biological functions in Cytoscape [81] with the BINGO plugin [82]. We 568 

used all 12,400 genes as the background. We eliminated redundancy, by first filtering out all 569 

the statistically significant Gene Ontology (GO) terms associated with fewer than 10 or more 570 

than 1000 genes, and then combining the remaining genes with the EnrichmentMap plugin 571 

[83]. We used a P-value cutoff of 0.005, an FDR Q-value cutoff of 0.05, and a Jaccard 572 

coefficient of 0.5. 573 

For the cell type-specific expression Aanalysis (CSEA; 86),  we used the CSEA method with 574 

the online tool http://genetics.wustl.edu/jdlab/csea-tool-2/. This method associates gene lists 575 

with brain expression profiles across cell types, regions, and time periods. 576 

Wilcoxon and rank-biserial correlation: We investigated the extent to which each gene set 577 

was significantly more conserved or divergent than expected by chance, by performing 578 

Wilcoxon tests on the normalized dN/dS values (ωGC) for the genes in the set against zero 579 

(the mean value for the genome). We quantified effect size by matched pairs rank-biserial 580 

correlation, as described by Kerby [85]. Following non-parametric Wilcoxon signed-rank 581 

tests, the rank-biserial correlation was evaluated as the difference between the proportions of 582 

negative and positive ranks over the total sum of ranks: 583 

�� �
∑ �� � ∑ ��

∑ �� � ∑ ��
� � � � 

It corresponds to the difference between the proportion of observations consistent with the 584 

hypothesis (f) minus the proportion of observations contradicting the hypothesis (u), thus 585 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2020. ; https://doi.org/10.1101/658658doi: bioRxiv preprint 

https://doi.org/10.1101/658658
http://creativecommons.org/licenses/by/4.0/


 

Dumas, Malesys and Bourgeron   29 of 37 

representing an effect size. Like other correlational measures, its value ranges from minus 586 

one to plus one, with a value of zero indicating no relationship. In our case, a negative rank-587 

biserial correlation corresponds to a gene set in which more genes have negative 	�� values 588 

than positive values, revealing a degree of conservation greater than the mean for all genes 589 

(i.e. 	�� � 0). Conversely, a positive rank-biserial correlation corresponds to a gene set that 590 

is more divergent than expected by chance (i.e. taking randomly the same number of genes 591 

across the whole genome; correction for the potential biases for GC content and CDS length 592 

are done at the bootstrap level). All statistics relating to Figures 1d, 2a and 2b are 593 

summarized in Supplementary table 3. 594 

Validation by resampling: We also used bootstrapping to correct for potential bias in the 595 

length of the coding sequence or the global specificity of gene expression (Tau, see the 596 

methods from Kryuchkova-Mostacci and Robinson-Rechavi in [86]). For each of the 10000 597 

permutations, we randomly selected the same number of genes as for the sample of genes 598 

from the total set of genes for which dN/dS was not missing. We corrected for CCDS length 599 

and GC content by bootstrap resampling. We estimated significance, to determine whether 600 

the null hypothesis could be rejected, by calculating the number of bootstrap draws (��) 601 

falling below and above the observed measurement (�). The related empirical p-value was 602 

calculated as follows: 603 


 � 2 � min �
1 � ∑ �� � ��

� � 1
,
1 � ∑ �� � ��

� � 1
� 

Data & code availability: All the data and code supporting the findings of this study are 604 

available from our resource website: http://neanderthal.pasteur.fr  605 
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