
 

Making the brain-activity-to-information leap using a novel framework: 

Stimulus Information Representation (SIR) 

 

 

Philippe G. Schynsa,b and Robin A.A. Incea 
 

Institute of Neuroscience and Psychology 
University of Glasgow 

 

a Institute of Neuroscience and Psychology, University of Glasgow, Scotland G12 8QB, 

United Kingdom.  
b School of Psychology, University of Glasgow, Scotland G12 8QB, United Kingdom. 

 

Corresponding author 

*Philippe G. Schyns 

Institute of Neuroscience and Psychology 

62 Hillhead Street  

Glasgow, G12 8QB 

United Kingdom  

Tel.: +44 (0) 141 330 4937  

E-mail: philippe.schyns@glasgow.ac.uk 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/658682doi: bioRxiv preprint 

https://doi.org/10.1101/658682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
“It is no good poking around in the brain without some idea of what one is looking for. That would be like trying to 
find a needle in a haystack without having any idea what needles look like. The theorist is the [person] who might 
reasonably be asked for [their] opinion about the appearance of needles.” HC Longuet-Higgins, 1969. 
 
 

Abstract 
A fundamental challenge in neuroscience is to understand how the brain 
processes information. Neuroscientists have approached this question partly by 
measuring brain activity in space, time and at different levels of granularity. 
However, our aim is not to discover brain activity per se, but to understand the 
processing of information that this activity reflects. To make this brain-activity-
to-information leap, we believe that we should reconsider brain imaging from the 
methodological foundations of psychology. With this goal in mind, we have 
developed a new data-driven framework, called Stimulus Information 
Representation (SIR), that enables us to better understand how the brain 
processes information from measures of brain activity and behavioral 
responses. In this article, we explain this approach, its strengths and limitations, 
and how it can be applied to understand how the brain processes information to 
perform behavior in a task. 
 
 
 
Much of human cognition starts with a brain that categorizes stimulus information to 
behave adaptively1–3.  Thus, human brains are compulsive categorizers that use 
stimulus information to perform different categorization tasks. Consider the street scene 
shown on the left-hand side of Figure 1.  The brain can perform numerous 
categorization tasks on this image: it can identify the country, city, and street; the 
houses and shops; the moving and stationary cars, their makes and models, age and 
condition; the people shopping or those just passing by, as well as their gait, identity, 
emotion and social interactions; it can also infer the weather, time of day, season, and 
so on.  
 
So, when we record brain activity, we need to circumscribe an experimental task in 
order to know which task the brain has performed when we analyze its activity, even 
when a task involves just a single image. And when we circumscribe a task, we still 
need to characterize the stimulus information that supports a particular categorization. 
Otherwise, we will not know what information the brain has processed when it 
categorized the street, or the make of a car, or the identity of a face or its expression, 
from the same image.  
 
Such task-relevant information processing is a generic, but often neglected theoretical 
point, that applies both to the interpretation of any sensory categorization in the brain 
and to its models. For example, Convolutional Neural Networks4,5 (CNNs) are brain-
inspired, hierarchically organized network models that also use stimulus information to 
perform multiple categorization tasks, with apparent human-like capabilities.  But to 
realize the promise of CNNs as models of brain information processing6–12, a neglected 
pre-condition needs to be met – that these models process the same task-relevant 
information as the brain. Otherwise, we cannot explicitly compare how the information 
processing performed by a CNN with that performed by a human brain.  
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Figure 1.  The human brain performs multiple categorization tasks from a single image using 
task-relevant information. (A) The brain uses coarse, global scene information to categorize this image 
as “street” in a categorization task.  (B) By contrast, local details (i.e. other task-relevant information), as 
revealed by finer image resolution, support other categorization tasks, such as “cars and their make” and 
“people”. In the SIR framework, samples of stimulus information (usually in the form of images) are 
randomly generated and shown to participants to categorize. This approach generates variations in 
categorization behavior (as represented by the green set). (C) Participants’ brain activity is recorded by 
neuroimaging techniques (such as EEG and MEG, see the red set) while they perform the task. The 
three-way interaction between these three SIR components (<stimulus information; brain; behavior>), as 
represented by the color-coded set of intersections, enables us to better understand how information is 
processed in the brain. 
 
 
The SIR Framework 
Stimulus Information Representation (SIR) is a new data-driven framework that can be 
used to address such issues of information processing by the human brain and by 
artificial networks. This is because SIR can isolate the specific stimulus information that 
is processed by brain activity for behavioral responses in a circumscribed task.  To do 
so, SIR uniquely considers the three-way interactions between concurrent trial-by-trial 
variations of the three main components of an experimental design in the sciences of 
cognition:  stimulus information, behavioral responses and brain activity.  
 
The three components of SIR are gathered and explored in experimental trials.  These 
trials begin by generating random stimulus information to present to participants. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/658682doi: bioRxiv preprint 

https://doi.org/10.1101/658682
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stimulus information can take different forms. It can consist of images generated by the 
random selection of pixels13–16, or by sampling from generative models of complex 
stimuli17–21. Such randomly generated images (as described in more detail below) are 
then presented to participants, who are asked to categorize them. So, in this first step, 
we randomly sample the variables that control stimulus information on each trial (as 
represented by the blue set on Figure 1). The second component of SIR consists of 
measuring typical behavioral variables in the performance of a categorization task 
(including response accuracy, reaction time or confidence ratings) in individual 
experimental trials (as represented by the green set in Figure 1). When participants 
perform a categorization task, their behavioral responses to samples of random 
stimulus information effectively disentangle the stimulus variables that are relevant to 
that categorization task from those that are not. In this way, the participants’ behavioral 
responses can reveal which information the brain selectively uses to categorize 
information as ‘street’, or ‘make of car,’ or ‘face’ and ‘expression’ (see Figure 1). To 
understand where, when, and how the brain processes these task-relevant variables, 
we measure its activity while participants perform the categorization task, using various 
brain-imaging techniques, such as electroencephalography (EEG), 
magnetoencephalogram (MEG), functional magnetic resonance imaging (fMRI), near 
infrared spectroscopy (NIRS), electrocorticography (ECoG) or single-cell recordings. 
The red-shaded information shown in Figure 1 represents variables in brain activity 
recorded during a task, as recorded by different sensors, at different sources or time 
points, or representing different neuron firing rates.  
 
Together, the three components of SIR test how randomly sampled stimulus 
information causally influences brain activity and behavior in a categorization task. In 
addition, the three-way interactions that occur among these components, as denoted 
by <stimulus information; brain; behavior>, are represented as the four-color-coded set 
of intersections shown in Figure 1 (that is, the blue, green, and red sets of the Venn-like 
diagram, and the white, light blue, magenta, and yellow areas where they intersect). 
These three-way interactions are unique to SIR.  With them, we can address the brain-
activity-to-information gap with unmatched interpretative precision, as we illustrate in 
the following sections.  
 
Applying SIR to understand visual information processing 
SIR has been recently applied to analyze brain imaging data collected during the 
performance of a visual categorization task22. This study illustrates how the SIR 
framework can be used to disentangle brain activity into the processing of task-relevant 
stimulus information, the processing of task-irrelevant stimulus information, and other 
brain processes, to enrich the interpretation of brain imaging data. The task that was 
used is shown in Figure 2A-C. In this task23,24, participants were shown an ambiguous 
image (‘Stimulus’) that can be perceived as being either “the nuns,” or “Voltaire” (squint 
to see the latter, see Figure 2A).  In this task, the green dataset consists of the 
participants’ behavioral response variable across trials, which can take three possible 
values: “the nuns,” or “Voltaire,” or “don’t know.” To understand the task-relevant 
information for each of these responses, we systematically and randomly sampled the 
image to reveal different pixels to a participant on each trial.  The blue dataset shown in 
Figure 2B, thus includes each image pixel as a distinct stimulus variable (with “on” or 
“off” values), based on random sampling across trials.  
 
Using the blue set of randomly sampled image pixels and the green set of 
corresponding behavioral responses, we then infer the task-relevant stimulus features 
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for each perception, by computing <pixel; behavioral decision>, using (mass-bivariate) 
pairwise relationships, as represented by the light blue intersection shown on Figure 2 
(see Box 1, pairwise relationships). This computation disentangles all image pixels into 
those that are relevant for task behavior (i.e. for participants to categorize an image as 
being “the nuns” or “Voltaire”, as represented by the light-blue intersection shown in 
Figure 2) from those that are not (which are encompassed in the remainder of the blue 
set).  
 
These light-blue, task-relevant pixels are pivotal for understanding information 
processing in the brain because they represent the stimulus features that the brain 
must process to accomplish the behavioral task in question. Task-relevant features are 
the needles of information that we should search for in the haystack of brain activity. To 
find these features, we intersect the third component of SIR – in this case, MEG 
signals, which were recorded during the task. We then compute the overlapping co-
representation of the stimulus features into the behavior and brain measures (as <pixel; 
MEG; decision>, see Box 1 for details). The outcome of this computation identifies the 
light blue task-relevant features that the red set of MEG variables represent, as 
highlighted by the white area in Figure 2B, where the three components intersect.  
 
Zhan et al.22 used these three SIR components to trace the dynamic flow of task-
relevant features that were processed between 50 and 220 ms post stimulus, from their 
early representation in the visual cortex, through the ventral pathway. In the ventral 
pathway, we found that task-relevant features converge onto a few MEG voxels at the 
top of the right fusiform gyrus, ~200 ms post-stimulus, where they agglomerate into 
distinct representations that support each behavioral decision (see “task-relevant” 
images in Figure 2C).  Thus, using the three-way interaction between the components 
of SIR, we traced the dynamics of task-relevant feature processing over the first 220 
ms post stimulus, from their early representation in visual cortex to their integration for 
each behavioral decision in the ventral pathway. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/658682doi: bioRxiv preprint 

https://doi.org/10.1101/658682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Figure 2.  Using SIR to study information processing in the brain and in neural networks.  
Brain (left column).  (A) Pixels of an ambiguous stimulus were randomly sampled across Spatial 
Frequency (SF) bands using the Bubbles procedure14. Participants viewed the resulting images and 
categorize each as being ‘Nuns’, ‘Voltaire’ or ‘don’t know’, while their brain activity (via MEG) and 
decision behavior were recorded. (B) The pairwise relationship <Pixel; Decision> (see Box 1) for each 
image pixel was computed to reveal task-relevant (light blue-shaded) features. Three-way relationships 
(see Box 1) were also computed to reveal task-relevant feature representation (the white triple 
intersection) and task-irrelevant feature representation (shaded magenta) in brain activity. (C) SIR can 
be used to show where task-relevant features are represented in the brain, here in the right Fusiform 
gyrus (rFG) where they are combined into distinct, decision-specific representations.  Pie charts standing 
in for rFG voxels indicate the representational strength of the color-coded task-relevant features framed 
in white in panel (B). Convolutional Neural Network (right column). (D) 26M facial images were 
generated using a generative model of face information (see main text for details). 16M images were 
used to train a 10-layer ResNet and 10M to test its ability to identify faces. (E) Face identification 
performance saturated at 99.9% correct. The relationship <Sample; Identity X> was computed (see Box 
1, and blue intersection) to model the task-relevant features of ‘Identity X’. Across 5 viewpoints, ResNet 
tracked the same 3D jaw line and mouth shape features. The three-way relationships were also 
computed to reconstruct task-relevant representations that support ResNet’s identification behavior on 
layer Y. The white (task-relevant) representations of face shape on Hidden Layer 9 reveal the 
representation of features for categorization behavior (compare to the blue task-relevant features of 
‘Identity X’).  Magenta shading shows the task-irrelevant feature representations on Layer 9.  (F) Further 
analyses indicated that the activity of Layer 9 represents the same task-relevant face shape features in a 
viewpoint-dependent manner. 
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What do we learn from SIR intersections? 
To re-cap, we have three concurrent datasets in the SIR framework – the blue set of 
stimulus information samples, the red set of brain measures, and the green set of 
behavioral responses in a task, and their four intersections (colored white, light blue, 
magenta, and yellow, as shown on Figure 1). The white triple-set intersection is 
transformative for neuroscience and neuroimaging because it bridges the brain-activity-
to-information gap by disentangling the different relationships between stimulus, brain 
activity, and behavior.  Specifically, the white set divides each colored intersection into 
the white component and a remainder. Each of these four intersections contributes its 
own unique component of interpretation to provide a more detailed understanding of 
information processing in the brain. We review each intersection in turn.  
 
The light blue intersection 
Within a given task, the light blue remainder set isolates and represents the task-
relevant features that the recorded brain measures do not represent. This remainder 
flags a de facto incomplete explanation of the processing of the stimulus information 
that supports a particular behavior. This is because all task-relevant features should be 
represented somewhere in the brain to influence behavior. A complete brain measure 
(such as that captured by a brain-imaging modality) should entirely absorb the light 
blue remainder (of task-relevant features) into the white set intersection (the light blue 
remainder is empty in the example shown in Figure 2B-C, where the white framed task-
relevant features are all processed in the white brains). 
 
The magenta and yellow intersections 
A magenta remainder reveals task-irrelevant stimulus features, which the brain 
represents but which do not directly influence behavior in the task (see Three-way 
relationships in Box 1). In Figure 2C, the information processes reduce (i.e. filter out) a 
travelling wavefront of task-irrelevant feature representations within occipital cortex, 
around 170 ms post stimulus (see the magenta “task-irrelevant” features and brain in 
Figure 2B-C).  Importantly, although these task-irrelevant features do not influence the 
participants’ categorization responses, they were amongst the features that were most 
strongly represented in brain activity in early visual cortex. However, they do not reach 
the fusiform gyrus in the ventral pathway, as the task-relevant features do.   
 
Finally, the yellow remainder isolates brain activity that relates to a behavior but not to 
stimulus representation. These brain processes likely reflect other aspects of the task, 
such as modulation of arousal, response planning, response bias, execution and so 
forth. 
 
Using SIR intersections to interpret a CNN 
The SIR framework uses each colored set intersection to disentangle a specific kind of 
relationship between stimulus information, brain activity, and behavior to achieve a finer 
information processing interpretation of brain activity. SIR can also be used to interpret 
the processing layers of hierarchically organized CNNs, as shown in Figure 2 (right 
panel). In a recent study, we taught a 10-layer ResNet architecture to identify 2,000 
faces, using 17M images produced by a generative model that varied multiple factors of 
face appearance. This model employed 25 poses, 25 lighting conditions, random 
scales and image translations, as well as categorical factors, including three ages, two 
sexes, two ethnicities, and six facial expressions of emotion plus a neutral 
expression25. We interpreted information processing in ResNet by using SIR and in the 
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same way as we did the brain; by sampling the variables of a generative model of face 
shape (in the blue set); by recording the variable responses to these image variations 
by different ResNet layers (in the red set); and by recording the response variations of 
the real-valued output unit assigned to each identity (in the green set). From these 
three sets, we then computed the three-way intersection. Figure 2E shows the resulting 
light-blue task-relevant shape features for Identity X. The white faces reveal the task-
relevant features (and their viewpoint-dependent representations) on ResNet Layer 9 
(underneath the output layer) that were used to identify Identity X. Magenta faces 
represent task-irrelevant features on the same Layer 9. Using the SIR framework in this 
way, we were able to identify task-relevant information and to disentangle its 
representation in the hidden layers of this CNN from other features irrelevant to the 
task.  
 
We now turn to some important considerations when applying SIR. As we discuss, the 
granularity of the sampled information (in the blue set), of the brain measure (in the red 
set), and of the behavioral response (in the green set) critically determine the rich data-
driven interactions that we compute in the four set of intersections, to disentangle 
information-processing interpretations.  
  
The Critical Blue Set:  What stimulus information should we sample? 
As illustrated, the SIR framework depends on a sampling model that creates variations 
of stimulus information, which in turn cause task-related variations of brain and 
behavioral responses. For example, in Figure 2A, we sampled pixels across the spatial 
frequencies of a 2D image.  However, it should be clear that the sampling model 
inevitably constrains the type of stimulus representations that the data-driven 
framework can discover; for example, the sampling of pixels with Bubbles constrains 
representations to combinations of contiguous image pixels. This is important because 
each variable in a sampling model is a de facto hypothesis of the stimulus information 
that the brain represents. Therefore, we are effectively performing mass-trivariate 
hypothesis testing about the representation of stimulus information variables in brain 
and behavioral responses. 
 
Consequently, these representational hypotheses determine the structure of the 
sampled variables to ensure that the stimulus variations tap into the relevant 
information representations and processes. For example, to study the visual 
information that supports the prediction of a face from memory, we could set up a 
model that randomly samples individual pixels to produce a white noise image on each 
trial (i.e. a sampling model with weak structure, as in15). We then instruct the participant 
that half of the stimuli comprise a face hidden in the noise (when, in fact, there is never 
such a face) and that their task is to detect it. Computation of the light-blue, task-
relevant features characterizes the memory information that serves face prediction, 
under the constraints of this sampling model26. We can address a similar question, 
using a similar methodology, with the more-sophisticated assumption that memory 
representations comprise multivariate surface and texture components27. In this 
approach, we would use a structured generative model of multivariate face identity 
noise (as in the CNN example of Figure 2D-F and 25,28) for participants to respond to.  
We can then study stimulus representations along the occipito-ventral pathway, from 
the initial projection of the visual input into the laminar layers of early visual cortex to 
the later task-dependent filtering and representation in the ventral pathway. To do so, 
we could sample Gabor filters across resolutions (another weakly structured model).  
Alternatively, we could set up a 3D generative model of these same images to test 
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hypotheses about the faithfulness, compositionality, scale, translation, and rotation 
invariance of their representations in the ventral pathway.  And we could sample both 
models (i.e. multi-resolution Gabor filters and 3D generative model) simultaneously on 
each experimental trial. 
 
A sampling model can also be set up to study transformations of representations.  For 
example, while sampling multi-resolution Gabor filters and 3D generative model 
parameters as described above, we can also include mathematical transformations of 
the stimulus features (e.g. pooled and normalized Gabor filters; the transfer and 
integration of surface components) to ascertain the following: which brain regions 
represent individual variables; which brain regions represent a particular 
transformation; and how a network of brain regions implements such a transformation. 
Such sampling of stimulus variables and their transformations can thus support an 
algorithmic study of the brain29, by specifying where, when and how task-relevant 
variables are represented and transformed in a brain network. 
 
The key point of the critical blue set is that we will not understand the representation 
and transformation of information that we do not explicitly test. The considerable 
challenge is to extend stimulus control from low dimensional stimuli (e.g. an oriented 
Gabor filter at a given spatial frequency) to include generative models that test explicit 
hypotheses about the task-relevant representations of complex naturalistic stimuli, such 
as naturalistic faces, objects and scenes, and their transformations across the occipito-
ventral pathway29. 
 
Disentangling task-relevant information processing from other processes  
In the SIR framework, we randomly sample the variables that control stimulus 
information on each trial. These variables can affect any measure of behavior (such as 
accuracy, reaction time, confidence ratings, and so on). They can also affect any 
measure of brain activity, whether recorded by M/EEG or by 3/7T fMRI, NIRS, ECoG or 
single-cell recording modalities. And these different imaging modalities record brain 
activity at different levels of granularity: from individual neurons and population codes33; 
to response characteristics, such as power or phase of oscillatory activity34; as well as 
network interactions35, neural synchrony36, neuronal firing rates (37,38), or spike 
waves39. 
 
In general, to disentangle which variable contributes (or not) to what aspect of 
information processing, SIR considers the interactions between all combinations of the 
three classes of variables (see Box 1, SIR Framework).  Figure 3 illustrates the full 
potential scope of this effort. At the simplest level (Figure 3A), we have three individual 
variables (e.g. one individual pixel X – stimulus, one response Y – behavior, and one 
voxel Z – brain), which interact at the four colored set intersections. One level up from 
this (Figure 3B), we have sets of variables that interact (i.e. S image pixels, N voxels 
and M behaviors). And finally, we can consider sets of subsets of interacting variables 
(Figure 3C), where each subset comprises the variables of, for example, a different 
stimulus sampling model (e.g. Gabor filters or generative models of complex objects), 
imaging modality or resolution (e.g. EEG or 7TfMRI), or behavior (e.g. reaction time or 
confidence).  At any of these levels, the computations always reduce to three individual 
variables <Xi, Yj, Zk> that interact at the four, colored set intersections.  As Box 1 
explains, the white triple intersection is quantified with co-information, while the light 
blue, magenta and yellow remainder double intersections are obtained from conditional 
mutual information. 
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Figure 3.  Interactions between SIR variables at different hierarchical levels.  A. Two and Three 
Individual Variables. The grey sets represent the entropies of variables X and Y; their set intersection is 
mutual information (MI), their shared entropy. With three sets, the blue set represents H(X), the entropy 
X (e.g. one sampled image pixel across trials); the green set H(Y), the entropy of Y (e.g. reaction time on 
an individual trial); the red set represents H(Z), the entropy of Z (e.g. one MEG source at a given time 
point). Co-information (see Box 1) measures the three-way interaction represented as the white set 
intersection. Conditional MI measures the light-blue, magenta, and yellow remainders of the triple 
interaction. B. Three Sets of Variables.  Each set comprises the individual variables of that class 
considered in the experiment (e.g. S stimulus variables; M behavioral variables; N MEG voxels at 
multiple time points). These sets are each partitioned for interpretation into the white variables with 
significant co-information in at least one trivariate combination, the light blue, magenta or yellow 
variables that have significant conditional MI in at least one trivariate combinations, and the same-color 
variables that do not interact with any other.  C. Three Sets of Subsets of Variables.  Generalizing, each 
set comprises multiple modalities as different subsets of variables (e.g. different stimulus sampling 
models in the blue set, e.g. Gabor sampling variables (e.g. light grey subset) and generative model 
variables (orange subset); or different modalities or granularities of brain imaging in the red set, such as 
EEG sensor at different time points (dark grey subset) and fMRI voxels (orange subset)).  Across each 
hierarchical level or subset, the computation depicted in Panel A are applied. 
 
This approach provides a precise, high-dimensional description with which to 
disentangle task-relevant information processing from other brain processes. To 
illustrate, consider the Three Sets of Variables in Figure 3B (which structured the 
examples of Figure 2). Irrespective of the stimulus sampling model, the behavioral 
response, or the brain measure, the four color-coded interactions of SIR can in 
principle partition the blue set of stimulus variables into one of four interpretation 
categories. That is, the stimulus variables that the recorded brain measurements: 
 

(1) represent for behavior in the task (these variables are depicted in white in Figure 
3B) 

(2) do not represent but are task-relevant (depicted in light blue) 
(3) represent but are task-irrelevant (depicted in magenta)  
(4) do not represent at all (depicted in blue) 
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Likewise, we can partition the components of brain activity in the red set into the 
component which:  
 

(1) represents the stimulus for behavior (in white) 
(2) represents the stimulus but not the behavior (in magenta) 
(3) is involved in other aspects of the task (in yellow)  
(4) is not involved in the task at all (in the remainder of the red set).   

 
The green set is similarly partitioned into four components.  Together, these four 
intersections provide sufficient precision with which to interpret the data such that we 
can disentangle the component of brain activity that specifically represents task-
relevant information for a given behavior from all other brain activity.  
 
And as mentioned earlier, this framework also extends to multiple modalities, as 
illustrated in Figure 3C. These richer interactions can provide significant interpretative 
gains. For example, we could use the white triple intersection to track the 
representation and transformation of Gabor-generated and generative model-
generated task-relevant features in both time and space. Response accuracy, reaction 
time, and confidence ratings could better dissect those stimulus features that underlie a 
particular response modality and identify which relationship is better represented in 
EEG or fMRI modalities. Such an approach could assist the development of richer 
multi-modal algorithmic network models of task-relevant information processing. 

 
As the combination of interactions explode in each colored intersection, it is worth 
remembering that the measures of these interactions (i.e. co-Information and 
conditional MI, see Box 1) provide common scales for comparing, sorting or ranking 
them, and across any combination of modalities.  This implies that we have quantitative 
(not just qualitative) descriptions to guide the interpretation of the interactions on a 
common effect-size scale (bits). 
 
How does SIR compare to alternative frameworks? 
The SIR framework is unique because it directly tests and analyses the three-way 
relationship <stimulus information; brain; behavior>.  By contrast, despite recent 
developments, most statistical techniques in neuroimaging provide bivariate measures 
of statistical relationships, including highly sophisticated Multivariate Pattern Analysis40 
(MVPA) and machine learning approaches41. For example, encoding and decoding 
models42–45 can quantify a relationship between naturalistic stimuli and multivariate 
neuroimaging responses, but this is still a measure of bivariate dependence. 
 
Representational Similarity Analysis46 (RSA47) aims to compare geometries of 
representations between neural responses and the expected responses of models. 
However, RSA typically computes an overall average pairwise dissimilarity (e.g. from 
the mean responses to multiple presentations of a category exemplar) which is not 
sensitive to the trial-by-trial relationships between the stimulus exemplar and the brain 
and behavioral responses.  Therefore, RSA does not exploit the trial-by-trial variations 
of the responses and the concurrent interactions between stimulus information, brain 
measure and behavioral response in a task. When behavior is considered, it is often a 
perceptual similarity judgment, determined offline, in a separate behavioral experiment, 
and sometimes even by a different set of participants48. However, a recent 
argument49,50 re-emphasized the importance of explicitly including behavior to tease 
apart the component processes of the brain in neuroscientific explanations. To our 
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knowledge, there is no alternative to the SIR framework to be able to combine the three 
concurrently recorded variable types to compute their tri-variate interactions during the 
performance of a specific task. 
 
The SIR framework also highlights ways in which the methodology of brain imaging 
could be improved. For example, most brain imaging studies of visual categorization 
use multiple images of various categories (e.g. faces, objects and scenes, or inanimate 
vs. animate objects) in a one-back or a passive viewing task.  However, the brain might 
not passively perform the explicit categorizations that structure the stimulus categories 
of our brain imaging experiment.  To develop such designs for information processing, 
we need to add both an explicit control of task behavior (to know the task and the 
brain’s performance) and an explicit sampling model of stimulus information (to know 
the task-specific features that the brain must process). Without these, the measured 
brain activity cannot be unequivocally interpreted as the processing of task-relevant 
features for that behavior. 
 
These considerations apply equally to the interpretation of CNNs, or to their application 
as models of the hierarchically organized occipito-ventral pathway.  As mentioned 
earlier, we consider it essential to ensure that the brain and a CNN model are 
performing the same task in order to compare the brain’s processing of task-relevant 
information in a categorization task with that of a CNN. The challenge here is to 
determine that both use the same task-relevant information. Otherwise, you could end 
up comparing the processing of different visual information across their respective 
layers.  And these different information might appear similar because similarity 
measures are notoriously under-constrained51,52 (until we specify the stimulus features 
that make two brain measures similar) and context dependent51,52 (because the 
similarity comparison typically involves very few contrast categories). Thus, finding that 
pairwise representational geometries are similar for brain and CNN responses does not 
imply that the brain and CNNs are necessarily processing the same information or 
performing the task in an algorithmically equivalent, or even similar way. 
 
Conclusion 
Using a range of modern imaging modalities, we can now measure the brain activity of 
an individual participant while they are actively performing an explicit task. During such 
tasks, stimulus information can be varied on each trial to cause concurrent variations in 
the participant’s brain activity and behavior. To take full advantage of these richer 
datasets, we therefore need a new framework that accommodates and exploits these 
three components – stimulus variation, behavior and brain activity variation. The novel 
SIR framework does so by considering and computing the interactions between these 
three sources of trial-by-trial variation. These computations can then be used to 
disentangle the stimulus, brain activity and response spaces, including at different 
granularities, depending on the specific experimental design. From these, we make 
inferences about what information is being processed in the brain for a particular 
behavior, where and when. SIR can also be applied to study any parametrizable 
sensory stimulus spaces (e.g. auditory20,21,53,54, as well as other cognitive, social and 
affective tasks (for reviews see19,55,55,56, and to study the information processing 
mechanisms of both brain and in silicon architectures. 
 
We propose, therefore, that the time is ripe to exploit the full capabilities of modern 
brain imaging technologies and to embrace richer designs that exploit the trial-by-trial 
trivariate <stimulus information; brain; behavior>.  The analyses of such richer designs 
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within the SIR framework can reveal novel interactions that further our understanding of 
how the brain processes information for behavior.  
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BOX 1.  The Information Theoretic Underpinnings of the SIR Framework 
Since its origin as a mathematical theory of communication in noisy channels57, 
information theory has become a unifying framework for statistics, by providing general 
measures of the properties of, and the relationships between, probability 
distributions58,59. We use Mutual Information (MI) to measure pairwise relationships 
between stimulus, behavior and brain variables (represented as the intersections 
between any two sets in Figure 3), and co-Information60,61 (co-I) and conditional MI62 to 
measure the three-way relationships that are unique to precision neuroimaging within 
SIR (represented as the white intersection and its color-coded remainders in the 
accompanying figures).  
 
Pairwise Relationships. 
The foundational quantity of information theory is entropy, a measure of uncertainty of 
a random variable �, denoted ����, which can be thought of as the information 
theoretic equivalent of variance.  Mutual information (MI) measures the statistical 
dependence between two variables, � and �, as their shared entropy, ���; �� � ���� 	

���� 
 ���, ��: the sum of the entropies of � and � considered as independent 
variables, minus the entropy of their joint distribution. In Figure 3A, grey sets represent 
the entropies of ���� and ����, with MI as their intersection. MI effect sizes are 
measured in bits, where 1 bit quantifies a reduction in the uncertainty about � by a 
factor of 2, on average, when observing a value of �. These effect sizes are 
comparable across a range of different tests. For example, the statistical dependence 
between the sampled stimulus and the participants behavior is quantified on the same 
effect size scale as the dependence between the stimulus and the recorded 
neuroimaging responses.   
 
Three-way relationships. 
To quantify the relationship between three variables, we use co-information (co-I), 
denoted ���; �; � 60,61 the set intersection of three entropies. Co-I is symmetric in the 
three variables and can be expressed as the intersection of any two MI values, e.g. 
���; � 	 ���; � 
 ����, ��; �. Co-I is the information about  that is common to � and 
� (or equivalently about � common to �, , or about � common to �, ). For example, in 
Figure 2, the white triple intersection measures ��pixel ; MEG ; decision�, the pixel  MI 
that is common to MEG and decision responses. A positive co-I quantifies redundancy 
between the variables, i.e. they overlap (e.g. the co-representation of the pixel in the 
MEG and behavior). Negative co-I quantifies synergy, when the trial-by-trial relationship 
between � and � provides information about  that is not available from � and � 
considered independently. Like MI, positive and negative co-I also provide effect sizes 
on common scales for comparison.  For example, we can test which of 
��pixel ; MEG ; decision� and ��pixel ; fMRI ; decision� is greater, to ascertain which 
measurement modality (or granularity) better represents in the brain the pixel variations 
that drive the behavioral decision. 
 
Conditional mutual information (CMI) quantifies the remainder intersections, e.g. 
���; �|�, the MI between variables � and � conditioned on . These trivariate 
quantities are unique to SIR.  They depend on the full joint distribution of the three 
experimental variables and cannot be obtained by considering two variables in 
isolation, as is the norm in neuroimaging. 
 
SIR Framework 
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We consider S different stimulus variables (e.g. pixels), N different neural responses 
(e.g. MEG voxels at different post-stimulus time points), and M different behavioral 
variables (e.g. categorization response, confidence rating), all recorded concurrently 
while a participant performs an explicit categorization task (see Figure 3C).  In SIR, for 
each of the S x N x M combinations of stimulus, brain and behavioral variables, we 
calculate 4 trivariate information quantities by evaluating <stimulus information; brain; 
behavior> (i.e the white co-Information and the light-blue, magenta and yellow 
conditional MI, see Three-way relationship above and Figure 3A). This mass-trivariate 
computation results in 4 different information processing interaction maps across the 
full combinatorial space of the three subsets of variables. These maps provide a rich 
high-dimensional description of the full spatio-temporal properties of stimulus 
information processing in the brain during the behavioral task. To visualize the results 
in detail, we can consider one of the three variable classes, by summarizing over all 
variables of the other two, e.g. by taking the maximum value, or registering statistical 
significance across any of the possible triples. For example, we can classify each pixel 
according to the type of interactions that it takes part in, across all neural responses 
and for any behavioral response. In this way, we can visualize maps of key quantities 
of interest, as Figure 2C shows, by tracing the spatio-temporal evolution of task-
relevant feature representations, where the magenta and white brains are such 
marginalizations over the task-relevant and task-irrelevant features. In general, the 
scientific question will dictate the task, the variables within each set of the SIR 
framework (cf. Figure 3), the specific interactions examined in the 4 interaction maps, 
and the summary descriptive visualizations. In SIR, the richness of the stimulus 
information processing description arises from the four unique statistical analyses of all 
combinations of concurrent tri-variate experimental samples <stimulus information; 
brain; behavior>. 
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