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Abstract

Motivation: In resequencing experiments, a
high-throughput sequencer produces DNA-fragments
(called reads) and each read is then mapped to the
locus in a reference genome at which it fits best.
Currently dominant read mappers (Li and Durbin,
2009; Langmead and Salzberg, 2012) are based on the
Burrows-Wheeler transform (BWT). A read can be
mapped correctly if it is similar enough to a substring
of the reference genome. However, since the refer-
ence genome does not represent all known variations,
read mapping tends to be biased towards the refer-
ence and mapping errors may thus occur. To cope
with this problem, Huang et al. (2013) encoded SNPs
in a BWT by the IUPAC nucleotide code (Cornish-
Bowden, 1985). In a different approach, Maciuca
et al. (2016) provided a ’natural encoding’ of SNPs
and other genetic variations in a BWT. However,
their encoding resulted in a significantly increased al-
phabet size (the modified alphabet can have millions
of new symbols, which usually implies a loss of effi-
ciency). Moreover, the two approaches do not handle
all known kinds of variation.
Results: In this article, we propose a method that
is able to encode many kinds of genetic variation
(SNPs, MNPs, indels, duplications, transpositions,
inversions, and copy-number variation) in a BWT.
It takes the best of both worlds: SNPs are encoded
by the IUPAC nucleotide code as in (Huang et al.,
2013) and the encoding of the other kinds of genetic

variation relies on the idea introduced in (Maciuca
et al., 2016). In contrast to Maciuca et al. (2016),
however, we use only one additional symbol. This
symbol marks variant sites in a chromosome and de-
limits multiple variants, which are added at the end
of the ’marked chromosome’. We show how the back-
ward search algorithm, which is used in BWT-based
read mappers, can be modified in such a way that it
can cope with the genetic variation encoded in the
BWT. We implemented our method and compared
it to BWBBLE (Huang et al., 2013) and gramtools
(Maciuca et al., 2016).
Availability: https://www.uni-ulm.de/in/theo/

research/seqana/

Contact: Enno.Ohlebusch@uni-ulm.de

1 Introduction

Low-cost genome sequencing gives unprecedented in-
formation about the genetic structure of populations.
The genetic content of a population or species is of-
ten represented by a reference genome (in form of a
DNA sequence for each chromosome) and a catalog of
variations. A prime example is the human species. In
the first draft of the human reference genome (Lander
et al., 2001), variable regions were poorly represented.
In 2008, The 1000 Genomes Project Consortium
(2015) started a project to produce a catalog of all
variations in the human population. Its original goal
was to sequence the genomes of at least 1000 humans
from all over the world. From the 2504 individuals
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characterized by the 1000 Genomes Project, it is es-
timated that the average diploid human genome has
around 4.1 – 5 million point variants such as single
nucleotide polymorphisms (SNPs), multi-nucleotide
polymorphisms (MNPs), and short insertions or dele-
tions (indels). Moreover, it carries between 2100 and
2500 larger structural variants (SVs) such as large
deletions, duplications, copy-number variation, inver-
sions, and translocations (The 1000 Genomes Project
Consortium, 2015).

Since de novo assembly of e.g. mammalian genomes
is still a serious problem (both from a technological
and a budgetary point of view), the reference-based
approach is usually used to detect genetic variations.
In this approach, a high quality genome assembly of
a single selected individual (or a mixture of several
individuals) is produced, and this assembly is used
as a reference for genomes in the population. Such
a linear reference provides a coordinate system: the
location of a genetic element is defined by its coor-
dinate (starting position) in the reference genome.
In resequencing experiments, a high-throughput se-
quencer produces DNA-fragments (called reads) of
a certain length (which depends on the technology
used) and each read is then mapped to the locus in
the reference genome at which it fits best. A read can
be mapped correctly if it is similar enough to a sub-
string of the reference genome. However, since the
reference genome does not represent all known vari-
ations, read mapping tends to be biased towards the
reference and mapping errors may thus occur. Conse-
quently, read mappers should address this problem by
taking known genetic variations (e.g. given in a VCF-
file) into account. In the following, we will show how
this can be achieved for BWT-based read mappers.

1.1 Background

In this section, we briefly introduce the data struc-
tures on which our new algorithms are based. For
details, we refer to the textbook (Ohlebusch, 2013),
and the references therein.

Let Σ be an ordered alphabet of size σ whose small-
est element is the sentinel character $. In the follow-
ing, S is a string of length n on Σ having the sentinel
at the end (and nowhere else).

Table 1: Suffix array SA and BWT of
S= AGT#AAT#GCG#CCC#G#$. The columns F and
SSA[i] are not part of the index data structure.

i SA BWT F SSA[i]

1 19 # $ $

2 18 G # #$

3 4 T # #AAT#GCG#CCC#G#$

4 12 G # #CCC#G#$

5 16 C # #G#$

6 8 T # #GCG#CCC#G#$

7 5 # A AAT#GCG#CCC#G#$

8 1 $ A AGT#AAT#GCG#CCC#G#$

9 6 A A AT#GCG#CCC#G#$

10 15 C C C#G#$

11 14 C C CC#G#$

12 13 # C CCC#G#$

13 10 G C CG#CCC#G#$

14 17 # G G#$

15 11 C G G#CCC#G#$

16 9 # G GCG#CCC#G#$

17 2 A G GT#AAT#GCG#CCC#G#$

18 3 G T T#AAT#GCG#CCC#G#$

19 7 A T T#GCG#CCC#G#$

For 1 ≤ i ≤ n, S[i] denotes the character at po-
sition i in S. For i ≤ j, S[i..j] denotes the sub-
string of S starting with the character at position i
and ending with the character at position j. Fur-
thermore, Si denotes the i-th suffix S[i..n] of S. The
suffix array SA of the string S is an array of inte-
gers in the range 1 to n specifying the lexicographic
ordering of the n suffixes of S, that is, it satisfies
SSA[1] < SSA[2] < · · · < SSA[n]; see Table 1 for an
example. A suffix array can be constructed in lin-
ear time; see e.g. (Puglisi et al., 2007). For every
substring ω of S, the ω-interval is the suffix array in-
terval [i..j] so that ω is a prefix of SSA[k] if and only
if i ≤ k ≤ j.

The Burrows-Wheeler transform (Burrows and
Wheeler, 1994) converts S into the string BWT[1..n]
defined by BWT[i] = S[SA[i] − 1] for all i with
SA[i] 6= 1 and BWT[i] = $ otherwise.

Using the C-array (for each c ∈ Σ, C[c] is the overall
number of occurrences of characters in BWT that are
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seq1: AGTGCGAAT
seq2: AGTCCCAAT ⇒
seq3: AGTG..AAT

AGT︸︷︷︸
common

sequence 1

 GCG

CCC

G

︸ ︷︷ ︸
set of alter-

natives 1

AAT︸︷︷︸
common

sequence 2

Figure 1: Three DNA-sequences that share AGT at
the beginning and AAT at the end. The sequences
differ in the middle.

strictly smaller than c) and a data structure that sup-
ports rank-queries in the BWT (rankBWT(i, c) asks
for the number of occurrences of character c in the
BWT up to but excluding position i), it is possible to
search backwards for a pattern in S (Ferragina and
Manzini, 2000): Given an ω-interval [i..j] and c ∈ Σ,
the procedure call backwardSearch(c, [i..j]) returns
the cω-interval [l..r], where l = C[c]+rankBWT(i, c)+
1 and r = C[c] + rankBWT(j + 1, c)]. If l > r, then
cω is not a substring of S. In the computer science
literature, a data structure that supports backward
search in S is often called FM-index of S. In our
implementation, we use a wavelet tree (Grossi et al.,
2003), which supports rank-queries in O(log σ) time,
as FM-index.

2 Methods

In this article, the term ‘pan-genome’ refers to the
known genomic content of a certain population or
species, while a ‘pan-genome index’ is a data struc-
ture that represents a pan-genome and supports effi-
cient search within the pan-genome. The genomes of
individuals of the same species are usually very sim-
ilar. Thus, the DNA sequence of a chromosome can
be viewed as a sequence of conserved regions (sub-
strings common to all individuals of a population)
interspersed with variant sites at which different al-
ternatives are possible; see Figure 1 for a toy exam-
ple. In this section, it will be shown how to use this
model to encode genetic variants in a BWT, but first
we discuss related work.

2.1 Related work

2.1.1 Encoding in BWBBLE

Huang et al. (2013) used a reference genome in con-
junction with genomic variant information. They
treat SNPs differently from other variants. SNPs
are the most common type of sequence variation, in
which the set of alternatives at a variant site consists
solely of single nucleotides. As already mentioned,
Huang et al. (2013) encoded SNPs by the 16-letter
IUPAC nucleotide code (Cornish-Bowden, 1985). A
IUPAC character can represent all the nucleotides
that have been observed at the same position in the
sequenced genomes. For example, the letter W en-
codes A and T. If an A should be matched in a back-
ward search, the algorithm must also consider the
letter W and all other IUPAC characters that encode
A.

An indel variant at a specific locus is appended
at the end of the reference genome, where a special
symbol # delimits the variants. To facilitate search,
each appended indel variant is padded at both ends
with the bases surrounding the locus in the reference
genome. The length of the padding depends on the
expected read length. It must be long enough be-
cause the search algorithm must be able to map a
read (containing an indel) to one of the appended
sequences. Therefore, the backward search is lim-
ited to small enough patterns. Moreover, combina-
tions of nearby variations are not considered. It is
also described in (Huang et al., 2013) how inversions,
translocations, and duplications can be handled sim-
ilarly, but it seems that this is not implemented in
BWBBLE. A major drawback of this approach is that
the appended sequences significantly increase the size
of the string for which an index must be built.

2.1.2 Encoding in gramtools

Maciuca et al. (2016) developed a method that places
the set of alternatives directly at the variant site at
which they appear. In their encoding, each variant
site (including SNPs) is assigned two unique numeric
identifiers, one even and one odd, which they call
variation markers. The odd identifiers mark variant
site boundaries and the alternatives appear between
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AGT#1AAT︸ ︷︷ ︸
marked chromosome

#2 GCG#3CCC#4G︸ ︷︷ ︸
set 1 of alternatives

#5$

Figure 2: The jump index string of the example from
Figure 1. The indices of the markers show their rank
(they are numbered consecutively).

these site boundaries. The even identifiers serve as
separators between the alternatives. If an odd iden-
tifier is encountered in a backward search, the suf-
fix array intervals corresponding to the alternatives
must be considered; see (Maciuca et al., 2016) for de-
tails. It is a significant disadvantage of this approach
that the alphabet size increases proportionally to the
number of variant sites.

2.2 Encoding in jisearch

The method to encode SNPs by the IUPAC code is
a very efficient way to deal with the vast majority
of genetic variants. Thus our software tool jisearch
(for jump index search) encodes SNPs in the same
way. In contrast to previous approaches, however,
we allow a set of alternatives to occur at different
variant sites. This enables the possibility of encoding
structural variants such as duplications and transpo-
sitions. Furthermore, we merely add one new symbol
# to the alphabet. If # is encountered in a backward
search, this results in a ’jump’. Information about the
jumps is maintained in a data structure called jump
index array and the overall index is called jump in-
dex. The string containing the sequence data is called
jump index string. It consists of the marked chromo-
some (which is obtained by marking every variant site
with a #), followed by a list of all alternatives that
occur at the variant sites. The alternatives are sepa-
rated by # as well; see Figure 2 for an example. We
differentiate between the two functions of a marker.
If it marks a variant site, we will call it a site marker.
If it separates alternatives, we will call it separator.
Although all markers are encoded by the same sym-
bol #, we can distinguish them by their rank (number
of occurrences) in the jump index string. In Figure
2, the first occurrence of # marks a variant site while

Table 2: The jump index array for the example from
Figure 2.

marker 1 2 3 4 5
site marker true false false false false
jump target 3,4,5 1 1 1 -

all other markers are separators. Both site markers
and separators will be used as sources and targets of
jumps.

During the construction of our index structure, we
store, for each set of alternatives, a triple containing
the site at which the set occurs and the left and right
boundary of the concatenated alternatives. In our ex-
ample the triple corresponding to Figure 2 is (1, 2, 5).
This information is then used to generate the jump
index array. For each marker, it stores the markers
at which a backward search continues (the targets).
In a backward search, we match a pattern from right
to left. If a site marker is reached, the matching con-
tinues at the right boundaries of the corresponding
alternatives. If the left boundary of an alternative is
reached, the matching continues at the corresponding
site marker. In our example, we obtain the jump in-
dex array shown in Table 2. Because marker number
5 appears in S directly before the sentinel $, it will
never be encountered in a backward search.

2.2.1 Nested variations

The jump index can deal with nested variations be-
cause it is possible to insert a site marker into an
alternative.

2.2.2 Encoding copy number variations

Copy number variations (CNVs) seem to be the most
frequent structural variants in the current data. A
CNV specifies the possible number of copies of a sub-
string at a certain position. To illustrate our encod-
ing, suppose that ω is a substring that occurs once at
position p, but in a genetic variant it occurs twice at
p. In our encoding, we would insert two site markers
at the variant site p. Both markers trigger a back-
ward search for ω, which is continued at the posi-
tion immediately before the marker that triggered the
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search. In this way, we take care of the two occur-
rences of ω. To take the single occurrence of ω into
account, we add a ’jump’ from the marker at position
p to itself. This is equal to ignoring the marker.

In general, if c is the maximum copy count of ω,
we add c site markers. For each other observed copy
count ĉ, we add a ’jump’ from the marker (r+c− ĉ−
1) to marker r, where r is the rank of the first site
marker of this variation.

2.2.3 Encoding other structural variants

Transpositions and non-tandem duplications of a
string ω can be encoded similarly. The difference
to CNVs is that ω may occur at several positions
p1, p2, . . . in the sequence. Site markers for such
a variant must be inserted at those positions. For
each site marker a ’jump’ to itself is added, so that
a backward search for ω may ignore the marker. In-
versions are encoded in the straightforward way, in
which the set of alternatives consists of the reverse
complemented string.

2.2.4 Transforming the information

Till now, we identified a marker by its rank in the
jump index string. However, a backward search is
based on the BWT of the jump index string. The
rank of a marker in the jump index string differs from
its rank in the BWT. For example, the fifth marker
in the jump index string is equal to the first marker
in the BWT of Table 1. To make use of the data in
the jump index array, we need to calculate the per-
mutation that maps the rank of a marker in the jump
index string to its rank in the BWT. We note that
the order of the markers in the BWT coincides with
their order in F, where F[i] = S[SA[i]] (see Table 1
for an example). Clearly, the ranks of the markers in
the jump index string have the same order as their
positions in that string. Moreover, if there are m
occurrences of # in the jump index string, then the
suffix array interval [2..m] contains all the positions
at which markers occur in the jump index string. It
follows as a consequence that the problem of calcu-
lating the permutation can be solved by sorting the
numbers in SA[2..m]; see Table 3. To be precise, for

Table 3: Calculation of the permutation from rank in
jump index string to rank in BWT.

position in jis 18 4 12 16 8
rank in BWT 1 2 3 4 5

⇓ sort by position in jis

position in jis 4 8 12 16 18
rank in BWT 2 5 3 4 1

⇓ replace positions by ranks

rank in jis 1 2 3 4 5
rank in BWT 2 5 3 4 1

each marker we store a pair (position in the jump
index string, rank in the BWT) and sort the pairs
by the positions. Afterwards, we replace positions
by their ranks in the jump index string and obtain
the desired permutation (its inverse permutation can
easily be computed).

3 Exact Matching Algorithm

Algorithm 1 shows our backward search algorithm
in pseudo-code. In each iteration of the while-loop, a
backward search step is made for all intervals. If such
a step, applied to an interval iv, returns an interval
[l..r] with l > r, then the search failed and the inter-
val iv is deleted. In the algorithm, an interval is ac-
tually a triple, consisting of the left and right bound-
ary of a suffix array interval and a return stack. The
stack is needed to handle jumps. The two procedures
snp handling() and jump handling() (Algorithms 2
and 3) add new intervals to the set of intervals.

Algorithm 2 performs a search step for all IUPAC
letters that match the current character, but are not
identical to it.

Algorithm 3 searches for markers in the current
intervals. Each found marker is processed in the for-
loop at line 4. If the marker is a site marker, then a
singleton interval is added to the set of intervals for
each right boundary of the alternatives in the corre-
sponding set. The latter can be found in the jump
index array. For each added interval, the interval of
the site marker is pushed onto its return stack. This
has the effect that, after processing the alternative,
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Algorithm 1 Backward search with structural vari-
ants
Input: Pattern P , C-array, BWT with rank support,

jump index array jia
Output: Set of SA-intervals corresponding to matches of P
1: i← |P |
2: iv ← (0,∞, empty stack)
3: Intervals = {iv}
4: while i > 0 ∧ Intervals 6= ∅ do
5: Extra Intervals = {}
6: c← P [i]
7: for all iv = (l, r, ret) ∈ Intervals do
8: snp handling(Extra Intervals,C,BWT, c, iv)
9: l← C[c] + rankBWT(l, c) + 1

10: r ← C[c] + rankBWT(r + 1, c)
11: if l > r then
12: delete iv from Intervals
13: Intervals← Intervals ∪ Extra Intervals
14: if i > 1 then
15: jump handling(Intervals,C,BWT, jia)

16: i← i− 1

17: return Intervals

the algorithm ’jumps’ back to this variant site. More
precisely, if the current marker is not a site marker,
then the algorithm has reached the end of an alter-
native. If the return stack of the alternative is not
empty, then its top element is the corresponding vari-
ant site. If the return stack is empty, then the search
started inside an alternative. In this case, the single-
ton intervals of all variant sites, at which this alter-
native can occur, are added to the set of intervals.

Algorithm 2 snp handling
Input: Set of Extra Intervals, C-array, BWT with rank support,

character c, current interval iv = (iv.l, iv.r, iv.ret),
Output: None, but intervals will be added to Extra Intervals
1: letters← getPossibleLetters(c)
2: for all x ∈ letters do
3: l← C[x] + rankBWT(iv.l, x) + 1
4: r ← C[x] + rankBWT(iv.r + 1, x)
5: if l ≤ r then
6: add (l, r, iv.ret) to Extra Intervals

3.1 Accelerating the search with a k-
mer-index

At the beginning of a search, the intervals are rela-
tively large. Hence they may contain many markers.
For each site marker, the procedure jump handling()
adds at least one interval to the set of intervals. A a
result, the number of intervals increases dramatically

Algorithm 3 jump handling
Input: Set of intervals Intervals, C-array,

BWT with ranks support, jump index array jia,
Output: None, but intervals will be added to Intervals
1: for all iv = (iv.l, iv.r, iv.ret) ∈ Intervals do
2: l← rankBWT(iv.l, #) + 1
3: r ← rankBWT(iv.r + 1, #)
4: for h← l to r do . Iterate over markers
5: if jia.site[h] then
6: iv.ret.push(C[#] + h,C[#] + h)
7: for all t ∈ jia.target[h] do
8: alt← (C[#] + t,C[#] + t)
9: Intervals← Intervals ∪ (alt, iv.ret)

10: iv.ret.pop()
11: else if iv.ret 6= empty then
12: loc← iv.ret.pop()
13: Intervals← Intervals ∪ (loc, iv.ret)
14: iv.ret.push(loc)
15: else
16: for all t ∈ jia.target[h] do
17: loc← (C[#] + t,C[#] + t)
18: Intervals← Intervals ∪ (loc, iv.ret)

in the first search steps. Because most of the intervals
are deleted after a few more steps, the number of in-
tervals then decreases rapidly. In other words, most
of the computation time is spent in the first few iter-
ations. To speed up the search, jisearch provides an
option to use a k-mer-index (k is a parameter that
can be set by the user, k = 10 is recommended).
More precisely, it precalculates the suffix array inter-
val of each of the 4k k-mers (strings of length k on
the DNA-alphabet); if the k-mer is not a substring
of S, it stores the empty interval. The calculation of
the k-mer-index is done iteratively: the suffix array
intervals of all q-mers are computed based on suffix
array intervals of all q− 1-mers, where 1 ≤ q ≤ k. In
a backward search for pattern P , jisearch looks up
the suffix array interval of the k-mer suffix of P in
the k-mer-index and then the search continues with
P [1..|P | − k]. A similar technique was also used by
Huang et al. (2013) and Maciuca et al. (2016).

3.2 Accelerating the search for single-
ton intervals

The procedure jump handling() generates many sin-
gleton intervals. A singleton interval represents just
one position in the jump index string. In this case, it
is more efficient to search the pattern in the jump
index string (character-by-character) than using a
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BWT-based backward search (because string access
is much faster than rank queries). To implement the
string search, we need a second set called position set.
In this set, we store the position SA[C[#] + t] instead
of the interval [C[#] + t..C[#] + t]. The character-by-
character search starts at position SA[C[#] + t] in the
jump index string and if it is done from right to left
(i.e. backwards), then it can be integrated into the
overall search algorithm. If the current character in
the jump index string is a marker, we need to know its
rank in the BWT to load the jump targets. Therefore,
we store a map that maps the position of a marker
in the jump index string to its rank in the BWT. In
fact, we used this map already; see Section 2.2.4.

3.3 Output

The matching program of jisearch prints information
about the number of found reads and stores a binary
representation of the interval and position sets. To
obtain detailed information, a second program can be
used that processes the binaries. It prints the name
of each pattern P and for each occurrence of P in
the sequence it prints the following information: the
chromosome name, the position at which P occurs
in the reference sequence, the corresponding position
in the jump index string, and if the match includes
variations, a list containing the variation IDs and the
used alternatives.

If the search for pattern P results in a suffix array
interval [l..r], the positions of the occurrences of P
in the jump index string are SA[i], where l ≤ i ≤ r.
For each position, a string forward search is executed
that logs the ID and the chosen alternative for each
jump. The corresponding position in the reference
sequence and the chromosome name are queried in
a separate data structure. In principle, the same in-
formation could be calculated during the backward
search (i.e. within the program jisearch). However,
since we do not know in advance for which intervals
the search succeeds, this must be done for all the suf-
fix array intervals that are created during the search.
By contrast, the additional forward search is solely
applied to the (relatively few) positions at which the
pattern matches. Our experiments confirmed that it
is advantageous to use the additional forward search.

Algorithm 4 combine
Input: Overlapping lines lines, reference string ref , position p of

ref , offset off (init = 0), counter i (init = 1),
temporary alternative string tmpalt (init = ε),
set of new alternatives new alt (init = ∅)

Output: None, but new alternatives will be added to new alt
1: if i > |lines| then . No further lines (base case)
2: tmpalt = tmpalt ◦ ref [off + 1..|ref |]
3: new alt = new alt ∪ tmpalt
4: return

. Ignore line i (recursion case 1)
5: combine(lines, ref , p, off , i + 1, tmpalt, new alt)

. Check if next line can be applied
6: line = lines[i]
7: off line = line.pos− p
8: if off ≤ off line then
9: tmpalt = tmpalt ◦ ref [off + 1..off line]

10: off = off line + |line.ref |
11: for all alt ∈ line.altList do

. Apply line i (recursion case 2)
12: combine(lines, ref , p, off , i + 1, tmpalt ◦ alt), new alt)

’◦’ is the concatenation of strings, ε denotes the
empty string

4 Implementation and experi-
ments

Our software tool constructs the jump index string
from a reference genome in the form of a FASTA-file
and a list of variations in the form of a VCF-file. For
the DNA sequence of a chromosome, the jump index
string is built as follows. Let p be a position in the
chromosome that occurs in the list of variations and
let ω be the substring that starts at p and for which
alternatives are listed. Then ω is cut out of the DNA
sequence and replaced with a marker #. The listed
alternatives and ω are appended at the end of the
string, each separated by #; see Figure 2.

The test data was taken from the 1000 Genomes
Phase II (hs37d5) sequence1 and the correspond-
ing variation list.2 We constructed the search index
for the first human chromosome, which has approxi-
mately 250 million base pairs. The variation file for
this chromosome contains about 6.5 million entries,
96% of which represent SNPs. Consecutive lines in
the VCF-file can have overlapping references, result-
ing in overlapping variants, and we have to deal with

1FASTA: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
technical/reference/phase2 reference assembly sequence/

2VCF: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/
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this problem. In the following, it is shown how such
lines can be combined to a new line that describes
all variants. As an example, consider the reference
string ’TTAA’ and the three variations: (1:TTAA:T),
(2:T:A), (3:A:AT). Each triple consists of a position,
a reference, and a list of alternatives. The first triple
describes the deletion of ’TAA’ at position 1, the sec-
ond a SNP at position 2, and the third an insertion
of ’T’ after position 3. We will combine these to
(1:TWAA:T,TWATA). In this triple, the SNP is rep-
resented by its IUPAC code letter ’W’ and there are
two alternatives: the first one is the deletion and the
second one is the insertion. To calculate the new
triple, we first determine the shortest substring that
covers all references of the triples (lines) under con-
sideration. Then the letters at the position of a SNP
are replaced by the corresponding IUPAC code let-
ter. In our example, the new reference ref is ’TWAA’.
After that, Algorithm 4 is called with the lines that
do not correspond to SNPs, the new reference ref
and the starting position p. The algorithm runs re-
cursively until all lines have been processed. Each
line has the components pos, ref , and altList. In
each recursive step, it is checked whether the line
can be applied or not, i.e., whether its alternatives
can be added or not. The algorithm has two cases,
the first ignores the line and the second applies the
line if possible. So each possible combination of ig-
noring or applying the lines is generated and stored in
the set new alt. The new alternative of ignoring all
lines is identical to the reference. The string tmpalt
is used to gradually build a new alternative by ap-
pending parts of ref or the alternatives of a line. A
line cannot be applied if parts of its reference were
changed by a previous line. To decide whether this is
the case, the parameter off stores the (relative) po-
sition of the last letter of ref that was changed. If
off is larger than the offset of the line (offline), the
reference of the line was changed previously and the
line cannot be applied.

Our index data structure is constructed by us-
ing the library SDSL (Gog et al., 2014). It uses a
wavelet tree that supports rank-queries on the BWT
and a sampled suffix array to reduce the memory
consumption; see e.g. (Ohlebusch, 2013) for details.
Moreover, the jump index array is compressed by a

Table 4: Compressed target vector of the jump index
array in Table 2

bv1 0 1 1 1 0
bv2 0 0
v1 1 1 1
v2
v3 〈 3,4,5 〉 〈〉

technique that uses bit vectors in conjunction with
constant-time rank-queries; see Table 4. This works
as follows. For each marker, the jump index array
stores the information whether the marker is a site
marker or separator and at which markers the back-
ward search continues (targets). The marker type
is stored in the bit vector site. That is, site[i] = 1
if and only if the marker of rank i is a site marker.
Naively, the targets can be stored in a vector targets
of vectors, so that targets[i] is the vector contain-
ing the targets of marker i. The target vectors can
have arbitrary size, but the size is mostly one or two.
We compress this representation by storing the tar-
get vectors with size 1 or 2 in integer vectors v1 and
v2, respectively. The target vectors with other sizes
are stored in the vector of vectors v3. Let m be the
number of markers and let o and t be the number of
markers with one and two targets, respectively. We
define bv1 as a bit vector of length m with bv1[i] = 1
if and only if |targets[i]|= 1. We define bv2 as a bit
vector of length m − o with bv2[j] = 1 if and only
if |targets[i]|= 2, where i is the position of the j-
th 0 in bv1. Note that there are o ones in bv1 and
t ones in bv2. Furthermore, |v1|= o, |v2|= 2t, and
|v3|=m − o − t. The five new vectors need much
less space than the original vector of vectors. Ta-
ble 4 shows the compression of the target vector of
our example. For fast access to the original targets,
the bit vectors bv1 and bv2 are preprocessed so that
constant-time rank-queries are possible. If the tar-
gets of marker i should be loaded, r1 = rank1(bv1, i)
is calculated. If bv1[i] = 1, then i has just the one
target v1[r1]. Otherwise, r2 = rank1(bv2, i − r1) is
calculated. If bv2[i− r1] = 1, then i has the two tar-
gets v2[2r2] and v2[2r2 + 1]. Otherwise, the target
vector can be found in v3[i− r1 − r2].

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/658716doi: bioRxiv preprint 

https://doi.org/10.1101/658716


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10−1

100

101

102

103

104

105

106

search step

intervals
singleton intervals
non singleton intervals

Figure 3: 10k randomly generated patterns were
searched for in the first human chromosome. The
figure shows the average size of the interval set at the
beginnings of the first 15 search steps and the average
number of singleton and non-singleton intervals.

We evaluated the performance of jisearch and com-
pared it to gramtools and BWBBLE. Each of the
tools takes the above-mentioned test data (the hu-
man chromosome 1 and the corresponding VCF-file)
as input and generates its internal data structures.
If a tool cannot deal with a certain type of genetic
variant in a VCF-line, it simply skips the line.

All experiments were conducted on a Ubuntu
16.04.4 LTS system with two 16-core Intel R© Xeon R©

E5-2698 v3 processors and 256 GB RAM. Figure 3
shows the size of the interval set during the first
search steps. As one can see, the number of in-
tervals increases dramatically at the very beginning
and then decreases exponentially (note the semi-log
scale). This demonstrates why the first search steps
need most of the computation time and why a k-
mer-index is so useful. For a comparison with the
other programs, we searched for exact occurrrences
of the first 100k reads of the file SRR0626343 that do

3FASTQ: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
phase3/data/HG00096/sequence read/

not contain the letter ’N’. The programs jisearch and
gramtools also search for the reverse complement of a
read, so one read causes two searches. In BWBBLE
the sequence is concatenated with its reverse comple-
ment, so there is no need to execute an additional
search.

We tested jisearch with a k-mer-index for k= 5,
and k= 10 (gramtools uses k= 5). Figure 4 compares
the tools with respect to index construction time, in-
dex size, and the mapping speed. On one hand, the
construction time and index size of a k-mer-index in-
creases with k. On the other hand, a larger k-mer-
index accelerates the mapping speed significantly. As
one can see, the index of jisearch needs less space and
supports faster search than the index of gramtools.
The reason is probably the enormous alphabet size
in gramtools. The string generated by BWBBLE is
much longer than the strings generated by the other
programs because it includes the reverse complement
of the sequence and a ’padding’ for each variant. This
and probably the fact that Huang et al. (2013) did
not use the SDSL leads to a bigger FM-index. BWB-
BLE reaches a high mapping speed without using
a k-mer-index.4 This can be attributed to the fact
that their backward search does not need to follow
different edges in the pan genome reference graph.
As indicated by the title of the article (Huang et al.,
2013), the method only works well for short reads. By
contrast, jisearch and gramtools are able to search for
reads of arbitrary length. The percentage of mapped
reads is lower that 7% for all programs. This is prob-
ably because the chromosome 1 represents about 8%
of the human genome. Our program maps (a few)
more reads than the others. BWBBLE has problems
in mapping reads with variations that are too near
to each other and gramtools ignores a variation com-
pletely if its starting position is covered by another
variation.

4Although the possible usage of a k-mer-index is described
in (Huang et al., 2013), it seems that the software BWBBLE
does not use it at all.
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Figure 4: Comparison of the indexes generated by
the tools. The first diagram displays the time for
the index construction. The second diagram shows
the size of the index on disc. All tools generate a
string and calculate its FM-index, but only jisearch
and gramtools calculate a k-mer-index. ’Other data’
refers to additional data that a tool might need in
a specific application. The third diagram shows the
mapping speed in reads per second.

5 Discussion

We have presented a new method to encode genetic
variation in a Burrows-Wheeler transform, which ex-
tends the work of Huang et al. (2013) and Maciuca
et al. (2016) in several aspects. Apart from SNPs and
indels, this method allows to encode larger structural
variants such as large deletions, inversions, copy-
number variation, duplications, and transpositions.
(Since the current data lacks non-tandem duplica-
tions and transpositions, these are not yet supported
by our implementation.) Moreover, the method can
deal with nested variations. In contrast to gramtools,
our method uses only one extra symbol and therefore
avoids the disadvantages of an increased alphabet
size. As gramtools (Maciuca et al., 2016), the soft-
ware jisearch could be used to “support the inference
of the closest mosaic of previously known sequences
to the genome(s) under analysis.” Our future goal,
however, is to extend the exact matching algorithm
in such a way that it supports inexact matching. It is
unclear whether the techniques used in the software
tool BWBBLE (Huang et al., 2013) can be adapted
to our more general setting; it might be the case that
different methods have to be developed to efficiently
cope with larger structural variants in read mapping.

Funding This work was supported by the DFG
(OH 53/7-1).
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