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Abstract

Spatial intratumoural heterogeneity is a major challenge in precision medicine. Progress
to better understand the relationship between genetic heterogeneity and tissue
heterogeneity depends on accurately co-registering imaging data and tissue samples. We
address this challenge in patients with renal cell carcinoma undergoing radical
nephrectomy and propose a computational approach to produce patient-specific
3D-printed moulds that can be used in the clinical setting. Our approach achieves
accurate co-registration of sampling location between tissue and imaging, and integrates
seamlessly with the clinical, imaging and pathology workflows. It also provides image
guidance for tissue sampling while respecting pathologists’ preference for specific cutting
planes, irrespective of the presence of perinephric fat. The methodology is tested on a
patient undergoing radical nephrectomy, obtaining Dice similarity coefficients between
imaging and tissue ranging from 0.75 to 0.92. Our work provides a robust and
automated interface between imaging and tissue samples, enabling the development of
clinical studies to dissect tumour heterogeneity at multiple scales.

Author summary

Cancer is a complex disease. Different parts of a single tumour often look different in
medical images; they sometimes even carry different genetic information. This
complexity may be key to understanding why some tumours respond better to therapy
than others. Once the tumour has been removed through surgery, we can obtain tissue
samples that allow us to study its spatial composition. However, matching these data to
the images that were obtained before surgery is challenging. We have developed a
computational methodology that relies on 3D printing to create tumour moulds that
help us match images and tissue accurately. In addition, unlike previous approaches,
our technology does not disrupt clinical practice, so it can be used routinely.
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Introduction 1

Molecular tumour profiling is used to stratify patients and identify new actionable 2

targets for precision therapeutics. The assessment is typically based on data from a 3

single tumour biopsy [1]. Often, however, tumours display such a high degree of 4

heterogeneity that a single tissue sample is insufficient to capture the full molecular 5

landscape of the disease [2]. A prime example of such spatial heterogeneity is renal cell 6

carcinoma (RCC), which has been shown to be radiologically, genetically, and 7

metabolically heterogeneous [3–5]. Macroscopic regions with distinct genotypes can be 8

identified within a single tumour through multiregional sampling [3, 6]. In parallel, 9

radiological imaging provides non-invasive, three-dimensional information on phenotypic 10

heterogeneity [7, 8]. The fact that RCC displays spatial heterogeneity at such disparate 11

physical scales suggests that a combined approach to integrate the relevant data sources 12

(genomics, transcriptomics, radiomics) is needed to unravel the complexity of the 13

disease [9]. This would provide the necessary tissue context and macroscopic dimension 14

to studies of genomic tumour evolution [4, 10–12]. The foundation of a combined 15

analysis is the accurate spatial co-registration of imaging data and biopsies. However, 16

accurate multiregional tumour biopsies can only be obtained after nephrectomy, when 17

image-guidance is no longer a possibility. 18

The challenge of co-registering in vivo images to resected tumours has been 19

addressed in other contexts. Previous solutions included holding the specimen with a 20

cradle [13] or solidified agar [14]. However, these approaches had several disadvantages, 21

including not being clinically usable, or not providing accurate orientation. More 22

recently, personalised 3D moulds have been used to improve the accuracy of 23

co-registration in prostate cancer [15–17] and ovarian cancer studies [18]. 24

In RCC, however, 3D-printed moulds remain comparatively underexplored [19], as it 25

presents unique challenges. The first challenge arises from the pathology guidelines for 26

assessment of radical nephrectomy specimens, which requires optimal visualisation of 27

the renal sinus–tumour interface. The most commonly adopted initial plane of incision 28

is along the long axis at midpoint, with further sectioning usually perpendicular to this 29

plane [20–22]. Thus, the sectioning planes are in general not the same as those used for 30

imaging. An additional challenge is that pathologists need to preserve the integrity of 31

some structures which are required for staging, such as the renal vein. Finally, the 32

specimen is often covered by a thick layer of perinephric fat [23], which further 33

complicates the procedure and can make it impossible to identify relevant structures. 34

Because of these restrictions, previous 3D-printing-based co-registration methods for 35

RCC have either been limited to pre-clinical models [24], or have only focused on 36

early-stage partial nephrectomy cases [25], where the fat-free resection margin can be 37

used as a base for sectioning. In addition, none of them addressed the issue of having 38

different sectioning and imaging planes. New methods are therefore needed to 39

accurately match macroscopic habitats defined by imaging to specific tissue regions. 40

Importantly, these methods need to integrate smoothly into the clinical pathway to 41

allow future use in clinical trials and potentially clinical practice. 42

Here we report the design and implementation of a method to obtain multiple tissue 43

samples accurately registered to a pre-surgical multiparametric magnetic resonance 44

imaging (MRI) in patients undergoing radical nephrectomy for suspected RCC. Our 45

methodology is based on a patient-specific 3D printed mould and is tailored for seamless 46

integration with the clinical workflow: 47

1. Our approach respects the orientation of sectioning required for pathology 48

examination; 49

2. Our approach transforms MRI images onto the pathology sectioning space, and 50

provides slice-wise image-based tumour habitat maps that guide tissue sampling; 51
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3. Our approach uses a landmark-based method that enables orientation of 52

specimens obscured by a large adipose layer. 53

These features make our method a substantial step forward towards creating datasets 54

with accurately matched imaging, histological and genomics data. Below we present the 55

computational details of the method, provide an in-depth protocol on how it can be 56

generally applied to solid human tumours, and use a RCC radical nephrectomy case as 57

an example. 58

Results 59

The mould is a three-dimensional block, with vertical slits that guide the sectioning, 60

and a cavity designed to precisely fit the resected specimen, as shown in Figure 1. The 61

shape of the cavity is derived from the 3D volumes drawn by a radiologist on a MR 62

image of the tumour, which are rotated until the tumour is oriented along the desired 63

direction inside the mould. 64

Our method therefore has four steps: (1) image segmentation, (2) image 65

re-orientation and clustering, (3) mould optimisation and 3D printing, and (4) habitat 66

sampling (Figure 1). This report focusses on the first three steps to design patient 67

specific moulds. The method was designed to be as robust, reproducible and automated 68

as possible. Steps (2) and (3) are fully automated. Step (1) requires manual 69

intervention, but is assisted by computational techniques. This set-up aims to minimize 70

experimental errors and facilitates the adoption of the method by other research groups. 71

Figure 2 illustrates how these steps are integrated into the clinical workflow. 72

MRI imaging and 
segmentation

Re-orientation

Slice 4
Slice 6

Slice 8

Habitat sampling3D mould design 
and printing

Fig 1. Overview of our approach The schematic depicts the four steps of the
method bridging from MRI scans to spatial surgical biopsies. The method starts with
the delineation of a MRI scan, which is then re-oriented, carved into a 3D-printed
mould, and used for spatially accurate surgical biopsies. The slots of the mould guide
the knife for cutting.

Personalised 3D mould design 73

Step 1: Image segmentation 74

Our approach requires two types of regions of interest (ROIs) to be drawn on the 75

images: tissue segmentations and anatomic landmarks. Tissue segmentations are needed 76

to test the spatial accuracy of the framework; they include the tumour, normal kidney, 77

renal pelvis, and perinephric fat. Combined, they form the global outline of the 78

specimen, which defines the shape of the mould. The centroid of the outline volume is 79

referred to as the absolute centroid (C0). 80

In addition, four anatomic landmarks are needed to determine the correct 81

orientation of the specimen inside the mould. The first two are the upper and lower 82

poles of the kidney, which are needed to ensure that the kidney can be sectioned along 83
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its long axis at midpoint [20]. The other two anatomic landmarks are the hilum and the 84

area of the tumour with the thinnest fat coverage, referred to as the ‘tumour contact’ 85

point. They are used to ensure that the specimen is accurately positioned. 86
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Fig 2. Integration of the clinical and computational pipelines. Flow chart of
the different analysis steps performed by the radiology, surgery, pathology and
computational groups to ensure seamless integration between the clinical and research
arms. The yellow box highlights the computational steps of the pipeline.

Step 2: Image orientation 87

Our approach is designed to address the two key challenges explained in the 88

introduction, both of which can be solved by controlling the orientation of the specimen 89

within the mould. To achieve the correct orientation, we first apply all the necessary 90

transformations to the images, and then extract the volumes needed for mould design. 91

The first challenge concerns the direction along which the specimen has to be 92

sectioned, following pathology protocols for renal cancer staging. To address it, we 93

apply a 3D rotation to the images and create new slices that align with the preferred 94

sectioning plane, which is defined by C0 and the upper and lower pole ROIs. 95

The second challenge concerns the need to accurately place the specimen in the 96

mould, even when it is covered in perinephric fat. We overcome this problem by 97

defining reference landmarks that are expected to be exposed and identifiable in the 98

specimen, and placing them at the base of the mould. These points act as anchors that 99

ensure that the specimen is correctly positioned. The points are marked by carving 100

2 cm holes in the base of the mould that enable the pathologist to see and feel them, as 101

shown in Figure 3. The two landmark points used for this purpose are the hilum and 102

the tumour contact point. 103

Once the image has been rotated as desired, we extract the outline volume needed 104

for the mould, and treat it as a set 3D structure with fixed orientation during the rest 105

of the modelling process. 106
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Step 3: Mould optimisation and 3D printing 107

The volumetric matrix obtained after the re-orientation step is subsequently processed 108

by applying a marching cubes algorithm. The resulting mesh is then reduced in its 109

complexity by face reduction (target number of 5000), adaptive remeshing, three 110

iterations of Laplacian smoothing, Taubin smoothing and several operations to ensure a 111

closed mesh. Once the volume is smooth, it is carved off from a solid block-shaped base, 112

and vertical slots are created to guide the knife during sectioning. The location of the 113

inter-slot spaces is designed to match the exact location of the imaging slices. Finally, 114

we carve holes with a diameter of 2cm at the contact and hilum landmark points. This 115

entire process is automated [26]. 116

Fig 3. Optimised, patient-specific tumour mould. 3D rendering of the tumour
mould viewed from three different angles showing the reference holes, sectioning slots
and overall shape of the specimen.

Validation 117

The methodology was validated using a specimen from a 69-year-old man who 118

underwent a laparoscopic radical nephrectomy. The tumour was a clear cell RCC (65 119

mm) with minimal tumour necrosis, invasion of the renal sinus fat and renal vein 120

tributaries. Tumour stage was pT3a pNX, and Leibovich score of 6, meaning high risk 121

of disease recurrence. MRI images were obtained 12 days before resection. The total 122

volume of the lesion was 146 cm3. Tumour, normal kidney and perinephric fat were 123

delineated on a pre-surgical T1w MR image, as well as the hilum, renal pelvis, tumour 124

contact point and kidney poles. The segmentations were checked by a radiologist with 125

15 years of experience in genitourinary imaging (ES). Images and landmarks were 126

re-oriented using a MATLAB implementation of the method explained above, and a 127

mould was automatically generated and 3D-printed [26]. The mould measured 128

8× 18.6 cm and 3D printing took 18 hours. Reference points were marked with holes, as 129

illustrated in Figure 3. 130

Habitats 131

Multiparametric MR images were co-registered and used to define spatial habitats 132

inside the tumour using k-means clustering. In particular, we used T1w and T2w 133

images, T1 map, Ktrans from dynamic contrast enhanced (DCE) MRI as a measure of 134

tumour vascular leakage, the diffusion coefficient and perfusion fraction from IVIM MRI 135

imaging (f) as a measure of cellularity and tumour perfusion, and R2∗, as a measure of 136

oxygenation. We found three distinct habitats, as shown in Figure 4(e). 137
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Dissection and sectioning 138

The specimen was placed in the mould and sectioned 20 minutes after laparoscopic 139

nephrectomy. The resection margin was inked for R-staging and all the perinephric fat 140

was preserved. A slice with significant presence of all the habitats of the tumour, as well 141

as being sufficiently separated from the hilum, was chosen for sectioning. The cut was 142

made with a 12-inch CellPath Brain Knife. 143

Anatomical landmark validation 144

The slice provided a clean longitudinal cut of the kidney, including the renal pelvis and 145

a cross section of the tumour, as illustrated in Figure 4(a). The tumour presented two 146

hemorrhagic areas and a necrotic core. 147

The slice was photographed and reference tissues (tumour, kidney and renal pelvis) 148

were manually contoured. The co-registration between MRI segmentations and tissue 149

contours yielded Dice Similarity Coefficients (DSCs) [27] of 0.92 for the tumour, 0.75 for 150

the renal pelvis and 0.76 for the kidney, as shown in Figure 4(c). 151

Habitat 2Habitat 1 Habitat 3

(d)

Habitat 3

Habitat 2

Habitat 1

Tumour

DSC = 0.92

Renal pelvis

DSC = 0.75

Kidney

DSC = 0.76
Specimen boundaries

Imaging ROIs

(b) (c)

Fat

Tumour

Renal 
pelvis

Lower pole

Upper 
pole

Kidney

(a)
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1000 2000 3000 4000
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R2*
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(e)

Fig 4. Image-guided sectioning. (a) Central slice of the resected specimen.
(b) Overlay of the resected specimen and the anatomical structures delineated on the
T1w scan. (c) Dice coefficients between the T1w-based segmentations and the observed
tissue boundaries. (d) Overlay of the tumour habitats and the resected specimen.
(e) Relative distributions of imaging parameters for the three tumour habitats.

Functional signal validation 152

All three habitats present with distinct distributions with respect to perfusion fraction 153

f , Ktrans and R2∗ maps, as shown in Figure 4(e). Habitat 1 was found to be poorly 154

perfused and have a high diffusivity, T1w hypointensity and T2w hyperintensity. This 155

habitat was found to overlap with the necrotic area found in the resected specimen, as 156

shown in Figure 4(d). 157

Habitats 2 and 3 showed similar parametric distributions. Habitat 2 was adjacent to 158

the kidney and showed the highest levels of Ktrans. Habitat 3 showed the lowest 159

diffusivity levels, as well as high R2∗. 160
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Discussion 161

Capturing the full complexity of the disease is very challenging in cases like RCC, where 162

tumours typically display a high degree of spatial heterogeneity both at the imaging and 163

genomics level. In this paper we have presented a new methodology that overcomes one 164

of the key problems in this area, namely the need to accurately match macroscopic 165

habitats defined by imaging to specific tissue regions, without disrupting routine clinical 166

practices. By integrating smoothly into clinical practice, our methodology has the 167

potential to be widely applicable in clinical trials and therefore enable the creation of 168

unprecedented datasets with matched imaging, histological and genomics data. 169

Mapping imaging and sectioning planes. Our approach was designed to address 170

one of the limitations of previous 3D-printing-based co-registration methods, which 171

assumed that tumours can be sectioned along the same plane that was used for MR 172

imaging. This assumption generally interferes with pathology protocols. Commandeur 173

et al. proposed a methodology to co-register histological planes to MRI slices for 174

prostate cancer [28]. However, this co-registration has to be performed a posteriori and 175

therefore the surgical biopsies would need to be obtained without image guidance, which 176

might result in sub-optimal tumour sampling [10]. 177

Instead, our approach uses a landmark system based on the definition of two 178

reference points drawn by the radiologist on the MR scan (the upper and lower poles of 179

the kidney). These points are then used to define the rotation to be applied to the 180

images. We found that the rotation provided a longitudinal cut of the kidney, as 181

expected. 182

Accurate co-registration in the presence of perinephric fat. The second 183

challenge addressed by our approach is the presence of perinephric fat, which adds two 184

complications to the tissue co-registration process: the difficulty in predicting the exact 185

shape of the resected specimen, as the definition of optimal margins is controversial [29]; 186

and the lack of an anatomical frame of reference to correctly position the specimen in 187

the mould. Removing or trimming the fat may interfere with clinical practice, as it 188

could compromise the surgical margins, which need to be evaluated for the presence of 189

tumour cells [30]. A solution has been previously proposed for partial nephrectomy 190

cases, using the inner parenchymal surface of the tumour as the base of the mould [25]. 191

This method involved the surgeon inserting fiducial markers into the tumour during 192

surgery, which interrupts the routine clinical pathway. In addition, partial nephrectomy 193

is only recommended to treat small renal masses [31], so more advanced cases, which 194

have typically poorer outcomes and are therefore of particular clinical relevance [32] 195

would not be tractable with this approach. 196

Our methodology instead relies on a second set of key landmarks that can be used to 197

orient the specimen even when there is a large component of fat. The landmarks used 198

are the hilum, which can be identified by the presence of major blood vessels and the 199

ureter emerging from the kidney, and a tumour or kidney area with thin or absent fat 200

coverage. These reference points are placed at the base of the mould and marked with 201

holes that allow the pathologist to confirm their correct positioning. This approach 202

—combined with the first part of the re-orientation mechanism, which ensures that the 203

sectioning is performed in the desired direction— resulted in an accurate co-registration 204

between imaging and resected specimen. In particular, anatomical image segmentations 205

were found to agree with the corresponding tissue outlines after mould-assisted 206

sectioning, with DSCs ranging between 0.75 and 0.92. In addition, we observed that the 207

tumour habitats identified from multiparametric MRI coincided with observable 208

features of the tissue. For example, habitat 1 presented all the characteristics of necrotic 209
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tissue (poor perfusion, high diffusion, T1w hypointensity and T2w hyperintensity), and 210

indeed coincided with the necrotic core of the tumour [33]. Similarly, habitat 3, which 211

was closest to the normal kidney and therefore potentially could have better vascular 212

access, was found to have high Ktrans. 213

As expected, there was a thick layer of fat surrounding the kidney (see Figure 4), 214

which made it impossible to see the kidney or identify its orientation by simple visual 215

inspection. This would have been a challenge even in the standard clinical setting, and 216

the pathologist found that the mould provided useful support and assistance aside from 217

its research goals. 218

Limitations of the approach. Our approach shares some limitations with most 219

other co-registration approaches. First of all, there is a time constraint between imaging 220

and surgery. In this study imaging occurred 2 weeks before surgery, which could have 221

resulted in anatomical changes and therefore an inadequate mould design. Shape-wise, 222

additional uncertainty may arise from the segmentation of the structures on the MR 223

images. Although several approaches for semi-automatic segmentation of kidney 224

tumours exist [34–36], the preferred option is still manual contouring. Our methodology 225

requires the additional delineation of perinephric fat, for which manual contouring, after 226

discussion with the surgeon, is preferred. Although placing the point with the least fat 227

coverage at the bottom of the mould helps reduce the uncertainty, intra-operative 228

decisions may result in a different fat distribution. Having a single-sided mould 229

(without an upper half) means that changes in the upper side of the specimen do not 230

impact the accuracy, but any variations in the other half might. Finally, the 231

methodology also requires validation in a larger patient cohort. 232

Impact and future work. The methodology we have presented here will be a core 233

element of the WIRE renal cancer trial [37]. Future improvements to the mould design 234

will include a cutting guide that directs the knife before it gets to the tumour, and an 235

extension of the habitat definition to include radiomics features. By tightly integrating 236

into the workflows of clinical trials, our methodology will enable the creation of large 237

spatially-matched multiscale datasets including radiomics, genomics and histology data. 238

Material and Methods 239

Code 240

All the code necessary to reproduce these results, including volume orientation, 3D 241

mould design, 3D printing, and habitat generation, can be found in 242

doi:10.5281/zenodo.3066304. 243

Ethics 244

The method was designed as part of a physiological study currently being undertaken at 245

the University of Cambridge with the aim of exploiting the integration of imaging and 246

tissue based biomarkers to unravel tumor heterogeneity in renal cancer. The patient 247

included in the present work received a laparoscopic radical nephrectomy. Informed 248

consent was obtained for the Molecular Imaging and Spectroscopy with Stable Isotopes 249

in Oncology and Neurology - substudy in renal cancer (MISSION) after prior approval 250

by the East of England - Cambridge South ethics committee (REC: 15/EE/0378). 251
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MRI data acquisition 252

The 3D model of the tumour was designed based on a T1-weighted (T1w) MRI scan 253

acquired using a Dixon imaging sequence (Table 1) acquired two weeks before surgery 254

on a clinical 3T MRI (Discovery MR750, GE Healthcare, Waukesha, WI). Regions of 255

interest (ROIs) were manually delineated by a radiologist on each slice of the MRI scan, 256

using OsiriX (Version 10.0.0 [38]). The contours were drawn on coronal unenhanced 257

T1w images using registered T2w and post-contrast T1w images to verify the accuracy 258

of the ROIs. The segmentation was independently reviewed by a second radiologist. 259

ROIs were exported from OsiriX to comma separated value files (.csv) encoding the 260

coordinates of the edges of the ROI on each slice using the Export ROIs plugin (Version 261

1.9). The centroid of each ROI was calculated as the mean of all x, y and z coordinates 262

of the voxels within it. 263

Table 1. MR Parameters

Sequence TR [ms] TE [ms] Flip Angle [°] Voxel size [mm3] Spacing [mm] Comment

T1w Lava-Flex 3.7 1.1, 2.2 10 1.6× 1.8× 4 2 BH
T2w HyperCUBE 6000 96.8 90 1.6× 1.8× 4 2 RT
DWI (IVIM) 6666 78.9 90 3.0× 3.0× 4 2 RT

b = 0, 10, 20, 30,
50, 100, 300, 500,
700, 900 s/mm2

R2∗mapping 110 2.3–36.2 30 1.6× 1.8× 4 4 multiple BH
(12 echoes)

T1 mapping 3.7 1.1, 2.2 2, 3, 5, 2.0× 2.3× 4 2 BH
Lava-Flex 8, 14
DCE-MRI 3.8 1.1, 2.2 18 2.0× 2.3× 4 2 multiple BH,
Lava-Flex 10 mins duration

TR: Repetition Time, TE: Echo Time, BH: Breath Hold, RT: Respiratory Triggering, DWI: Diffusion Weighted Imaging, IVIM:
Intravoxel Incoherent Motion, DCE: Dynamic Contrast Enhanced. Voxel sizes give acquired resolutions.

Image pre-processing 264

Before generation of parameter maps, deformable motion correction was applied in 265

MATLAB (Mathworks, Natick, MA) and utilizing ANTs/ITK [39]. In the case of 266

DWI-MRI this was applied across acquisitions with differing b-values; in the case of 267

DCE-MRI, this was applied across acquisition time-points and the associated T1 maps 268

were transformed accordingly. Parameter maps were then generated using MATLAB in 269

the case of DWI-IVIM, and using MIStar (Apollo Medical Imaging Technology, 270

Melbourne, Australia) in the case of DCE-MRI, employing the Tofts model [40] and a 271

model arterial input function. R2∗ maps were generated at source on the MR scanner 272

using standard manufacturer software. All parameter map volumes were then aligned to 273

the T1-weighted reference series used to prepare the mould. This was performed in two 274

stages: first each parameter map volume was resampled into the space of the T1w 275

reference series. Finally, and only if necessary, a rigid registration transform to more 276

closely align the map with the reference image was determined manually using the 277

software package ITK-SNAP; this transform was then applied to the parameter map 278

volume. 279
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Mould orientation 280

The method proceeds as follows. First, the MR scan is re-sampled to achieve an
isotropic resolution of 1× 1× 1 mm3 using nearest neighbour interpolation, as
implemented in CERR [41]. Then, two three-dimensional rotations are applied. Several
vectors connecting the structure centroids are defined to guide the re-orientation
process, as follows:

vL = 0.5× (vhilum + vtumour contact), (1)

vLC = vC0
− vL, (2)

vpoles = vupper − vlower, (3)

where vi indicates the coordinates of the centroid of structure i, with vupper representing 281

the centroid of the upper pole, and vlower the centroid of the lower pole. The first 282

rotation aligns vLC with the z axis. The second rotation aligns vpoles with the x− z 283

plane. Combined, the two rotations ensure that the orientation conditions are satisfied. 284

Before extracting and exporting the re-oriented volume for mould design, the surface 285

is smoothed using 3D Gaussian filtering with a convolution kernel of size 9× 9× 9 286

voxels and standard deviation of 3 voxels. Finally, the MR images are sliced along the 287

x− z plane with a spacing of 1 cm. These are used to build reference maps that will 288

later guide the tissue sampling process; they also coincide with the location of the 289

mould’s slots. 290

3D printing 291

The model was sliced using Slic3r (Prusa Research, Czech) and printed with 0.2 mm 292

layer height on a Prusa i3 MK3 printer loaded with RS PRO PLA filament (RS 293

Components, UK). 294

Habitat clustering 295

In order to guide the process of tissue sampling, imaging maps were created for each 296

tumour slice. The maps were obtained by combining multiparametric MR images and 297

clustering them into several spatial clusters. 298

Along with the reference T1w images, additional sequences were acquired to define 299

the phenotypic habitats. In particular, the images used for clustering were the T1w and 300

T2w images, T1 map, Ktrans from DCE MRI, the diffusion coefficient and perfusion 301

fraction from IVIM MRI imaging (f), and R2∗. Images were obtained on a 3T MR 302

scanner, in coronal orientation with a slice thickness of 4 mm. Scans were corrected for 303

motion artefacts and co-registered using rigid transformations. Additional details on the 304

images, parameter maps, and methods can be found in Table 1 and the supplementary 305

materials. 306

Habitats were obtained by applying k-means clustering on the set of co-registered 307

images as well as the (x,y,z) coordinates corresponding to each voxel, to ensure spatial 308

cohesion. The number of clusters was set to the maximum number that would allow 309

taking three samples from each habitat. In practice, this translated into increasing the 310

number of clusters until any of the habitats had an area smaller than approximately 311

3 cm2. 312

Evaluation of spatial accuracy 313

The slice was placed on a flat, white surface and photographed. Tissue contours were
drawn on the image, being completely blinded to the MRI segmentations. The resulting
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outline and the shape predicted after reorientation of the MR-segmentation were then
overlayed and co-registered using manual rigid registration, maximising the overlap
between the tumour contours. The accuracy of slice position recovery was assessed
post-resection by comparing the DSC of MRI segmentations and the corresponding
tissue contours. This coefficient is defined as:

DSC =
2|X ∩ Y |
|X|+ |Y |

where the overlap of two binary masks X and Y (segmentations originating from 314

different image sources) can be calcuated. The higher the DSC, the larger the overlap 315

between the two binary masks. 316
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