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ABSTRACT

PURPOSE

Spatial heterogeneity of tumours is a major challenge in precision oncology. The relationship

between molecular and imaging heterogeneity is still poorly understood, as it relies on the accurate

co-registration of medical images and tissue biopsies. tumour moulds can guide the localization of

biopsies, but their creation is time consuming, technologically challenging, and di�cult to interface

with routine clinical practice. These hurdles have so far hindered the progress in the area of multi-

scale integration of tumour heterogeneity data.

METHODS

We have developed an open source computational framework to automatically produce patient-

specific 3D-printed moulds that can be used in the clinical setting. Our approach achieves accurate

co-registration of sampling location between tissue and imaging, and integrates seamlessly with

clinical, imaging and pathology workflows.

RESULTS

We applied our framework to patients with renal cancer undergoing radical nephrectomy. We

created personalised moulds for five patients, obtaining Dice similarity coe�cients between imaging

and tissue sections ranging from 0.86 to 0.93 for tumour regions, and between 0.70 and 0.76 for

healthy kidney. The framework required minimal manual intervention, producing the final mould

design in just minutes, while automatically taking into account clinical considerations such as a

preference for specific cutting planes.

CONCLUSION

Our work provides a robust and automated interface between imaging and tissue samples, enabling

the development of clinical studies to probe tumour heterogeneity on multiple spatial scales.
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INTRODUCTION

Molecular tumour profiling is used to stratify patients and identify new actionable targets for

precision therapeutics. The assessment is typically based on data from a single tumour biopsy1.

Often, however, tumours display such a high degree of heterogeneity that a single tissue sample

is insu�cient to capture the full molecular landscape of the disease2. A prime example of such

spatial heterogeneity is renal cell carcinoma (RCC), which has been shown to be radiologically,

genetically, and metabolically heterogeneous3–5. Macroscopic regions with distinct genotypes can

be identified within a single tumour through multi-regional sampling3,6. In parallel, radiological

imaging provides non-invasive, three-dimensional information on phenotypic heterogeneity7,8. The

fact that RCC displays spatial heterogeneity at such disparate physical scales suggests that a com-

bined approach to integrate the relevant data sources (i.e. genomics, transcriptomics, radiomics)

is needed to unravel the complexity of the disease9 and the genomic evolution of the tumour4,10–12.

The foundation of a combined analysis is the accurate spatial co-registration of imaging data and

biopsies. However, typically multi-regional tumour biopsies are obtained after nephrectomy, when

image guidance is no longer possible. The challenge of co-registering in vivo images to resected

tumours has been addressed in other contexts. Previous solutions included holding the specimen

with a cradle13 or solidified agar14. However, these approaches had several disadvantages, including

not being clinically usable, or not providing accurate orientation. More recently, personalised 3D

moulds have been used to improve the accuracy of co-registration in prostate cancer15–17 and

ovarian cancer studies18.

In RCC, however, 3D-printed moulds remain comparatively underexplored19, as the disease

presents unique challenges. The first challenge arises from the pathology guidelines for assessment

of radical nephrectomy specimens, which require optimal visualisation of the renal sinus–tumour

interface. The most commonly adopted initial plane of incision is along the long axis at midpoint,

with further sectioning usually perpendicular to this plane20–22. Thus, the sectioning planes are in

general not the same as those used for imaging. An additional challenge is that pathologists need to

preserve the integrity of structures, which are required for staging, such as the renal vein. Finally,

the specimen is often covered by perinephric fat23, which further complicates the procedure and

can make it impossible to identify relevant structures. Because of these restrictions, previous 3D-

printing-based co-registration methods for RCC have either been limited to pre-clinical models24,

or have only focused on early-stage partial nephrectomy cases25, where the fat-free resection margin

can be used as a base. In addition, none of the preivous methods addressed the issue of having
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di↵erent sectioning and imaging planes. New methods are therefore needed to accurately match

macroscopic habitats defined by imaging to specific tissue regions. Importantly, these methods need

to integrate smoothly into the clinical pathway to allow future use in clinical trials and potentially

clinical practice.

Here we report the design and implementation of an open-source computational framework to

create image-based patient-specific tumour moulds. The moulds enable the co-registration of sur-

gical tissue samples to pre-surgical multiparametric magnetic resonance imaging (MRI) in patients

undergoing radical nephrectomy for suspected RCC. Our methodology is fully automated, produc-

ing ready-to-print 3D designs directly from the MRI segmentation. It is also tailored for seamless

integration with the clinical workflow. In particular, it can deal with any desired sectioning plane,

and is based on a robust landmark system that ensures accurate co-registration even in specimens

obscured by a thick adipose layer. Although the framework was designed for renal cancer, it could

be easily adapted to any other type of solid tumour. As such, it constitutes a substantial step for-

ward towards streamlining the creation of datasets with accurately matched imaging, histological

and genomics data. Below we present the computational details of the framework and validate its

performance on five radical nephrectomy cases.

RESULTS

Key concepts

We are presenting a framework to create moulds that can assist the tumour sampling process

by co-registering tumour sections with MRI slices. The mould is a three-dimensional block, with

vertical slots that guide the sectioning, and a cavity designed to precisely fit the resected specimen

(Figure 1a). The shape of the cavity is derived from the regions of interest drawn by a radiologist

on a MRI scan. The 3D modelling process involves several steps, including volume creation, re-

orientation, smoothing, mesh creation, and the addition of slots and guides (Figure 1a). All steps

proceed automatically, and they integrate with the clinical workflow (Figure 1b). The code is

available online on doi:10.5281/zenodo.3066304.
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FIG. 1. A computational framework to create image-based patient-specific tumour moulds.

(a) The schematic depicts the various steps of the method, bridging from MRI scans to spatially targeted

surgical biopsies. The method starts with the delineation of a MRI scan, which is then re-oriented, carved

out of a 3D-printed mould, and used for spatially accurate surgical biopsies. The slots of the mould guide

the knife for cutting. (b) Flow chart of the di↵erent analysis steps performed by the radiology, surgery,

pathology and computational groups to ensure seamless integration between the clinical and research arms.

The blue box highlights the computational steps of the pipeline.
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Automated 3D modelling

Step 1: Image segmentation

Our approach requires two types of regions of interest (ROIs) to be drawn on the images: tissue

segmentations and anatomic landmarks. Tissue segmentations are needed to define the mould

cavity and to test the spatial accuracy of the framework. They include the tumour, normal kidney,

and perinephric fat. Combined, they form the global outline of the specimen, which defines the

shape of the mould.

In addition, at least four anatomic landmarks are needed to determine the correct orientation

of the specimen inside the mould. The first two are the upper and lower poles of the kidney, which

ensure that the kidney can be sectioned along or transverse to its long axis at midpoint20. The

other two anatomic landmarks are the hilum (exit point of renal vessels and ureter) and the points

in the tumour and/or normal kidney with the thinnest fat coverage, referred to as ‘contact points’.

They are used to ensure that the specimen is accurately positioned.

Step 2: Image orientation

Our approach controls the orientation of the specimen within the mould. The first orientation

challenge concerns the direction along which the specimen has to be sectioned, following pathology

protocols for renal cancer staging. To address this, we apply a 3D rotation to the images and create

new slices that align with the preferred sectioning plane, which is defined by the tumour centroid

and the upper and lower poles.

The second challenge concerns the need to accurately orient the specimen in the mould, even

when it is covered in perinephric fat. We overcome this challenge by defining reference landmarks

that are expected to be exposed and identifiable in the specimen, and placing them at the base of

the mould. These points act as anchors that ensure that the specimen is correctly positioned. The

points are marked in the mould by carving 2 cm holes in the base of the mould that enable the

pathologist to see and feel them (red arrows in Figure 1a). The two landmark points used for this

purpose are the hilum and the tumour contact point.

Once the image has been rotated, we extract the outline volume needed for the mould and

smooth the surface using a Gaussian kernel. The final output is a three-dimensional integer matrix

that embeds the correctly oriented volume as well as the location of the landmark points. This

part of the process is implemented in MATLAB.
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Step 3: Mould generation and 3D printing

The mould generation process consists of several steps (Figure 1a). First, the volumetric matrix

obtained previously is converted into a mesh, and then simplified by face reduction, adaptive

remeshing, Laplacian smoothing and Taubin smoothing.

Once the mesh is smooth enough for printing, it is carved o↵ from a solid block-shaped base,

and vertical slots are created to guide the knife during sectioning. In addition, a set of vertical

guides is added to one side of the mould, to aid with the positioning of the knife. The location of

the inter-slot spaces in both the guides and the mould is designed to match the exact location of

the imaging slices of interest. Additionally, the guides are numbered such that particular slices can

easily be identified and compared to imaging. Finally, we carve the reference holes at the bottom

of the mould with a diameter of 2 cm at the hilum and contact landmark points. This part of the

process is implemented in Slic3r (Prusa Research, Czech).

Validation in a pilot study

The methodology was validated using specimens from five patients with renal tumours who

underwent radical nephrectomy (Figure 2). Relevant clinical data can be found in Table I, and

additional information can be found in the Methods section.

TABLE I. MRI Parameters

Case

number

Gender Age Tumour type Tumour stage Nodal stage Tumour

grade

Time between

imaging and

surgery [days]

Tumour

volume

[ml]

1 M 70 Clear cell RCC pT3a pNx 3 14 145

2 M 81 Clear cell RCC pT3a pNx 4 29 218

3 F 60 Clear cell RCC pT3a pNx 2 19 89

4 M 51 Clear cell RCC pT3a pN0 4 22 107

5 M 47 Rhabdomyosarcoma pT4 pN0 ungraded 11 1342

M: Male, F: Female, RCC: Renal cell carcinoma

tumour, normal kidney and perinephric fat were segmented manually on a pre-surgical T1w

MRI image, as well as the hilum, tumour and kidney contact point and kidney poles. For the first

patient, the renal pelvis was also segmented. The segmentations were checked by a radiologist with

15 years of experience in genitourinary imaging (ES).
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Case 1

Case 2

Case 3

Case 4

Case 5

FIG. 2. Optimised, patient-specific tumour moulds. Representative T1w MRI slices and correspond-

ing 3D renderings of the tumour moulds created for the five cases included in the study.

We generated and 3D-printed moulds for each patient using the computational framework de-

scribed above. After discussion with the pathologist, it was decided that the first case would be

sectioned longitudinally to the kidney, while the other four were sectioned transversally.

The automated design and generation of each mould took less than 5 minutes per patient. Man-

ual verification of the segmentation and mould results took between 10 and 20 minutes. Printing

each mould took between 12 and 24 hours.

The specimens were placed in the mould and sectioned 20 minutes after nephrectomy. The

resection margins were inked for R-staging and all the perinephric fat was preserved. A slice where
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all the habitats of the tumour were present, as well as being su�ciently separated from the hilum,

was chosen for sectioning in each case. Cuts were made with a 12-inch CellPath Brain Knife.

Anatomical landmark validation

Based on these data we validated the anatomical landmarks and the functional signal. In the

first case, the selected slice resulted in a clean longitudinal cut of the kidney, including the renal

pelvis, and a cross-section of the tumour, as illustrated in Figure 3. The tumour presented two

hemorrhagic areas and a necrotic core. The other four cases were sectioned transversally, with

cases 2 and 3 including large portions of normal kidney.

For each case, the slice was placed on a flat surface and photographed. We then manually

contoured the reference tissues (tumour, kidney, and renal pelvis where visible) on the tissue

photograph. We co-registered the MRI segmentations and tissue contours manually, obtaining

Dice Similarity Coe�cients (DSCs)26 of 0.92, 0.80, 0.86, 0.93 and 0.92 respectively for the five

tumour ROIs, as shown in Figure 3a. The three regions of interest containing healthy kidney

yielded DSCs of 0.76, 0.76 and 0.70 respectively. For the first case, the renal pelvis yielded a DSC

of 0.75.

Functional signal validation

Motivated by the presence of a necrotic core in the first patient, we performed a further vali-

dation step based on the spatial distribution of di↵erent functional imaging parameters inside the

tumour. Multiparametric MRI images were co-registered and used to define spatial habitats using

k-means clustering. In particular, we used T1w and T2w images, T1 map, Ktrans from dynamic

contrast enhanced (DCE) MRI as a measure of tumour vascular leakage, the D0 di↵usion coe�-

cient and perfusion fraction from IVIM MRI imaging (f) as a measure of cellularity and tumour

perfusion, and R2⇤, as a measure of oxygenation. We found three distinct habitats, as shown in

Figure 3b.

All three habitats presented with distinct distributions with respect to perfusion fraction f ,

K

trans and R2⇤ maps, as shown in Figure 3b. We found habitat 1 to be poorly perfused and have

a high di↵usivity, T1w hypointensity and T2w hyperintensity. This habitat overlapped with the

necrotic area found in the resected specimen.

Habitats 2 and 3 showed similar parametric distributions. Habitat 2 was adjacent to the kidney
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FIG. 3. Validation results. (a) Overlay of the tissue region boundaries (black) and the corresponding

MRI segmentations (red) for tumour and kidney regions. DSCs are calculated for tumour and kidney

tissues separately. RP indicates the renal pelvis. (b) Left: Overlay of a photograph of the section from

the first case and the corresponding MRI maps, including anatomical region segmentations (top) and multi-

parametric tumour habitats (bottom). Right: Relative distributions of imaging parameters for the three

tumour habitats.

and showed the highest levels of Ktrans. Habitat 3 showed the lowest di↵usion levels, as well as

high R2⇤.
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DISCUSSION

Capturing the full complexity of the disease is very challenging in cases like RCC, where tumours

typically display a high degree of spatial heterogeneity both at the imaging and genomics level. In

this paper we have presented a new computational framework that overcomes a key challenge for

the combined analysis of imaging and genomics data: the need to accurately match macroscopic

habitats defined by imaging to specific tissue regions in an automated way and without disrupting

routine clinical practices. By integrating smoothly into clinical practice, our methodology has the

potential to be widely applicable in clinical trials and therefore enable the creation of unprecedented

datasets with matched imaging, histological and genomics data.

An open-source automated platform for mould creation. Our framework successfully integrated

all the steps to automatically produce 3D-printable moulds directly from MRI segmentations.

This facilitates the inclusion of mould-guided samples into clinical studies, because moulds can be

generated fast with minimal additional workload.

Mapping imaging and sectioning planes. Our approach was designed to address one of the

limitations of previous 3D-printing-based co-registration methods, which assumed that tumours

can be sectioned along the same plane that was used for MRI imaging. This assumption generally

interferes with pathology protocols. Commandeur et al. proposed a methodology to co-register

histological planes to MRI slices for prostate cancer27. However, this co-registration has to be

performed a posteriori and therefore the surgical biopsies would need to be obtained without

image guidance, which might result in sub-optimal tumour sampling10. Instead, our approach uses

a landmark system based on the definition of two reference points drawn by the radiologist on

the MRI scan (the upper and lower poles of the kidney). These points are then used to define

the rotation to be applied to the images. We found that the rotation successfully provided the

expected longitudinal or transversal cuts of the kidney.

Accurate co-registration in the presence of perinephric fat. The second challenge addressed by

our approach is the presence of perinephric fat, which adds two complications to the tissue co-

registration process: the di�culty in predicting the exact shape of the resected specimen, as the

definition of optimal margins is controversial28; and the lack of an anatomical frame of reference

to correctly position the specimen in the mould. Removing or trimming the fat may interfere

with clinical practice, as it could compromise the surgical margins, which need to be evaluated for

the presence of tumour cells29. A solution has been previously proposed for partial nephrectomy

cases, using the inner parenchymal surface of the tumour as the base of the mould25. This method
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involved the surgeon inserting fiducial markers into the tumour during surgery, which interrupts

the routine clinical pathway. In addition, partial nephrectomy is only recommended to treat small

renal masses30, so more advanced cases, which have typically poorer outcomes and are therefore of

particular clinical relevance31 would not be tractable with this approach.

Our methodology instead relies on a second set of key landmarks that can be used to orient

the specimen even when there is a large component of fat. These reference points are placed at

the base of the mould and marked with holes that allow the pathologist to confirm their correct

positioning. This approach resulted in an accurate co-registration between imaging and resected

specimen in five specimens corresponding to renal cancers of stages 3 and 4. In particular, we found

that anatomical image segmentations agreed with the corresponding tissue outlines after mould-

assisted sectioning, with DSCs ranging between 0.86 and 0.93 for tumour regions, and between

0.70 and 0.76 for healthy kidney regions.

In addition, we observed that the tumour habitats identified from multiparametric MRI images

from case number 1 coincided with observable features of the tissue. In particular, habitat 1

presented all the characteristics of necrotic tissue (poor perfusion, high di↵usion, T1w hypointensity

and T2w hyperintensity), and indeed coincided with the necrotic core of the tumour32. Similarly,

habitat 3, which was closest to the normal kidney and therefore potentially could have better

vascular access, was found to have high K

trans.

As expected, there was a thick layer of fat surrounding the specimens, which made it di�cult

to see the kidney or identify its orientation by simple visual inspection. This would have been a

challenge even in the standard clinical setting, but the mould generally provided useful support

and assistance.

Limitations of the approach. Our approach shares some limitations with most other co-

registration approaches. First of all, there is a time constraint between imaging and surgery. In

this study imaging occurred between 2 and 4 weeks before surgery, which could have resulted in

anatomical changes and therefore a suboptimal mould design. However, typical tumour doubling

times for renal cancer are large, and suggest that the e↵ects should be minor33,34. Shape-wise,

additional uncertainty may arise from the segmentation of the structures on the MRI images.

Although several approaches for semi-automatic segmentation of kidney tumours exist35–37, the

preferred option is still manual contouring. Our methodology requires the additional delineation

of perinephric fat, for which manual contouring, after discussion with the surgeon, is preferred.

Although placing the point with the least fat coverage at the bottom of the mould helps reduce the

uncertainty, intra-operative decisions may result in a di↵erent fat distribution. Having a single-
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sided mould (without an upper half) means that changes in the upper side of the specimen do not

impact the accuracy, but any variations in the other half might do.

Impact and future work. The methodology we have presented here will be a core element

of the WIRE renal cancer trial38. By tightly integrating into the workflows of clinical trials,

our methodology will enable the creation of large spatially-matched multiscale datasets including

radiomics, genomics and histology data.
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MATERIALS AND METHODS

Code

All the code necessary to reproduce these results, including volume orientation, 3D mould

design, 3D printing, and habitat generation, can be found in doi:10.5281/zenodo.3066304.

Ethics and patient cohort

The method was designed as part of a physiological study currently being undertaken at the

University of Cambridge with the aim of integrating of imaging and tissue based biomarkers to

unravel tumour heterogeneity in renal cancer. Informed consent was obtained for the Molecular

Imaging and Spectroscopy with Stable Isotopes in Oncology and Neurology - substudy in renal

cancer (MISSION) after prior approval by the East of England - Cambridge South ethics committee

(REC: 15/EE/0378).

All patients recruited for the MISSION study between December 2018 and December 2019, a

total of 8, were considered for 3D mould printing. Of those, three were excluded from the validation

study presented here: one due to having withdrawn consent to imaging (no mould was designed),

one due to having a paraganglioma (no mould was designed), and one due to not having tissue

photographs for anatomical validation. The analysis presented here is based on the remaining five

patients.

MRI data acquisition

The 3D model of the tumour was designed based on a T1-weighted (T1w) MRI scan acquired

using a Dixon imaging sequence (Table II) acquired between two and four weeks before surgery

on a clinical 3T MRI (Discovery MR750, GE Healthcare, Waukesha, WI). Regions of interest

(ROIs) were manually delineated by a radiologist (SU, with 2 years of experience in genitourinary

imaging) on each slice of the MRI scan using OsiriX (Version 10.0.039). The contours were drawn

on coronal unenhanced T1w images using registered T2w and post-contrast T1w images to verify

the accuracy of the ROIs. The segmentation was independently reviewed by a second radiologist

(ES, with 15 years of experience in genitourinary imaging). ROIs were exported from OsiriX to

comma separated value files (.csv) encoding the coordinates of the edges of the ROI on each slice

using the Export ROIs plugin (Version 1.9). The centroid of each ROI was calculated as the mean
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of all x, y and z coordinates of the voxels within it.

TABLE II. MRI Parameters

Sequence TR [ms] TE [ms] Flip Angle [�] Voxel size [mm3] Spacing [mm] Comment

T1w Lava-Flex 3.7 1.1, 2.2 10 1.6⇥ 1.8⇥ 4 2 BH

T2w HyperCUBE 6000 96.8 90 1.6⇥ 1.8⇥ 4 2 RT

DWI (IVIM) 6666 78.9 90 3.0⇥ 3.0⇥ 4 2 RT

b = 0, 10, 20, 30,

50, 100, 300, 500,

700, 900 s/mm2

R2⇤mapping 110 2.3–36.2 30 1.6⇥ 1.8⇥ 4 4 multiple BH

(12 echoes)

T1 mapping 3.7 1.1, 2.2 2, 3, 5, 2.0⇥ 2.3⇥ 4 2 BH

Lava-Flex 8, 14

DCE-MRI 3.8 1.1, 2.2 18 2.0⇥ 2.3⇥ 4 2 multiple BH,

Lava-Flex 10 mins duration

TR: Repetition Time, TE: Echo Time, BH: Breath Hold, RT: Respiratory Triggering, DWI: Di↵usion

Weighted Imaging, IVIM: Intravoxel Incoherent Motion, DCE: Dynamic Contrast Enhanced. Voxel sizes

give acquired resolutions.

Image pre-processing

Before generation of parameter maps, deformable motion correction was applied in MATLAB

(Mathworks, Natick, MA) and utilizing ANTs/ITK40. In the case of DWI-MRI this was applied

across acquisitions with di↵ering b-values; in the case of DCE-MRI, this was applied across ac-

quisition time-points and the associated T1 maps were transformed accordingly. Parameter maps

were then generated using MATLAB in the case of DWI-IVIM, and using MIStar (Apollo Medical

Imaging Technology, Melbourne, Australia) in the case of DCE-MRI, employing the Tofts model41

and a model arterial input function. R2⇤ maps were generated at source on the MRI scanner using

standard manufacturer software. All parameter map volumes were then aligned to the T1-weighted

reference series used to prepare the mould. This was performed in two stages: first each parameter

map volume was resampled into the space of the T1w reference series. Finally, and only if nec-

essary, a rigid registration transform to more closely align the map with the reference image was

determined manually using the software package ITK-SNAP; this transform was then applied to
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the parameter map volume using MATLAB.

Mould orientation

The method proceeds as follows. First, the MRI scan is re-sampled to achieve an isotropic reso-

lution of 1⇥1⇥1 mm3 using nearest neighbour interpolation, as implemented in CERR42, an open

source MATLAB environment for radiology research. Then, two three-dimensional rotations are

applied. Several vectors connecting the structure centroids are defined to guide the re-orientation

process, as follows:

v

L

= 0.5⇥ (v
hilum

+ v

tumour contact

), (1)

v

LC

= vC0 � v

L

, (2)

v

poles

= v

upper

� v

lower

, (3)

where vi indicates the coordinates of the centroid of structure i, with v

upper

representing the

centroid of the upper pole, and v

lower

the centroid of the lower pole. The first rotation aligns v
poles

with the y axis. The second rotation is performed around the y axis, aligning the x� z projection

of v
LC

with the z axis. Combined, the two rotations ensure that the orientation conditions are

satisfied. Other rotation choices could also be easily implemented.

Before extracting and exporting the re-oriented volume for mould design, the surface is smoothed

using 3D Gaussian filtering with a convolution kernel of size 9⇥9⇥9 voxels and standard deviation

of 3 voxels. Finally, the MRI images are sliced along the x� z plane with a spacing of 1 cm. These

are used to build reference maps that will later guide the tissue sampling process; they also coincide

with the location of the mould’s slots.

Design optimisation & mould generation

The resliced tumour segmentation was exported from MATLAB and imported into a Python

script for post-processing and mould generation. First, the marching cubes algorithm43 was ap-

plied on the 3D volume for conversion to a mesh consisting of faces and vertices. Second, in order

to ensure integrity of the resulting tumour mesh close vertices were merged, duplicate faces and

vertices removed, faces from non-manifold edges removed, and all face normals orientations in-

verted. Third, the number of faces was reduced to 5000 max. by performing quadric edge collapse

decimation to simplify the mesh and reduce computational overhead. Fourth, the first smoothing
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step with a Laplacian kernel was performed. Fifth, as Laplacian smoothing can result in geometric

issues in certain scenarios, faces were again removed from non-manifold edges as well as duplicated

faces and vertices removed. Sixth, Taubin smoothing was performed to remove remaining irregu-

larities. Last, remaining holes in the mesh were closed to ensure a continuous surface for mould

generation and printing. Detailed parameters for each step can be found in the file filter.mlx on

doi:10.5281/zenodo.3066304.

3D printing

The model was sliced using PrusaSlicer (Prusa Research, Czech) and printed with 0.2 mm layer

height on a Prusa i3 MK3 printer loaded with RS PRO PLA filament (RS Components, UK).

Habitat clustering

In order to guide the process of tissue sampling, imaging maps were created for each tumour

slice. The maps were obtained by combining multiparametric MRI images and clustering them

into several spatial clusters.

Along with the reference T1w images, additional sequences were acquired to define phenotypic

habitats in the first patient. In particular, the images used for clustering were the T1w and T2w

images, T1 map, Ktrans from DCE MRI, the di↵usion coe�cient and perfusion fraction from IVIM

MRI imaging (f), and R2⇤. Images were obtained on a 3T MRI scanner, in coronal orientation

with a slice thickness of 4 mm. Scans were corrected for motion artefacts and co-registered using

rigid transformations. Additional details on the images, parameter maps, and methods can be

found in Table II and the supplementary materials.

Habitats were obtained by applying k-means clustering on the set of co-registered images as well

as the (x,y,z) coordinates corresponding to each voxel, to ensure spatial cohesion. The number of

clusters was set to the maximum number that would allow taking three samples from each habitat.

In practice, this translated into increasing the number of clusters until any of the habitats had an

area smaller than approximately 3 cm2.

Evaluation of spatial accuracy

The slice was placed on a flat surface and photographed. Tissue contours were drawn on the

image, being completely blinded to the MRI segmentations. The resulting outline and the shape
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predicted after reorientation of the MR-segmentation were then overlayed and co-registered using

manual rigid registration, maximizing the overlap between the tumour contours. The accuracy of

slice position recovery was assessed post-resection by comparing the DSC of MRI segmentations

and the corresponding tissue contours. This coe�cient is defined as:

DSC =
2|X \ Y |

|X|+ |Y |

where the overlap of two binary masks X and Y (segmentations originating from di↵erent image

sources) can be calcuated. The higher the DSC, the larger the overlap between the two binary

masks.

ACKNOWLEDGMENTS

The authors acknowledge the help of Gaspar Delso (GE Healthcare) and Dattesh Shanbhag

(GE Global Research) for the use and ongoing support of their MRI image motion-correction pro-

gramming code. MCO acknowledges support from a Borysiewicz Fellowship from the University of

Cambridge and Junior Research Fellowship from Trinity College, Cambridge. MG acknowledges

support from an Enrichment Fellowship from The Alan Turing Institute. This work was supported

by the Wellcome Trust (095962), Cancer Research UK (CRUK; C9685/A25117, C8742/A18097,

C19212/A16628, C19212/A911376, C19212/A27150, C14303/A17197, C14303/A19274), the CRUK

Engineering and Physical Sciences Research Council (EPSRC) Cancer Imaging Centre in Cam-

bridge and Manchester (C197/A16465), the Mark Foundation Institute for Integrative Cancer

Medicine at the University of Cambridge, Addenbrooke’s Charitable Trust, the National Institute

for Health Research (NIHR) Cambridge Biomedical Research Centre and Cambridge University

Hospitals NHS Foundation Trust. Infrastructure for the Cambridge Urological Bio-repository was

funded by the Cambridge Biomedical Research Campus and CRUK Cambridge Centre. Author

ANP and the Human Research Tissue Bank are supported by the NIHR Cambridge Biomedical

Research Centre.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/658831doi: bioRxiv preprint 

https://doi.org/10.1101/658831
http://creativecommons.org/licenses/by-nc/4.0/


19

1 Longo DL. Tumor Heterogeneity and Personalized Medicine. New England Journal of Medicine.

2012;366(10):956–957. doi:10.1056/NEJMe1200656.

2 Sankin A, Hakimi AA, Mikkilineni N, Ostrovnaya I, Silk MT, Liang Y, et al. The impact of genetic

heterogeneity on biomarker development in kidney cancer assessed by multiregional sampling. Cancer

medicine. 2014;3(6):1485–92. doi:10.1002/cam4.293.

3 Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor hetero-

geneity and branched evolution revealed by multiregion sequencing. New England journal of medicine.

2012;366(10):883–892.

4 Turajlic S, Xu H, Litchfield K, Rowan A, Chambers T, Lopez JI, et al. Tracking cancer evolution reveals

constrained routes to metastases: TRACERx Renal. Cell. 2018;173(3):581–594.

5 Stewart GD, O’Mahony FC, Laird A, Eory L, Lubbock ALR, Mackay A, et al. Sunitinib Treatment

Exacerbates Intratumoral Heterogeneity in Metastatic Renal Cancer. Clinical cancer research : an

o�cial journal of the American Association for Cancer Research. 2015;21(18):4212–23. doi:10.1158/1078-

0432.CCR-15-0207.

6 Okegawa T, Morimoto M, Nishizawa S, Kitazawa S, Honda K, Araki H, et al. Intratumor heterogeneity

in primary kidney cancer revealed by metabolic profiling of multiple spatially separated samples within

tumors. EBioMedicine. 2017;19:31–38.

7 Lubner MG, Stabo N, Abel EJ, del Rio AM, Pickhardt PJ. CT Textural Analysis of Large Primary

Renal Cell Carcinomas: Pretreatment Tumor Heterogeneity Correlates With Histologic Findings and

Clinical Outcomes. American Journal of Roentgenology. 2016;207(1):96–105. doi:10.2214/AJR.15.15451.

8 Yuan Q, Kapur P, Zhang Y, Xi Y, Carvo I, Signoretti S, et al. Intratumor Heterogeneity of Perfusion and

Di↵usion in Clear-Cell Renal Cell Carcinoma: Correlation With Tumor Cellularity. Clinical genitourinary

cancer. 2016;14(6):e585–e594. doi:10.1016/j.clgc.2016.04.007.
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