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Abstract: 1 

Major depressive disorder (MDD) is a common and disabling syndrome with multiple 2 

etiologies that is defined by clinically elicited signs and symptoms. In hopes of developing a list 3 

of candidate biological measures that reflect and relate closely to the severity of depressive 4 

symptoms, so-called "state-dependent" biomarkers of depression, this pilot study explored the 5 

biochemical underpinnings of treatment response to cognitive behavior therapy (CBT) in 6 

medication-freeMDD outpatients. Plasma samples were collected at baseline and week 12 from a 7 

subset of MDD patients (N=26) who completed a course of CBT treatment as part of the 8 

Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) 9 

study. Targeted metabolomic profiling using the the AbsoluteIDQ® p180 Kit and LC-MS 10 

identified eight "co-expressed" metabolomic modules. Of these eight, three were significantly 11 

associated with change in depressive symptoms over the course of the 12-weeks. Metabolites 12 

found to be most strongly correlated with change in depressive symptoms were branched chain 13 

amino acids, acylcarnitines, methionine sulfoxide, and α-aminoadipic acid (negative correlations 14 

with symptom change) as well as several lipids, particularly the phosphatidlylcholines (positive 15 

correlation). These results implicate disturbed bioenergetics as an important state marker in the 16 

pathobiology of MDD. Exploratory analyses contrasting remitters to CBT versus those who 17 

failed the treatment further suggest these metabolites may serve as mediators of recovery during 18 

CBT treatment. Larger studies examining metabolomic change patterns in patients treated with 19 

pharmacotherapy or psychotherapy will be necessary to elucidate the biological underpinnings of 20 

MDD and the -specific biologies of treatment response.  21 
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1.    INTRODUCTION 22 

 23 

Major depressive disorder (MDD)  is  a clinical syndrome that has multiple etiologies, 24 

and  responds to a diverse range of treatments that affect various biological pathways. 25 

Nevertheless, it is highly likely that specific biological processes underpin the clinical 26 

presentation of the disorder. Identifying these state biological processes could provide a more 27 

precise gauge of the pathophysiological processes underpinning the clinical- symptomatic  28 

expression of MDD, and that also could reflect treatments’ biological effect beyond the 29 

information  gleaned from the simple assessment of signs and symptoms (Rush and Ibrahim 30 

2018)  31 

Biological, physiological, neuro-functional, and other measures that are most closely tied 32 

to and reflective of the clinical expression of MDD or to the symptomatic expression of other 33 

medical syndromes are often referred to “state-dependent” markers (Rush and Ibrahim, 2018). 34 

Central venous pressure (CVP), for example, is a state-dependent measure for congestive heart 35 

failure (CHF). The greater the CVP, the more severe the symptoms that define CHF such as 36 

pedal edema, pulmonary effusion,  orthopnea, and dyspnea. On the other hand, “trait-like” 37 

markers, are those measures that are persistently abnormal both during and between clinically 38 

symptomatic episodes (Rush and Ibrahim 2018). “Trait-like” markers often reflect the underlying 39 

pathobiology of the condition that either sets the stage for the initial clinical expression of the 40 

disorder or  that reflect the effect/consequence of the clinical episode itself even after the episode 41 

ends. The latter are sometimes said to be “scars” or consequences of the clinical episode. Left or 42 

right ventricular hypertrophy, for instance, can be consequences of repeated episodes of 43 

congestive heart failure (Senni and Redfield 1997). For MDD, hypercortisolemia is known to be 44 

highly state dependent in psychotic or melancholic depressions (Pariante 2017). On the other 45 

hand, some sleep EEG parameters appear to be more trait-like (i.e. persistent even between 46 

clinically apparent major depressive episodes) than state-dependent (only apparent during 47 

clinically apparent depressive episodes) (Thase et al. 1998; Kraemer et al. 1994). However, 48 

neither state nor trait markers for MDD have been found that are as yet of sufficient value to 49 

enter clinical practice.  50 

 51 

Metabolomics have the potential to define specific biochemical processes that underpin 52 

MDD, the effect of treatment on the biological processes that underpin MDD, and the effects of 53 

treatments on the biology of MDD.  To date, however, metabolomic profiling has largely been 54 

conducted with depressed patients who have been taking antidepressant medications that are 55 

known to affect metabolomics profiles (Abo et al. 2012; Zhu et al. 2013; Kaddurah-Daouk et al. 56 

2013; Kaddurah-Daouk et al. 2011; Rotroff et al. 2016) ; these medications directly  interfere  57 

with the identification of state dependent measures.  58 

 59 

Pharmacometabolomic studies from our group have previously reported perturbations in 60 

intermediates of TCA cycle, urea cycle, amino acids, and lipids in depressed patients exposed to 61 

sertraline (Zhu et al. 2013; Kaddurah-Daouk et al. 2013; Kaddurah-Daouk et al. 2011). Another 62 

study utilizing intravenous ketamine treatment in depressed patients reported changes in 63 

tryptophan metabolism, acylcarnitines, urea cycle intermediates, and lipid metabolism (Rotroff et 64 

al. 2016). In a cross-sectional study, the branched chain amino acids (BCAAs) Valine, Leucine, 65 

and Isoleucine were significantly lower in MDD patients compared to healthy controls and were 66 

negatively correlated to Hamilton Depression Rating Scale scores. In a rat model of depression, 67 
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biogenic amines like putrescine, spermine, and spermidine were significantly reduced in the 68 

hippocampus of stressed animals compared to non-stressed ones, but the biogenic amines were 69 

restored by the antidepressant effect of S-adenosyl-L-methionine  70 

(Genedani et al. 2001). Plasma lipid and acylcarnitine profiles, which have also been implicated 71 

in animal models of depression, suggest inflammatory conditions and incomplete mitochondrial 72 

β-oxidations as primary phenomena associated with the pathophysiology of MDD(Chen et al. 73 

2014). 74 

 75 

 This pilot study utilized a sample from the cognitive behavior therapy (CBT) arm of 76 

theEmory Predictors of Remission in Depression to Individual and Combined Treatments 77 

(PReDICT) study, a randomized controlled trial of previously untreated patients with MDD 78 

(Dunlop, Kelley, et al. 2017). This sample avoids the likely confounding effects of medications 79 

on endogenous metabolomic processes under study; i.e., the sample ensures that when patients 80 

improve symptomatically- (or not), there is no confounding effect of concurrent antidepressant 81 

medication. Therefore, any biological changes whether found to be state- independent or state 82 

dependent- would entirely reflect the depressive symptom severity while being unaffected by the 83 

pharmacological effects of medications.  84 

 85 

 Analyses were conducted to identify which changes in serum metabolites and pathways 86 

were most closely related to changes in depressive symptoms between baseline to week 12 in the 87 

acute treatment of MDD with CBT. Herein, we report observed metabolite alterations within a 88 

biomarker panel targeting 186 plasma metabolites from 5 distinct metabolite classes 89 

(specifically, amino acids, biogenic amines, acylcarnitines, glycerophospholipids, and 90 

sphingolipids) available in the Biocrates AbsoluteIDQ® p180 Kit 91 

(https://www.biocrates.com/products/research-products/absoluteidq-p180-kit). 92 

 93 

 94 

2.    METHOD 95 

 96 

2.1  Clinical: 97 

 98 

The PReDICT study was a randomized clinical trial that enrolled 344 adults ages 18–65 99 

years with a primary psychiatric diagnosis of major depressive disorder without psychotic 100 

features. The design and clinical results of the study have been published(Dunlop et al. 2012; 101 

Dunlop, Kelley, et al. 2017). The Structured Interview for DSM-IV (First et al. 1995) assessed 102 

MDD diagnosis, which was confirmed with a psychiatrist’s interview.  Patients meeting all 103 

eligibility criteria were randomized in a 1:1:1 manner to receive either CBT (delivered in up to 104 

16 one-hour individual sessions), escitalopram, or duloxetine for 12 weeks. One-hundred-fifteen 105 

patients were assigned to CBT, of whom 26 had serum samples available for metabolomic 106 

analyses at baseline and week 12; these 26 patients are the subjects of the current analysis.   107 

 108 

Key inclusion criteria for the trial included no lifetime history of having received treatment for 109 

depression (either ≥4 weeks of antidepressant medication at a minimally effective dose or ≥ 4 110 

sessions of an evidence-based psychotherapy), and fluency in either English or Spanish. At 111 

screening, patients had to score ≥18 on the HAM-D17 (Hamilton 1967) and at the baseline 112 

randomization visit had to score ≥ 15.  Key exclusion criteria included: a lifetime history of 113 
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bipolar disorder, psychotic disorder, or dementia; a current significant medical condition that 114 

could affect study participation or data interpretation; a diagnosis of obsessive-compulsive 115 

disorder, an eating disorder, substance dependence, or dissociative disorder in the 12 months 116 

before screening; or substance abuse within the 3 months prior to baseline. The only other 117 

psychotropic agents permitted during the trial were sedatives (eszopiclone, zolpidem, zaleplon, 118 

melatonin, or diphenhydramine) up to three times per week. The Emory Institutional Review 119 

Board and the Grady Hospital Research Oversight Committee approved the study protocol, and 120 

all patients provided written informed consent prior to beginning study procedures. 121 

 122 

The therapy was delivered in accordance with Beck’s protocol-based CBT(Beck et al. 123 

1979; Beck 1980) and therapists’ fidelity to the protocol was assessed by independent raters at 124 

the Beck Institute using the Cognitive Therapy Scale(Anon n.d.). Raters blinded to treatment 125 

assignment assessed depression severity using the HAM-D17 at baseline, weeks 1-6, 8, 10, and 126 

12. For the individual patient outcomes , the protocol defined remitters as patients who achieved 127 

HAM-D17 score ≤7 at both week 10 and 12(Dunlop et al. 2012). Consistent with the prior 128 

analyses of this dataset(Dunlop, Kelley, et al. 2017), outcomes for non-remitters were using 129 

percent change in HAM-D17 score from baseline to week 12, as follows: : Non-remitting 130 

responder, ≥50% reduction, but not meeting remitter criteria; Partial responder: 30-49% 131 

reduction; Treatment failure: <30% reduction.   132 

 133 

2.2    Laboratory: 134 

 135 

2.2.1 Metabolomic Profiling using Absolute IDQ p180 Kit 136 

 137 

Metabolites were measured with a targeted metabolomics approach using the 138 

AbsoluteIDQ® p180 Kit (BIOCRATES Life Science AG, Innsbruck, Austria), with a ultra-139 

performance liquid chromatography (UPLC)/MS/MS system (Acquity UPLC (Waters), TQ-S 140 

triple quadrupole MS/MS (Waters)). This procedure provides measurements of up to 186 141 

endogenous metabolites in quantitative mode (amino acids and biogenic amines) and semi-142 

quantitative mode (acylcarnitines, sphingomyelins, phosphatidylcholines and 143 

lysophosphatidylcholines across multiple classes). The AbsoluteIDQ® p180 kit has been fully 144 

validated according to European Medicine Agency Guidelines on bioanalytical method 145 

validation. Additionally, the kit plates include an automated technical validation to assure the 146 

validity of the run and provide verification of the actual performance of the applied quantitative 147 

procedure including instrumental analysis. The technical validation of each analyzed kit plate 148 

was performed using MetIDQ® software based on results obtained and defined acceptance 149 

criteria for blank, zero samples, calibration standards and curves, low/medium/high-level QC 150 

samples, and measured signal intensity of internal standards over the plate. De-identified samples 151 

were analyzed following the manufacturer’s protocol, with metabolomics labs blinded to the 152 

clinical data. 153 

 154 

2.2.2. Preprocssing of P180 profiles 155 

 156 

The raw metabolomic profiles included 182 metabolite measurements of serum samples. 157 

Each assay plate included a set of duplicates obtained by combining approximately 10 μl from 158 

the first 76 samples in the study (QC pool duplicates) to allow for appropriate inter-plate 159 
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abundance scaling based specifically on this cohort of samples (n=24 across all plates). 160 

Metabolites with >40% of measurements below the lower limit of detection (LOD) were 161 

excluded from the analysis (n=160 metabolites passed QC filters). To adjust for the batch effects, 162 

a correction factor for each metabolite in a specific plate was obtained by dividing the 163 

metabolite’s QC global average by QC average within the plate. Missing values were imputed 164 

using each metabolite ‘s LOD/2 value followed by log2 transformation to obtain a normal 165 

distribution of metabolite levels. The presence of multivariate outlier samples was checked by 166 

evaluating the squared Mahalanobis distance of samples. Samples were flagged as “outliers” 167 

when their Mahalanobis distances exceeded the critical value corresponding to a Bonferroni-168 

corrected threshold (0.05/n, n: number of samples) of the Chi-square distribution with m degrees 169 

of freedom (m=160: number of metabolites). 170 

 171 

2.2.3 Data analysis 172 

 173 

For statistical analysis we adopted a two-pronged approach. Initially, a multivariate “co-174 

expression network” analysis was employed with CBT treated patients to detect clusters (or 175 

modules) of metabolites demonstrating similar patterns of perturbations that correlated with 176 

changes in depressive symptom scores based on the HAM-D17. Univariate analyses were also 177 

performed to detect whether the metabolites within or outside the clusters were individually and 178 

significantly correlated to the depressive symptom outcome. The traditional univariate analysis 179 

method to metabolomic profiling focuses on the individual metabolites; thus, the interactions 180 

among metabolites are largely ignored, even though it is appropriate to assume that metabolites 181 

play their roles not in isolation but via interactions with each other. Consequently, metabolite 182 

“co-expression” analysis is a powerful, multivariate approach to identify groups of perturbed 183 

metabolites belonging to same class or pathways. This approach has the additional benefit of 184 

alleviating the multiple testing problem(DiLeo et al. 2011). The workflow of data analysis is 185 

presented in Figure 1. 186 

 187 

Univariate Analysis:  To define the association between changes in metabolite levels from 188 

baseline to week 12 of CBT treatment and the changes in depressive symptom of total HAM-D17 189 

scores over that time, linear mixed effects models were fitted to each metabolite change, 190 

adjusting for age and gender and with subjects as a random variable. All p-values were checked 191 

for false discovery rates by Benjamini-Hochberg method(Hochberg and Benjamini 1990). 192 

Correlation between metabolite changes and depressive symptoms changes were also assessed 193 

by Pearson’s correlation coefficients. 194 

Co-expression network analyses: Changes in modules of ‘co-expressed’ metabolites were 195 

identified using the R package WGCNA (weighted gene co-expression network 196 

analysis)(Langfelder and Horvath 2008). Signed and weighted Pearson’s correlation networks 197 

were constructed with the subject-wise changes of baseline to week 12 metabolite concentrations 198 

(in the logarithmic scale). First a weighted adjacency matrix was created based on pairwise 199 

Pearson’s correlation coefficients between the metabolites.  A scale-free topology criterion was 200 

used to choose the soft threshold of beta = 18 for the correlations as per the WGCNA protocol. 201 

The obtained adjacency matrix was used to calculate the topological overlap measure (TOM) for 202 

each pair of metabolite log2 fold changes comparing their adjacencies with all of the other 203 

metabolite log2 fold changes.  Densely interconnected groups (or modules) of metabolites were 204 

identified by hierarchical clustering using 1-TOM as a distance measure through the use of the 205 
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dynamic hybrid tree cut algorithm with a deep split of 2 and a minimum cluster size of 3. Each 206 

module is summarized by the module eigenvector, which is the first principal component of the 207 

metabolite changes across all the subjects. Similar clusters were subsequently merged if the 208 

correlation coefficient between the clusters’ eigenvectors exceeded 0.75. The association 209 

between the resultant modules and the changes in HAM-D17 scores was measured by the 210 

pairwise Pearson correlation coefficients and presented in a heatmap. In all analyses for this 211 

small scale pilot study an uncorrected p-value threshold of 0.10 was used as the significance 212 

cutoff. 213 

 214 

3.    RESULTS: 215 

 216 

3.1  Patient Characteristics  217 

 218 

Plasma metabolite data were available at baseline and week 12 from 26 patients. The 219 

mean number of therapy sessions attended was 14.0 ± 1.5.  Table 1 summarizes the 220 

characteristics of the study sample. Twelve (46.2%) of the sample achieved remission and 7 221 

(26.9%) were classified as treatment failures.  222 
 223 

3.2  Detection of metabolite “co-expression” modules 224 

 225 

To investigate the functional response of the MDD metabolome during receipt of CBT, 226 

we adopted a multivariate approach. Using WGCNA methodology we focused on identifying 227 

modules (or clusters) of metabolites that showed a similar pattern of change from baseline to 228 

week 12. Thus, each module represented metabolite changes (week12/baseline ratios) in the 229 

logarithmic scale. Eight such metabolite modules were identified in which the member 230 

metabolites showed statistically significant strong correlations (mean R2 ranged between 0.74 231 

and 0.94, all p<0.05 ) amongst each other in their perturbation patterns, and each module was 232 

assigned a unique color. Black, blue, brown, green-yellow, midnight-blue, purple, royal-blue and 233 

yellow were the metabolite modules representing 8, 15, 12, 96, 5, 6, 3 and 9 metabolites, 234 

respectively. The grey module represented 6 metabolites that could not be assigned to any 235 

module. The detected modules were represented by metabolites belonging primarily to the same 236 

metabolite class; this may indicate that these metabolites have a functional relationship to each 237 

other. Additionally, for each module we identified a ‘hub’ metabolite (also known as a ‘driver’ 238 

metabolite) that had the maximum number of connections in the module. The hub metabolites 239 

are important and they merit further investigation because they may influence the function of 240 

other metabolites, or even may be significant contributors to the trait of interest. The eight 241 

modules, their hub metabolites, and their major metabolite classes are presented in Table 2. A 242 

list of the network metrics, the intra-modular correlations between member metabolites, and the 243 

module membership for each metabolite is presented in Supplemental file 1. 244 
 245 

3.3  Metabolite modules that were associated with changes in depressive symptoms (HAM-246 

D17 scores) 247 

 248 

Next, we evaluated the association between the identified metabolite modules and 249 

changes in HAM-D17 scores from baseline to week 12. Three metabolite modules were found to 250 

be significantly associated ( R2 >0.3, at p<0.1) with changes in the symptom severity scores: a)  251 

the purple module containing the short chain acylcarnitines (C3, C4, and C0), α-aminoadipic 252 
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acid, and the two amino acids, Glutamate and Proline;  b) the yellow module containing the 253 

BCAAs, Isoleucine and Valine, the BCAA-derived C5-carnitine (Isovalerylcarnitine), the 254 

neurotransmitter-related amino acids Tryptophan, Tyrosine, Phenylalanine, Methionine, 255 

Methionine-sulphoxide, and the biogenic amine Sarcosine ; and c) the green-yellow module 256 

containing 96 lipid molecules including the phosphatidylcholines, sphingomyelins, and 257 

acylcarnitines. A heatmap showing the correlations between each of the metabolite modules and 258 

the changes in HAM-D17 scores is presented in Figure 2. The correlation coefficients were 259 

moderate, ranging between 0.31 and 0.36 for each of the three modules.   260 

We examined the correlation of each of the metabolite members of the purple, yellow and 261 

green-yellow modules to HAM-D17 scores. Figure 3A presents a composite plot of the 262 

correlations between the changes of each member-metabolite of the purple module to each other 263 

and also to HAM-D17 changes. Each of the metabolite changes was negatively associated with 264 

changes in HAM-D17, but they were positively correlated to each other. α-aminoadipic acid 265 

showed the strongest correlation to HAM-D17 changes (R2 = -0.52, p<7E-06). The BCAA-266 

derived C3- (propionyl) and C4- (butyryl) carnitines were strongly correlated to each other (R2 = 267 

0.93, p<1.3E-11) as well as to α-aminoadipic acid. C3-carnitine was the hub metabolite in this 268 

module. 269 

Figure 4A presents a similar composite figure for the yellow module. All members were 270 

negatively correlated to HAM-D17 changes, with the BCAA valine and the known oxidative 271 

stress biomarker methionine sulfoxide perturbations showing the strongest correlations with 272 

HAM-D17 changes (R2 < -0.40, p<0.05). All the yellow module metabolites showed strong 273 

positive correlations with each other (mean R2 = 0.75, range 0.44 – 0.93, all p< 0.02) in their 274 

perturbation patterns. Notable were the strong positive correlations between the branched chain 275 

amino acids and methionine, sarcosine, and the neurotransmitter related amino acids 276 

(phenylalanine, tryptophan and tyrosine) indicating that they may be functionally related. Valine 277 

was the hub metabolite for this module. 278 

The members of the 96 lipids-containing green-yellow module also showed strong 279 

correlations amongst each other and also to HAM-D17 changes. Unlike the amino acids and the 280 

short chain acylcarnitines from the purple and yellow modules, these lipid molecules’ changes 281 

were positively associated with HAM-D17 changes and also to each other (Supplemental figures 282 

1A and 1B).  283 

In univariate linear mixed model analysis, the log2 fold changes of the α-aminoadipic 284 

acid, the branched chain amino acids, isoleucine and valine, methionine-sulfoxide and several of 285 

the phosphatidylcholines, containing long chain fatty acids, from the green-yellow module, were 286 

found to be significantly associated (p<0.10) with the changes in HAM-D17 scores after adjusting 287 

for age and sex.  These findings highlight the potential involvements of mitochondrial energy 288 

metabolism and lipids in the response of depressed patients receiving CBT. Table 3 depicts the 289 

list of metabolites that were significant in univariate models and their associations with 290 

depressive symptom scores (HAM-D17). 291 

To maximize our ability to detect the effects of treatment outcomes, we plotted the mean 292 

trajectories of the metabolites among the CBT remitters (N = 12) and the treatment failures (N = 293 

7), leaving out the patients with intermediate outcomes, consistent with the approach used in 294 

other biomarker studies (Vadodaria et al. 2019; Dunlop, Rajendra, et al. 2017). There were 295 

interesting trends among the metabolites in the purple, yellow, and green-yellow modules. In the 296 

green-yellow module, consisting of lipids, ~75% of the phosphatidylcholines were higher at 297 

baseline in the remitters compared to the treatment failures (Supplemental Figure 2), with some 298 
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of them being statistically significant at p<0.10 (PC aa-  C30:0, C34:1 C36:2, C36:3, PC ae- 299 

C36:0, C38:2). In the purple (Figure 3B) and yellow (Figure 4B) modules, consisting mostly of 300 

amino acids including BCAAs and the short-chain acylcarnitines, the remitters mostly had lower 301 

baseline levels but showed an upward trend in their metabolite trajectories from baseline to week 302 

12 while the treatment failures all trended to decrease to lower levels post therapy.  The limited 303 

sample size, however, precluded detection of statistical significance to these differences in 304 

trajectories. 305 

 306 

 307 

    4.    DISCUSSION 308 

 309 

Using liquid-chromatography coupled to mass-spectrometry analyses, we examined the 310 

biochemical changes that occurred in the plasma of depressed outpatients completing a course of 311 

CBT.  Changes in several metabolite modules, containing primarily short-chain acylcarnitines 312 

and α-aminoadipic acid (purple module) as well as branched-chain and neurotransmitter-related 313 

amino acids (yellow module) and lipids (green-yellow module), were significantly associated 314 

with changes in depressive symptom severity over the 12-weeks of CBT treatment.  The 315 

metabolites within each module were highly correlated, and therefore it is likely that the 316 

similarity in their perturbations stemmed from their functional relatedness or being members of 317 

the same affected pathways.  318 

Changes in individuals’ metabotypes during periods of intense stress, and their return to 319 

the original homeostatic levels upon stress resolution (Ghini et al. 2015), support the possibility 320 

of identifying metabolomic state markers in MDD. Our analyses found specific amino acids, 321 

acylcarnitines, phosphatidylcholines, and sphingomyelins were associated with the depressed 322 

state and with changes after CBT treatment. Most notably, concentrations of the BCAAs 323 

isoleucine and valine, along with methionine sulfoxide and α-aminoadipic acid, showed strong 324 

inverse correlations with change in depression severity. Conversely, many lipid metabolites were 325 

directly correlated with changes in depression severity.  326 

Alterations in BCAAs have been linked to altered mitochondrial energy metabolism and 327 

have been previously implicated in MDD (Baranyi et al. 2016) and in response to treatment 328 

(Kaddurah-Daouk et al. 2013; Kaddurah-Daouk et al. 2011). We have shown that MDD patients 329 

have alterations in the phenylalanine, tyrosine, and tryptophan pathways, which are involved in 330 

the biosynthesis of the monoamine neurotransmitters ((Bhattacharyya et al. n.d.; Maes et al. 331 

1997; Lucca et al. 1992). Our metabolomic results overlap with the state metabolic markers 332 

identified in obesity, type 2 diabetes, and overall worsening metabolic health (Libert et al. 2018; 333 

Schooneman et al. 2013). Taken together, the patterns of change observed in our sample 334 

implicate bioenergetics as a focus of the pathobiology of the depressed state. 335 

The lipid perturbations, especially those of the phosphatidylcholines (consisting of either 336 

diacyl or alkyl-acyl moieties) showed positive correlations to the changes in HAM-D17 scores. 337 

Phosphatidylcholines are a large class of lipid molecules commonly known as the 338 

glycerophospholipids. They have important functions in membrane stability, permeability, and 339 

signaling. Phosphatidylcholines have been implicated in MDD in several studies. Recently 340 

Knowles et al(Knowles et al. 2017) suggested that a subclass of the phosphatidylcholines (the 341 

ether-phosphatidylcholines) might have a shared genetic etiology with MDD, and thus might be 342 

candidates for improved diagnosis and treatment of depression. Our previous work with 343 
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ketamine have implicated these lipids along with acylcarnitines in the mechanism of response to 344 

ketamine(Rotroff et al. 2016).  345 

These results, suggesting that the metabolites may serve as state markers of depression, 346 

received tentative support from our exploratory contrast of the differential trajectories of the 347 

changes in metabolites between the patients with the clearest treatment outcomes: remitters 348 

versus treatment failures. The BCAAs, their catabolic byproducts, the short chain acylcarnitines, 349 

the lysine metabolite α-aminoadipic acid, and the aromatic amino acids (phenylalanine, tyrosine 350 

and tryptophan) were present at comparatively higher levels at baseline in the treatment failures 351 

compared to the remitters. These findings suggest that metabolic wellbeing may be an important 352 

factor contributing to CBT response.  Interestingly, there was a general downward trend in the 353 

trajectories of these metabolites over the course of treatment among the CBT treatment failures, 354 

whereas in the  remitters they all exhibited stable or upward trajectories. It is possible  that the 355 

differences in metabolic trajectories observed in remitters versus treatment failures to CBT 356 

indicate a state of “metabolic resilience”(Ghini et al. 2015) in the remitters. The two outcome 357 

groups also differed in their metabolomic profiles at baseline, with approximately 75% of the 358 

phosphatidylcholines being elevated in the remitters compared to the treatment failures, 359 

suggesting that levels of these lipid components may serve as moderators of outcome to CBT. It 360 

is also possible that these baseline differences reflect true subtype differences among the MDD 361 

patients that might have a role in treatment selection. Larger scale, longitudinal studies will be 362 

necessary to test these hypotheses. 363 

The primary limitation to this study is the relatively small number of subjects analyzed. 364 

Consequently, testing for the statistical significance of the effects observed was compromised, 365 

particularly for the categorical comparisons of differences by treatment outcome group. The 366 

study also lacked a healthy control group that could have permitted quantification of how far the 367 

observed metabolite concentrations were outside the “normal” ranges. Despite these limtations, 368 

the study is important as an original exploration of the metabolomic changes in depression with a 369 

proven and well-delivered psychotherapy treatment, in the absence of the powerful metabolomic 370 

effects of psychopharmacotherapy.  371 

 372 

In summary,  this pilot evaluation assessed ~180 metabolites from the Biocrates 373 

Absolute p180 kit that clustered into 8  “co-expression modules” based on their propensities to 374 

change over  12-weeks of treatment with CBT. The results were largely confirmed by additional 375 

univariate analyses of the individual metabolites in the co-expression analyses. Specifically, 376 

BCAAs, methionine sulfoxide, α-aminoadipic acid, and multiple phosphatidylcholines were all 377 

altered in association with changes in the HAM-D17 scores at a level that equaled or exceeded a 378 

correlation coefficient of 0.4. Hence, these metabolites may represent markers for the depressed 379 

state, and perhaps may act as moderators or mediators for improvement from depression. The 380 

results of this study provide an empirically testable set of hypotheses for MDD, namely the 381 

utility of these metabolites as potential state markers, in order to understand the mechanistic 382 

underpinnings of MDD and their change associated with symptomatic improvement.  383 

 384 

 385 

 386 

 387 

 388 

 389 
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TABLES: 
 

 

Table 1: Patient Characteristics 

 

Measures Categories Mean (SD or 

Percentage) 

No of patients    26 

Age
a
   37.4 (10.8)  

Gender
b
     

  Female 16 (61.5%) 

  Male 10 (38.5%) 

Response to Therapy
b
     

  Remitters  12 (46.2%) 

  Responders (Non-remitting)  3 (11.5%) 

  Partial_Responders  4 (15.4%) 

  Treatment Failures  7 (26.9%) 

HAM-D
a
     

  Baseline 18.6 (3.1) 

  Week 12 8.7 (7.2) 

a
 Mean (SD) 
b
 Mean (Percentage) 
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Table 2: Characteristics of the co-expression modules of metabolites 

 

Module Number of 

member 

metabolites 

Major metabolite classes Hub metabolite 

Black 8 Amino acids Asn (Asparagine) 

Blue 15 Medium and long chain 

 acylcarnitines 

C18:1 (Octadecenoyl-L-

carnitine) 

Brown 12 Lysophosphatidylcholines lysoPC a C18:1 

(Lysophosphatidylcholine 

acyl C18:1) 

Green-yellow 96 Lipids (phosphatidylcholines 

and sphingomyelins) and 

acylcarnitines 

PC aa C42:4 

(Phosphatidylcholine diacyl 

C42:4) 

Midnight-blue 5 acylcarnitines C16:2 

(Hexadecadienoylcarnitine) 

Purple 6 Short-chain acylcarnitines, α-

aminoadipic acid 

C3 (Propionyl-L-carnitine) 

Royalblue 3 sphingomyelins SM C18:1(Sphingomyeline 

C18:1) 

Yellow 9 Branched-chain amino acids, 

neurotransmitter-related 

amino acids 

Val (Valine) 
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Table 3: Association of metabolite changes to HAM-D17 changes from baseline to Week 12 

upon exposure to CBT, by univariate models. 

Metabolite 
Pearson Correlation Linear mixed model Module-

membership CorrCoeff Pvalue CoeffEstimate Pvalue 

α-aminoadipic acid -0.5164 0.0069 -0.2 (-0.3, -0.1) 0.0093 purple 

Isoleucine -0.3372 0.0921 -0.1 (-0.2, 0.0) 0.0812 yellow 

Valine -0.4147 0.0351 -0.1 (-0.2, -0.0) 0.0367 yellow 

Methionine Sulfoxide -0.4009 0.0424 -0.1 (-0.2, 0.0) 0.0512 yellow 

Hexenoylcarnitine (C6:1) 0.3445 0.0848     green-yellow 
a
LPC a C24 0.4601 0.0180 0.1 (0.0, 0.3) 0.0236 green-yellow 

LPC a C26 0.4021 0.0417 0.1 (0.0, 0.2) 0.0510 green-yellow 

LPC a C28 0.3666 0.0655 0.1 (0.0, 0.3) 0.0730 green-yellow 
b
PC aa C34:1 0.4041 0.0406 0.2 (0.0, 0.3) 0.0584 green-yellow 

PC aa C34:3 0.3897 0.0491 0.1 (0.0, 0.2) 0.0724 green-yellow 

PC aa C36:1 0.3501 0.0796     green-yellow 

PC aa C36:2 0.4238 0.0309 0.2 (0.0, 0.3) 0.0431 green-yellow 

PC aa C36:3 0.4388 0.0249 0.2 (0.0, 0.3) 0.0369 green-yellow 

PC aa C38:3 0.3748 0.0592 0.1 (0.0, 0.2) 0.0829 green-yellow 

PC aa C38:5 0.3479 0.0816     green-yellow 

PC aa C40:2 0.4232 0.0312 0.2 (0.0, 0.3) 0.0419 green-yellow 

PC aa C40:3 0.3589 0.0718 0.1 (0.0, 0.3) 0.0976 green-yellow 

PC aa C40:4 0.3532 0.0767     green-yellow 

PC aa C40:5 0.3363 0.0930     green-yellow 

PC aa C42:6 0.3401 0.0891     green-yellow 
c
PC ae C30:0 0.4160 0.0346 0.2 (0.0, 0.3) 0.0495 green-yellow 

PC ae C34:1 0.3875 0.0505 0.1 (0.0, 0.3) 0.0702 green-yellow 

PC ae C38:2 0.5777 0.0020 0.3 (0.1, 0.4) 0.0033 green-yellow 

PC ae C38:3 0.3817 0.0543 0.1 (0.0, 0.3) 0.0749 green-yellow 

PC ae C40:3 0.3604 0.0705 0.2 (0.0, 0.3) 0.0952 green-yellow 

PC ae C42:1 0.4554 0.0194 0.1 (0.0, 0.3) 0.0330 green-yellow 

PC ae C42:2 0.3621 0.0691     green-yellow 

PC ae C42:4 0.3299 0.0998     green-yellow 

Octadecadienylcarnitine (C18:2) 0.3572 0.0732     blue 

 

Note: According to common lipid nomenclature,
 a

LPC stands for lysophosphatidylcholine 

with a single fatty acid chain, bPC aa stands for Phosphatidylcholine diacyl (two fatty acid chains) and 
c
PC ae stands for Phosphatidylcholine acyl-alkyl. The lipid species are described as CX:Y where X is the 

length of the carbon chain C, Y is the number of double bonds; “a” means the acyl chain is attached via 

an ester bond to the backbone while “e” means the attachment is via an ether bond. 
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FIGURE LEGENDS 
 
Figure 1:  Workflow for data analysis. 
 
Figure 2:  A heatmap showing correlations between the metabolite modules and the changes in 

symptom severity (HAM-D17 ) scores. Each module represents a number of metabolites 
that showed strongly correlated perturbation patterns, from baseline to week 12, in 
response to CBT. The metabolite members of the three modules, purple, yellow and green-
yellow, that showed significant association ( R2 >0.3, at p<0.1) with changes in HAM-D17 
scores are presented in adjacent boxes. 

 
Figure 3: Purple module characteristics. A)The pairwise correlations between the changes in the 

metabolite members to each other and also to HAM-D17 changes are shown in a composite 
plot. B) The trajectories of each member metabolite with its mean (±SEM) at baseline and 
week 12 are presented for remitters and treatment-failures. 

 
Figure 4: Yellow module characteristics. A)The pairwise correlations between the changes in 

the metabolite members to each other and also to HAM-D17 changes are shown in a 
composite plot. B) The trajectories of each member metabolite with its mean (±SEM) at 
baseline and week 12 are presented for remitters and treatment-failures. 
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Figure 1 
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Figure 3 
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Figure 4 
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