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Abstract 6 

We present Scaden, a deep neural network for cell deconvolution that uses gene 7 

expression information to infer the cellular composition of tissues. Scaden is trained 8 

on single cell RNA-seq data to engineer discriminative features that confer robustness 9 

to bias and noise, making complex data preprocessing and feature selection 10 

unnecessary. We demonstrate that Scaden outperforms existing deconvolution 11 

algorithms in both precision and robustness, across tissues and species. A single 12 

trained network reliably deconvolves bulk RNA-seq and microarray, human and 13 

mouse tissue expression data. Due to this stability and flexibility, we surmise that deep 14 

learning-based cell deconvolution will become a mainstay across data types and 15 

algorithmic approaches. Scaden’s comprehensive software package is easy to use on 16 

novel as well as diverse existing expression datasets available in public resources, 17 

deepening the molecular and cellular understanding of developmental and disease 18 

processes.  19 
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Cell Deconvolution, Deep Learning, Machine Learning, single cell RNA sequencing, 21 

RNA sequencing, Deep Sequencing, Source Separation.  22 
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Introduction 23 

The analysis of tissue-specific gene expression using Next Generation Sequencing 24 

(RNA-seq) is a centerpiece of the molecular characterization of biological and medical 25 

processes1. A well-known limitation of tissue-based RNA-seq is that it typically 26 

measures average gene expression across many molecularly diverse cell types that 27 

can have distinct cellular states2. A change in gene expression between two conditions 28 

can therefore be attributed to a change in the cellular composition of the tissue or a 29 

change in gene expression in a specific cell population, or a mixture of the two. To 30 

deconvolve systematic differences in cell type composition is especially important in 31 

systems with cellular proliferation (e.g. cancer) or cellular death (e.g. neuronal loss in 32 

Neurodegenerative Diseases)3. 33 

To account for this problem, several computational cell deconvolution methods have 34 

been proposed during the last years4,5. These algorithms attempt to calculate an 35 

approximation of the cell type composition of a given gene expression sample, such 36 

that systematic differences in cellular abundance between samples can be detected, 37 

interpreted, and possibly corrected for. Current algorithms utilize gene expression 38 

profiles (GEPs) of cell type-specifically expressed genes to estimate cellular fractions 39 

using linear regression4. While the best performing linear regression algorithms for 40 

deconvolution seem to be variations of Support Vector Regression (SVR)6–10, the 41 

selection of an optimal GEP is a field of active research10,11. Indeed, it has been 42 

recently shown that the design of the GEP is the most important factor in most 43 

deconvolution methods, as results from different algorithms strongly correlate given 44 

the same GEP11. 45 

In theory, an optimal GEP should contain a set of genes that are predominantly 46 

expressed within each cell population of a complex sample12. They should be stably 47 
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expressed across experimental conditions, for example across health and disease, 48 

and resilient to experimental noise and bias. The negative impact of bias on 49 

deconvolution performance can be partly improved by using large, heterogeneous 50 

GEP matrices11. It is therefore not surprising that recent advancement in cell 51 

deconvolution relied almost exclusively on sophisticated algorithms to normalize the 52 

data and engineer optimal GEPs10. 53 

While GEP-based approaches lay the foundational basis of modern cell deconvolution 54 

algorithms, we hypothesize that Deep Neural Networks (DNNs) could create optimal 55 

features for cell deconvolution, without relying on the complex generation of GEPs. 56 

DNNs such as multilayer perceptrons are universal function approximators that 57 

achieve state-of-the-art performance on classification and regression tasks. We 58 

theorize that by using gene expression information as network input, hidden layer 59 

nodes of the DNN would represent higher-order latent representations of cell types 60 

that are robust to input noise and technical bias. 61 

An obvious limitation of DNNs is the requirement for large training data to avoid 62 

overfitting of the machine learning model. While ground truth information on tissue 63 

RNA-seq cell composition is scarce, one can use single cell RNA-seq (scRNA-seq) 64 

data to obtain virtually unlimited in silico tissue datasets of predefined cell 65 

composition7–9,13–15. This is achieved by sub-sampling and subsequently merging cells 66 

from scRNA-seq datasets and is limited only by the availability of tissue-specific 67 

scRNA-seq data. It is to be noted that scRNA-seq data suffers from known biases, 68 

such as drop-out, that RNA-seq data is not subject to16. While this complicates the use 69 

of scRNA-seq data for GEP design8, we surmise that latent network nodes could 70 

represent features that are robust to such biases. 71 
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Based on these assumptions we developed a single-cell-assisted deconvolutional 72 

DNN (Scaden) that uses simulated bulk RNA-seq samples for training and predicts 73 

cell type proportions for input expression samples of cell mixtures. Scaden is trained 74 

on publicly available scRNA- and RNA-seq data, does not rely on specific GEP 75 

matrices, and automatically infers informative features. Finally, we show that Scaden 76 

deconvolves expression data into cell types with higher precision and robustness than 77 

existing methods that rely on GEP matrices, across tissues, species, and data types. 78 

Results 79 

Scaden Overview, Model Selection, and Training 80 

The basic architecture of Scaden is a DNN that takes gene counts of RNA-seq data 81 

as input and outputs predicted cell fractions (Fig. 1). To optimize the performance of 82 

the DNN, it is trained on data that contains both the gene expression and the real cell 83 

fraction information (Fig. 1A). The network then adjusts its weights to minimize the 84 

error between the predicted cell fractions and the real cell fractions (Fig. 1B).  85 

For the model selection and training we made use of the virtually unlimited amount of 86 

artificial bulk RNA-seq datasets with defined composition that can be generated in 87 

silico from published scRNA-seq and RNA-seq datasets (simulated tissues) (Fig. 1, 88 

Tables S1 & S2). The only constraint being that the scRNA-seq and RNA-seq data 89 

must come from the same tissue as the bulk data subject to deconvolution. 90 

To find the optimal DNN architecture for cell deconvolution, we performed leave-one-91 

dataset-out cross validation on simulated peripheral blood mononuclear cell (PBMC) 92 

tissue, training on mixtures of three scRNA-seq datasets and evaluating the 93 

performance on simulated tissue from a fourth scRNA-seq dataset (Table S1 & S3). 94 
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The final Scaden model is an ensemble of the three best performing models and the 95 

final cell type composition estimates are the averaged predictions of all three 96 

ensemble models (Fig. S1, Table S4).  97 

 98 

 99 
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Figure 1 Overview of training data generation and cell type deconvolution with Scaden. A: 100 

Artificial bulk samples are generated by subsampling random cells from a scRNA-seq datasets 101 

and merging their expression profiles. B: Model training and parameter optimization on 102 

simulated tissue RNA-seq data by comparing cell fraction predictions to ground-truth cell 103 

composition. C: Cell deconvolution of real tissue RNA-seq data using Scaden. 104 

 105 

To get an initial estimate of Scaden’s deconvolution fidelity we measured the root 106 

mean square error (RMSE), Lin’s concordance correlation coefficient (CCC)17, 107 

Pearson’s correlation coefficient (r), and the slope and intercept of the regression fitted 108 

for actual and predicted cell fractions. To this end, 32,000 human PBMC, 14,000 109 

human pancreas, 6,000 human ascites, and 30,000 mouse brain simulated tissue 110 

datasets were generated for network training and evaluation (Table S2). We then 111 

compared Scaden to four state-of-the-art GEP-based cell deconvolution algorithms, 112 

CIBERSORT (CS)6, CIBERSORTx (CSx)7, MuSiC8, and Cell Population Mapping 113 

(CPM)9. While CS relies on hand-curated GEP matrices, CSx, MuSiC, and CPM can 114 

generate GEPs using scRNA-seq data as input. 115 

We first evaluated the deconvolution performance on simulated PBMC data, since 116 

curated GEP matrices and RNA-seq datasets with associated ground truth cell type 117 

compositions are available for human PBMCs, making this tissue uniquely suited 118 

toward deconvolution performance evaluation. Scaden was trained on simulated data 119 

from all datasets but a held-out dataset while CSx, MuSiC and CPM used a GEP 120 

generated from a scRNA-seq dataset excluding a held-out dataset (e.g. data6k, 121 

data8k, donorA). Subsequently the algorithms were tested on 500 simulated PBMC 122 

samples from a held-out scRNA-seq dataset (e.g. donorC) (Fig. 2A & B, Table S5). 123 

For CS we used the PBMC-optimized LM22 GEP matrix6 and tested performance on 124 

the 500 simulated PBMC samples from a held-out scRNA-seq dataset (e.g. donorC).  125 
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 126 

Figure 2 Deconvolution performance on simulated tissue data A: Ground truth values (x-axis) 127 

plotted against cell type fraction estimates (y-axis) for predictions made on simulated data 128 
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from four PBMC scRNA-seq datasets. Darker color in a hexbin corresponds to more data 129 

points falling into this bin. Numbers inside the plotting area signify CCC values, the overall 130 

CCC is shown in parenthesis below the algorithm name. B: Boxplots of r and RMSE values 131 

for simulated PBMC data. C: Per-cell-type scatterplots of ground truth (x-axis) and predicted 132 

values (y-axis) for Scaden, CSx, and MuSiC on artificial pancreas data18. Numbers inside the 133 

plotting area signify CCC values. 134 

 135 

For three of four test datasets (data6k, donorA, donorC), Scaden obtained the highest 136 

CCC and lowest RMSE, followed by CSx, MuSiC, CS, and CPM (Fig. 2A, Table S5). 137 

For one test dataset, CS obtained the highest CCC and lowest RMSE, followed by 138 

CSx, MuSiC, Scaden and CPM. Overall,  Scaden obtains the highest CCC and lowest 139 

RMSE (0.83, 0.09, respectively), followed by CSx (0.81, 0.10), MuSiC (0.73, 0.13), CS 140 

(0.72, 0.13), and CPM (0, 0.19) (Fig. 2A). As expected, all algorithms that use scRNA-141 

seq data as reference perform good in this scenario with the notable exception of CPM, 142 

for which we could not generate reasonable predictions. We believe that CPM’s 143 

modest performance might be due to the cell state mapping required by CPM. We 144 

created this mapping using UMAP, which might not be optimal for CPM. On average, 145 

Scaden also obtained the highest correlation and the best intercept and slope values 146 

on simulated PBMC data (Table S5).  147 

A specific feature of the MuSiC algorithm is that it preferentially selects genes with low 148 

inter-subject and intra-cell cluster variability for its GEP, which increases 149 

deconvolution robustness when high expression heterogeneity is observed between 150 

human subjects, for example8. To understand if Scaden can utilize multi-subject 151 

information to increase its deconvolution performance, we trained Scaden, CSx, and 152 

MuSiC on scRNA-seq pancreas data from several subjects19 and assessed the 153 

performance on a separate simulated pancreas RNA-seq dataset18 (Fig. 2C, Table 154 
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S6). To allow for direct comparison, we chose the same pancreas training and test 155 

datasets that were used in the original MuSiC publication (Table S1). To enable 156 

Scaden to leverage the heterogeneity of multi-subject data, training data was 157 

generated separately for every subject in the dataset (see Methods). CSx cannot profit 158 

from multi-subject data, but performed well on the artificial PBMC datasets and was 159 

therefore included in the comparison. The best performance is achieved by Scaden 160 

(CCC = 0.98), closely followed by MuSiC (CCC = 0.93), while CSx does not perform 161 

as well (CCC = 0.75) (Fig. 2C, Table S6). This provides strong evidence that Scaden, 162 

by separating training data generation for each subject, can learn inter-subject 163 

heterogeneity and outperform specialized multi-subject algorithms such as MuSiC on 164 

the cell-type deconvolution task. 165 

Robust deconvolution of bulk expression data   166 

The true use case of cell deconvolution algorithms is the cell fraction estimation of 167 

tissue RNA-seq data. We therefore assessed the performance of Scaden, CS, CSx, 168 

MuSiC, and CPM to deconvolve two publicly available human PBMC bulk RNA-seq 169 

datasets, for which ground-truth cell composition information was measured using flow 170 

cytometry (Fig. 3A, Tables S7 & S8). We will refer to these datasets that consists of 171 

12 samples each as PBMC1 20 and PBMC2 10. Deconvolution for all methods was 172 

performed as described in the previous section, with the difference that data from all 173 

four PBMC scRNA-seq datasets was now deployed for Scaden training.   174 
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 175 

Figure 3 Deconvolution of real tissue RNA-seq data A: Per-cell-type scatterplots of ground 176 

truth (x-axis) and predicted values (y-axis) for Scaden, CS, CSx, MuSiC, and CPM on real 177 
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PBMC1 and PBMC2 cell fractions. Numbers inside the plotting area signify CCC values. For 178 

Scaden, the CCC using only scRNA-seq training data (in parenthesis) and the CCC using 179 

mixed scRNA-seq and RNA-seq training data is shown. B: Boxplots of r (first row) and RMSE 180 

(second row) values for real PBMC1 (first column) and PBMC2 (second column) data. C: Per-181 

cell-type scatterplots of ground truth (x-axis) and predicted values (y-axis) for Scaden, CSx, 182 

MuSiC, and CPM on real ascite cell fractions. Numbers inside the plotting area signify CCC 183 

values. 184 

 185 

On the PBMC1 dataset, Scaden obtained the highest CCC and lowest RMSE (0.56, 186 

0.13), while CSx (0.55, 0.16) and CS (0.43, 0.15) performed well yet significantly worse 187 

than Scaden (Fig. 3A, Tables S8 & S9). CPM (0, 0.18) and MuSiC (-0.19, 0.32) both 188 

failed to deconvolve the cell fractions of the PBMC1 data. Scaden also obtained the 189 

best CCC and RMSE (0.68, 0.08) on the PBMC2 dataset, while CS (0.58, 0.10) and 190 

CSx (0.42, 0.13) obtained good deconvolution results. Similar to the PBMC1 data 191 

deconvolution results, CPM (-0.16, 0.11) as well as MuSiC (-0.13, 0.30) did not 192 

perform well on the PBMC2 deconvolution task. In addition to CCC and RMSE metrics, 193 

Scaden achieves the best correlation, intercept and slope on both PBMC datasets 194 

(Tables S8 & S9). 195 

An additional algorithmic feature of Scaden is that it seamlessly integrates increasing 196 

amounts of training data, which can be of different types, such as a combination of 197 

simulated tissue and real tissue data with cell fraction information. In theory, even 198 

limited real tissue training data could make Scaden robust to data type bias and 199 

consequently improve Scaden’s deconvolution performance on real tissue data. We 200 

therefore trained Scaden on a mix of simulated PBMC (500 samples) and real PBMC2 201 

(12 samples) data and evaluated its performance on real PBMC1 data (Fig. 3A, S2, 202 

Table S9). While the training contained only ~2% real data, Scaden’s CCC increased 203 
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from 0.56 to 0.72 and the RMSE decreased from 0.13 to 0.10. We observed similar 204 

performance increases when Scaden was trained on simulated PBMC and real 205 

PBMC1 data and evaluated on real PBMC2 data (Fig. 3A, S2, Table S9). 206 

We next evaluated Scaden’s performance real ascites RNA-seq data, for which 207 

scRNA-seq and FACS cell proportion data is available21 (Table S7). It is noteworthy 208 

that RNA-seq, scRNA-seq, and FACS data was generated for the same samples, 209 

which potentially entails reduced experimental and technical bias and consequently 210 

higher deconvolution fidelity for the ascites data as compared to the PBMC data. We 211 

did not evaluate CS’s performance on the ascites data as there was no optimized 212 

ascites GEP available. For Scaden, CSx, and MuSiC we used scRNA-seq data to 213 

generate simulated tissue ascites data for training. Scaden, CSx, CPM, and MuSiC all 214 

accurately predict the cell type compositions for the three real ascites samples, while 215 

CPM does not perform well (Fig. 3C, Table S10). The highest CCC and lowest RMSE 216 

were achieved by Scaden (0.95, 0.06), followed by CSx (0.94, 0.07), MuSiC (0.88, 217 

0.08), and CPM (0, 0.18). This further validates that Scaden reliably deconvolves 218 

tissue RNA-seq data into the constituent cell fractions and that very accurate 219 

deconvolution results can be obtained if reference and target datasets are from the 220 

same experiment. Again, we surmise that CPM’s drop in tissue RNA-seq 221 

deconvolution performance might be due to the required cell state space embedding, 222 

which makes deconvolution results not only depend on a good GEP matrix, but also 223 

on a good embedding. It might be that CPM’s deconvolution suffers from the UMAP 224 

embedding used throughout this manuscript.  225 

We next wanted to assess if Scaden’s deconvolution performance is robust across 226 

species. We therefore tested whether a Scaden model trained on mouse brain scRNA-227 

seq data could generate reasonable cell composition estimations for real human brain 228 
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RNA-seq data (Table S7). To this end, Scaden was trained on artificial data generated 229 

from five mouse brain scRNA-seq datasets and predicted the cell fractions on human 230 

post-mortem RNA-seq brain samples (390 prefrontal cortex samples) from the 231 

ROSMAP study22. Ground-truth cell fractions were not available for this data, which is 232 

why we used Braak stages23 that correspond to Alzheimer’s disease severity and 233 

correlate with the degree of neuronal loss. Overall, Scaden’s cell fraction predictions 234 

capture the increased neuronal loss with increasing Braak stage (Fig. S3). 235 

Interestingly, the largest drop in neural percentage is observed at stage 5, when the 236 

neurodegeneration typically reaches the prefrontal cortex of the brain. By learning 237 

robust features, Scaden reliably deconvolves RNA-seq data in a cross-species 238 

comparison. 239 

Given the robustness with which Scaden predicts tissue RNA-seq cell fractions using 240 

scRNA-seq training data, even across species, we next wanted to investigate if an 241 

scRNA-seq-trained Scaden model can also deconvolve other data types. To this end, 242 

we measured the deconvolution performance on a bulk PBMC microarray dataset (20 243 

samples)6 of a Scaden model trained on scRNA-seq and RNA-seq PBMC data (see 244 

above). We compared Scaden to CS using the microarray-derived LM22 matrix. CS 245 

achieved a slightly higher CCC and slightly lower total RMSE (0.72, 0.11) than Scaden 246 

(0.71, 0.13), while Scaden obtained the highest average CCC (0.50) compared to CS 247 

(0.39) (Fig. S4, Table S11). Notably in this scenario, Scaden was trained entirely on 248 

simulated data and RNA-seq data, while CS’s LM22 GEP was optimized on PBMC 249 

microarray data. 250 

Overall, we provide strong evidence that Scaden robustly deconvolves tissue data 251 

across tissues, species, and even data types. 252 
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Discussion 253 

Scaden is the first deep learning-based cell deconvolution algorithm. In many 254 

instances, it compares favorably in both prediction robustness and accuracy to existing 255 

deconvolution algorithms that rely on GEP design and linear regression. We believe 256 

that Scaden’s performance relies to a large degree on the inherent feature engineering 257 

of the DNN. The network does not only select features (genes) for regression, it also 258 

creates novel features that are optimal for the regression task in the nodes of the 259 

hidden layers. These hidden features are non-linear combinations of the input features 260 

(gene expression), which makes it notoriously difficult to explain how a DNN works24. 261 

It is important to highlight that this feature creation is fundamentally different from all 262 

other existing cell deconvolution algorithms, which rely on heuristics that select a 263 

defined subset of genes as features for linear regression. 264 

Another advantage of this inherent feature engineering is that Scaden can be trained 265 

to be robust to input noise and bias (e.g. batch effects). Noise and bias is all prevalent 266 

in experimental data, due to different sample quality, sample processing, 267 

experimenters, and instrumentation, for example. If the network is trained on different 268 

datasets of the same tissue, however, it learns to create hidden features that are 269 

robust to noise and bias, such as batch effects. This robustness is pivotal in real world 270 

cell deconvolution use cases, where the bulk RNA data for deconvolution and the 271 

training data (and therefore the network and GEP) contain different noise and biases. 272 

While especially recent cell deconvolution algorithms include batch correction 273 

heuristics prior to GEP construction, Scaden optimizes its hidden features 274 

automatically when trained on data from various batches. 275 

The robustness to noise and bias, which might be due to hidden feature generation, is 276 

especially evident in Scaden’s ability to deconvolve across data types. A network 277 
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trained on in silico bulk RNA-seq data can seamlessly deconvolve microarray data of 278 

the same tissue. This is quite noteworthy, as microarray data is known to have a 279 

reduced dynamic range and several hybridization-based biases compared to RNA-280 

seq data. In other words, Scaden can deconvolve bulk data of types it has never been 281 

trained on, even in the face of strong data type bias. This raises the possibility that 282 

Scaden trained on scRNA-seq data might reliably deconvolve other bulk omics data 283 

as well, such as proteomic and metabolomic data. This assumption is strengthened 284 

by the fact that Scaden, trained on scRNA-seq data, attains state-of-the-art 285 

performance on the deconvolution of bulk RNA-seq data, two data types with very 286 

distinct biases16. 287 

As highlighted in the introduction, a drawback for many DNNs is the large amount of 288 

training data required to obtain robust performance. Here, we used scRNA-seq data 289 

to create virtually unlimited amounts of in silico bulk RNA-seq data of predefined type 290 

(target tissue) with known composition, across datasets. This immediately highlights 291 

Scaden’s biggest limitation, the dependency on scRNA-seq data of the target tissue. 292 

In this study we have shown that Scaden, trained solely on simulated data from 293 

scRNA-seq datasets, can outperform GEP-based deconvolution algorithms. We did 294 

observe, however, that the addition of labeled RNA-seq samples to the training data 295 

did significantly improve deconvolution performance in the case of PBMC data. We 296 

therefore believe that efforts to increase the similarity between simulated training data 297 

and the target bulk RNA-seq data could increase Scaden’s performance further. 298 

Mixtures of in silico bulk RNA-seq data and publically available RNA-seq data, of 299 

purified cell types for example, could further increase the deconvolution performance 300 

of Scaden. Furthermore, domain adaptation methods can be used to improve 301 

performance of models that are trained on data (here, scRNA-seq data) that is similar 302 
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to the target data (here, RNA-seq data)25. In future versions, Scaden’s simple 303 

multilayer perceptron architecture could leverage domain adaptation to further 304 

stabilize and improve its cell deconvolution performance. 305 

Recent cell deconvolution algorithms have used cell fraction estimates to infer cell 306 

type-specific gene expression from bulk RNA-seq data. It is straightforward to use 307 

Scaden’s cell fraction estimates to infer per group3 and per sample7 cell type-specific 308 

gene expression using simple regression or non-negative matrix factorization, 309 

respectively. We would like to add a note of caution, however, as the error of cell 310 

fraction estimates, which can be quite significant, is propagated into the gene 311 

expression calculations and will affect any downstream statistical analysis. 312 

In summary, the deconvolution performance, robustness to noise and bias, the 313 

flexibility to learn from large numbers of in silico datasets, across data types (scRNA-314 

seq and RNA-seq mixtures), and potentially even tissues makes us believe that DNN-315 

based architectures will become an algorithmic mainstay of cell type deconvolution.  316 

  317 
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Methods 318 

Datasets and pre-processing 319 

scRNA-seq datasets  320 

The following human PBMC scRNA-seq datasets were downloaded from the 10X 321 

Genomics data download page: 6k PBMCs from a Healthy Donor, 8k PBMCs from a 322 

Healthy Donor, Frozen PBMCs (Donor A), Frozen PBMCs (Donor C){Zheng et al, 323 

2017}. Throughout this paper, these datasets are referred to with the handles data6k, 324 

data8k, donorA and donorC, respectively. These four datasets were chosen because 325 

of clearly identifiable cell types for the majority of cells. The Ascites scRNA-seq dataset 326 

was downloaded from https://figshare.com as provided by Schelker21. Pancreas and 327 

mouse brain datasets were downloaded from the scRNA-seq dataset collection of the 328 

Hemberg lab (https://hemberg-lab.github.io/scRNA.seq.datasets/). A table listing all 329 

datasets including references to the original publications can be found in Table S1. 330 

scRNA-seq preprocessing and analysis  331 

All datasets were processed using the Python package Scanpy (v. 1.2.2)26 following 332 

the Scanpy’s reimplementation of the popular Seurat’s clustering workflow. First, the 333 

corresponding cell-gene matrices were filtered for cells with less than 500 detected 334 

genes, and genes expressed in less than 5 cells. The resulting count matrix for each 335 

dataset was filtered for outliers with high or low numbers of counts. Gene expression 336 

was normalized to library size using the Scanpy function ‘normalize_per_cell’. The 337 

normalized matrix of all filtered cells and genes was saved for the subsequent data 338 

generation step. 339 
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The following processing and analysis steps had the sole purpose of assigning cell 340 

type labels to every cell. All cells were clustered using the louvain clustering 341 

implementation of the Scanpy package. The louvain clustering resolution was chosen 342 

for each dataset, using the lowest possible resolution value (low resolution values lead 343 

to less clusters) for which the calculated clusters separated the cell types 344 

appropriately. The top 1000 highly variable genes were used for clustering, which were 345 

calculated using Scanpy’s ‘filter_genes_dispersion’ function with parameters 346 

min_mean=0.0125, max_mean=3 and min_disp=0.5. Principal Component Analysis 347 

(PCA) was used for dimensionality reduction.  348 

To identify cell types, marker genes were investigated for all cell types in question. For 349 

PBMC datasets, useful marker genes were adopted from public resources such as the 350 

Seurat tutorial for 2700 PBMCs27. Briefly, IL7R was taken as marker for CD4 T-cells, 351 

LYZ for Monocytes, MS4A1 for B-cells, GNLY for Natural Killer cells, FCER1A for 352 

Dendritic cells and CD8A and CCL5 as markers for CD8 T-cells. For all other scRNA-353 

seq datasets, marker genes and expected cell types were inferred from the original 354 

publication of the dataset. For instance, to annotate cell types of the mouse brain 355 

dataset from Zeisel et al.28, we used the same marker genes as Zeisel and colleagues. 356 

We did not use the same cell type labels from the original publications because a main 357 

objective was to assure that cell type labeling is consistent between all datasets of a 358 

certain tissue. 359 

Cell type annotation was performed manually across all the clusters for each dataset, 360 

such that all cells belonging to the same cluster were labeled with the same cell type. 361 

The cell type identity of each cluster was chosen by crossing the cluster’s highly 362 

differentially expressed genes with the curated cell type’s marker genes. Clusters that 363 
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could not be clearly identified with a cell type were grouped into the ‘Unknown’ 364 

category.  365 

Tissue Datasets for Benchmarking  366 

To assess the deconvolution performance on real tissue expression data, we used 367 

datasets for which the corresponding cell fractions were measured and published. The 368 

first dataset is the PBMC1 dataset which was obtained from Zimmermann et al.20. The 369 

second dataset, PBMC2, was downloaded from GEO with accession code 370 

GSE107011 10. This dataset contains both RNA-seq profiles of immune cells (S4 371 

cohort) and from bulk individuals (S13 cohort). As we were interested in the bulk 372 

profiles, we only used 12 samples from the S13 cohort from this data. Flow cytometry 373 

fractions were collected from the Monaco et al. publication10. 374 

In addition to the above mentioned two PBMC datasets, we used Ascites RNA-seq 375 

data. This dataset was kindly provided by the authors and cell type fractions for this 376 

dataset were taken from the supplementary materials of the publication21.  377 

For the evaluation on pancreas data, artificial bulk RNA-seq samples created from the 378 

scRNA-seq dataset of Xin et al.18 were used. This dataset was downloaded from the 379 

resources of the MuSiC publication8. The artificial bulk RNA-seq samples used for 380 

evaluation were then created using the ‘bulk_construct’ function of the MuSiC tool. 381 

To assess how Scaden deals with unknown cell types in a bulk mixture, we used the 382 

whole blood dataset from Newman et al.7, which consists of 12 samples (GSE127813). 383 

Cell type fractions were downloaded from the CSx website 384 

(https://cibersortx.stanford.edu/download.php). 385 

The microarray dataset GSE65133 was downloaded from GEO, and cell type fractions 386 

taken from the original CS publication6. 387 
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Finally, we wanted to get insights into neurodegenerative cell fraction changes in the 388 

brain. While it is known that neurodegenerative diseases like Alzheimer’s Disease are 389 

accompanied by a gradual loss of brain neurons, stage-specific cell type shifts are still 390 

hard to come by. Here we use the ROSMAP (Religious Orders Study and Memory and 391 

Aging Project Study) cortical RNA-seq dataset along with the corresponding clinical 392 

metadata, to infer cell type composition over six clinically relevant stages of 393 

neurodegeneration22.  394 

RNA-seq preprocessing and analysis  395 

For the RNA-seq datasets analyzed in this study, we did not apply any additional 396 

processing steps, but used the obtained count or expression tables directly as 397 

downloaded for all dataset except the ROSMAP dataset. For the latter, we generated 398 

count tables from raw FastQ-files using Salmon29 and the GRCh38 reference genome.  399 

FastQ-files from the ROSMAP study were downloaded from Synapse 400 

(www.synapse.org). 401 

Simulation of bulk RNA-seq samples from scRNA-seq data 402 

Scadan’s deep neural network requires large amounts of training  RNA-seq samples 403 

with known cell fractions. This explains why the generation of artificial bulk RNA-seq 404 

data is one of the key elements of the Scaden workflow. 405 

In order to generate the training data, preprocessed scRNA-seq datasets were used 406 

(see section ‘Data Collection and Processing’), comprising the gene expression matrix 407 

and the cell type labels. Artificial RNA-seq samples were simulated by sub-sampling 408 

cells from individual scRNA-seq datasets - cells from different datasets were not 409 

merged into samples to preserve within-subject relationships. Datasets generated 410 

from multiple subjects were split according to subject and each sub-sampling was 411 
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constrained to cells from one subject in order to capture the cross-subject 412 

heterogeneity and keep subject-specific gene dependencies.  413 

The exact sub-sampling procedure is described in the following. First, for every 414 

simulated sample, random fractions were created for all different cell types within each 415 

scRNA-seq dataset using the random module of the Python package NumPy. Briefly, 416 

a random number was chosen from a uniform distribution between 0 and 1 using the 417 

NumPy function ‘random.rand()’ for each cell type, and then this number was divided 418 

by the sum of all random numbers created to ensure the constraint of all fractions 419 

adding up to 1: 420 

𝑓𝑐 =
𝑟𝑐

∑ 𝑟𝑐𝐶𝑎𝑙𝑙

 421 

where 𝑟𝑐is the random number created for cell type 𝑐, and 𝐶𝑎𝑙𝑙 is the set of all cell 422 

types. Here, 𝑓𝑐 is the calculated random fraction for cell type 𝑐. Then, each fraction 423 

was multiplied with the total number of cells selected for each sample, yielding the 424 

number of cells to choose for a specific cell type: 425 

 426 

𝑁𝑐 = 𝑓𝑐 ∗ 𝑁𝑡𝑜𝑡𝑎𝑙 427 

 428 

where 𝑁𝑐 is the number of cells to select for the cell type 𝑐, and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total 429 

number of cells contributing to one simulated RNA-seq sample (400, in this study). 430 

Next,  𝑁𝑐 cells were randomly sampled from the scRNA-seq gene expression matrix 431 

for each cell type 𝑐. Afterwards, the randomly selected single-cell expression profiles 432 

for every cell type are then aggregated by summing their expression values, to yield 433 

the artificial bulk expression profile for this sample. 434 

Using the above described approach, cell compositions that are strongly biased 435 

toward a certain cell type or are missing specific cell types are rare among the 436 

generated training samples. To account for this and to simulate cell compositions with 437 
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a heavy bias to and the absence of certain cell types, a variation of the sub-sampling 438 

procedure was used to generate samples with sparse compositions, which we refer to 439 

as sparse samples. Before generating the random fractions for all cell types, a random 440 

number of cell types was selected to be absent from the sample, with the requirement 441 

of at least one cell type constituting the sample. After these leave-out cell types were 442 

chosen, random fractions were created and samples generated as described above. 443 

Using this procedure, we generated 32,000 samples for the human PBMC training 444 

dataset, 14,000 samples for the human pancreas training dataset and 30,000 samples 445 

for the mouse brain training dataset (Table S2). 446 

Artificial bulk RNA-seq datasets were stored in ‘h5ad’ format using the Anndata 447 

package26, which allows to store the samples together with their corresponding cell 448 

type ratios, while also keeping information about the scRNA-seq dataset of origin for 449 

each sample. This allowed to access samples from specific datasets, which is useful 450 

for cross validation. 451 

Scaden Overview 452 

The following section contains an overview of the input data preprocessing, the 453 

Scaden model, model selection, and how Scaden predictions are generated. 454 

Input Data Preprocessing  455 

The data preprocessing step is aimed to make the input data more suitable for 456 

machine learning algorithms. To achieve this, an optimal preprocessing procedure 457 

should transform any input data from the simulated samples or from the bulk RNA-seq 458 

to the same feature scale. Before any scaling procedure can be applied, it must be 459 

ensured that both the training data and the bulk RNA-seq data subject to prediction 460 

share the same features. Therefore, before scaling, both datasets are limited to 461 
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contain features (genes) that are available in both datasets.. The two-step processing 462 

procedure used for Scaden is described in the following: 463 

First, to account for heteroscedasticity, a feature inherent to RNA-seq data, the data 464 

was transformed into logarithmic space by adding a pseudocount of 1 and then taking 465 

the Logarithm (base 2). Additional to stabilizing the variance, this transformation yields 466 

data that is approximately Gaussian.  467 

Second, every sample was scaled to the range [0,1] using the MinMaxScaler() class 468 

from the Sklearn preprocessing module {ref}. Per sample scaling, unlike per feature 469 

scaling that is more common in machine learning, assures that inter-gene relative 470 

expression patterns in every sample are preserved. This is important, as our 471 

hypothesis was that a neural network could learn the deconvolution from these inter-472 

gene expression patterns.  473 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑,𝑖 =  (𝑥𝑖  −  𝑚𝑖𝑛(𝑿𝑖)) / (𝑚𝑎𝑥(𝑋𝑖)  −  𝑚𝑖𝑛(𝑋𝑖)) 474 

where 𝑥𝑠𝑐𝑎𝑙𝑒𝑑,𝑖  is the log2 expression value of gene x in sample i, 𝑋𝑖 is the vector of 475 

log2 expression values for all genes of sample i, 𝑚𝑖𝑛(𝑿𝑖) is the minimum gene 476 

expression of vector 𝑋𝑖, and 𝑚𝑎𝑥(𝑋𝑖) the maximum gene expression of vector 𝑋𝑖. 477 

Note that all training datasets are stored as expression values and are only processed 478 

as described above. In the deployment use-case the simulated training data should 479 

contain the same features as in the bulk RNA-seq sample that shall be deconvolved. 480 

Model Selection  481 

The goal of model selection was to find an architecture and hyperparameters that 482 

robustly deconvolve simulated tissue RNA-seq data and, more importantly, real bulk 483 

RNA-seq data. Due to the very limited availability of bulk RNA-seq datasets with known 484 

cell fractions, model selection was mainly optimized on the simulated PBMC datasets. 485 
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To capture inter-experimental variation, we used leave-one-dataset-out cross 486 

validation for model optimization: a model was trained on simulated data from all but 487 

one dataset, and performance was tested on simulated samples from the left-out 488 

dataset. This allows to simulate batch effects between datasets and helps to test the 489 

generalizability of the model. Model performance was evaluated based on pearson 490 

product moment correlation and absolute deviation between predicted and ground 491 

truth values. As averaging the predictions of models with different architectures 492 

increased performance, we decided to use an ensemble architecture for Scaden. For 493 

this ensemble, the three best performing architectures were chosen. Model training 494 

and prediction is done separately for each model, with the prediction averaging step 495 

combining all model predictions (Fig. S1). We provide a list of all tested parameters in 496 

the supplementary materials (Table S4).  497 

Final Scaden Model  498 

The Scaden model learns cell type deconvolution through supervised training on 499 

datasets of simulated bulk RNA-seq samples simulated with scRNA-seq data. To 500 

account for model biases and to improve performance, Scaden consists of an 501 

ensemble of three deep neural networks with varying architectures and degrees of 502 

dropout regularization. All models of the ensemble use four layers of varying sizes 503 

between 32 and 1024 nodes, with dropout-regularization implemented in two of the 504 

three ensemble models. The exact layer sizes and dropout rates are listed in Table 505 

S3. The Rectified Linear Unit (ReLU) is used as activation function in every internal 506 

layer. We used a Softmax function to predict cell fractions, as we did not see any 507 

improvements in using a linear output function with consecutive non-negativity 508 

correction and sum-to-one scaling. Python (v. 3.6.6) and the TensorFlow library (v. 509 
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1.10.0) were used for implementation of Scaden. A complete list of all software used 510 

for the implementation of Scaden is provided in Table S12. 511 

Training and Prediction  512 

After the preprocessing of the data a Scaden ensemble can be trained on simulated 513 

tissue RNA-seq data or mixtures of simulated and real tissue RNA-seq data. 514 

Parameters are optimized using Adam with a learning rate of 0.0001 and a batch size 515 

of 128. We used an L1 loss as optimization objective: 516 

𝐿1(𝑦𝑖, 𝑦̂𝑖)  =  |𝑦𝑖 − 𝑦𝑖̂| 517 

where 𝑦𝑖 is the vector of ground truth fractions of sample 𝑖 and 𝑦𝑖̂ is the vector of 518 

predicted fractions of sample 𝑖. Each of the three ensemble models is trained 519 

independently for 5,000 steps. This ‘early stopping’ serves to avoid domain overfitting 520 

on the simulated tissue data, which would decrease the model performance on the 521 

real tissue RNA-seq data. We observed that training for more steps lead to an average 522 

performance decrease on real tissue RNA-seq data. To perform deconvolution with 523 

Scaden, a bulk RNA-seq sample is fed into a trained Scaden ensemble and three 524 

independent predictions for the cell type fractions of this sample are generated by the 525 

trained deep neural networks. These three predictions are then averaged per cell type 526 

to yield the final cell type composition for the input bulk RNA-seq sample: 527 

𝑦𝑐̂ =
𝑦𝑐

1̂  +  𝑦𝑐
2  ̂ +  𝑦𝑐

3̂

3
 528 

where 𝑦𝑐̂ is the final predicted fraction for cell type 𝑐 and 𝑦𝑐
𝑖̂ is the predicted fraction for 529 

cell type 𝑐 of model 𝑖. 530 
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Scaden Overview 531 

We used several performance measures to compare Scaden to four existing cell 532 

deconvolution algorithms, CIBERSORT with LM22 GEP (CS), CIBERSORTx (CSx), 533 

MuSiC and CPM. To compare the performance of the five deconvolution algorithms 534 

we measured the root mean squared error (RMSE), Lin’s concordance correlation 535 

coefficient 𝐶𝐶𝐶, Pearson product moment correlation coefficient 𝑟, and 𝑅2 values  536 

comparing real and predicted cell fractions estimates. Additionally, to identify 537 

systematic prediction errors and biases, slope and intercept for the regression lines 538 

were calculated. These metrics are defined as follows: 539 

𝑅𝑀𝑆𝐸(𝑦, 𝑦̂)  =  √𝑎𝑣𝑔(𝑦 − 𝑦̂)2 540 

𝑟(𝑦, 𝑦̂)  =  
𝑐𝑜𝑣(𝑦, 𝑦̂)

𝜎𝑦𝜎𝑦̂
 541 

𝑅2(𝑦, 𝑦̂)  =  𝑟(𝑦, 𝑦̂)2 542 

𝑠𝑙𝑜𝑝𝑒(𝑦, 𝑦̂)  =  
𝛥𝑦

𝛥𝑦̂
 543 

𝐶𝐶𝐶(𝑦, 𝑦̂)  =  
2𝑟𝜎𝑦𝜎𝑦̂

𝜎𝑦
2 + 𝜎𝑦̂

2 + (𝜇𝑥 − 𝜇𝑦̂)
 544 

where 𝑦 are the ground truth fractions, 𝑦̂ are the prediction fractions, 𝜎𝑥 is the standard 545 

deviation of 𝑥, 𝑐𝑜𝑣(𝑦, 𝑦̂) is the covariance of 𝑦 and 𝑦̂, and 𝜇𝑦, 𝜇𝑦̂ are the mean of the 546 

predicted and ground truth fractions, respectively.  547 

All metrics were calculated for all data points of a dataset, and separately for all data 548 

points of a specific cell type. For the latter approach, we then averaged the resulting 549 

values to recover single values. While in general the metrics calculated on all data 550 

points are sufficient, good performance on cell type-level is important if one is to 551 

compare fractions of a specific cell type between samples.  552 
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CIBERSORT (CS)  553 

CS is a cell convolution algorithm based on specialized GEPs and support vector 554 

regression. Cell composition estimations were obtained using the CS web application 555 

(https://cibersort.stanford.edu/). For all deconvolutions with CS, we used the LM22 556 

GEP, which was generated by the CS authors from 22 leukocyte subsets profiled on 557 

the HGU133A microarray platform. 558 

Because the LM22 GEP matrix contains cell types at a finer granularity than what was 559 

used for this study, predicted fractions of sub-cell types were added together. For cell 560 

grouping, we used the mapping of sub-cell types to broader types given by Figure 6 561 

from Monaco et al.10. We provide a table with the exact mappings used here in the 562 

supplementary material (Table S13). The deconvolution was performed using 500 563 

permutations with quantile normalization disabled for all datasets but GSE65133 564 

(Microarray), as is recommended for RNA-seq data. We used default settings for all 565 

other CS parameters. 566 

CIBERSORTx (CSx)  567 

CSx is a recent variant of CS that can generate GEP matrices from scRNA-seq data 568 

and use these for deconvolution. For additional deconvolution robustness, it applies 569 

batch normalization to the data. All signature matrices were created by uploading the 570 

labeled scRNA-seq expression matrices and using the default options. Quantile 571 

normalization was disabled. For deconvolution on simulated data, no batch 572 

normalization was used. For all bulk RNA-seq datasets, the S-Mode batch 573 

normalization was chosen. All PBMC datasets were deconvolved using a GEP matrix 574 

generated from the data6k dataset (for simulated samples from data6k, a donorA GEP 575 

matrix was chosen).  576 
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MuSiC  577 

MuSiC is a deconvolution algorithm that uses multi-subject scRNA-seq datasets as 578 

GEP matrices in an attempt to include heterogeneity in the matrices to improve 579 

generalization. While MuSiC tries to address similar issues of previous deconvolution 580 

algorithms by using scRNA-seq data, the approach is very different. For 581 

deconvolution, MuSiC applies a sophisticated GEP-based deconvolution algorithm 582 

that uses weighted non-negative least squares regression with an iterative estimation 583 

procedure that imposes more weight on informative genes and less weight on non-584 

informative genes. 585 

The MuSiC R package contains functionality to generate the necessary GEP matrix 586 

given a scRNA-seq dataset and cell type labels. To generate MuSiC deconvolution 587 

predictions on PBMC datasets, we used the data8k scRNA-seq dataset as reference 588 

data for MuSiC and follow the tutorial provided by the authors to perform the 589 

deconvolution. For deconvolution of artificial samples generated from the data8k 590 

dataset, we provided MuSiC with the data6k dataset as reference instead. 591 

MuSiC was developed with a focus on multi-subject scRNA-seq datasets, in which the 592 

algorithm tries to take advantage from the added heterogeneity that these datasets 593 

contain, by calculating a measure of cross-subject consistency for marker genes. To 594 

assess how Scaden performs on multi-subject datasets compared to MuSiC, we 595 

evaluated both methods on artificial bulk RNA-seq samples from human pancreas  596 

{Xin et al}. We used the ‘bulk_construct’ function from MuSiC to combine the cells from 597 

all 18 subjects contained in the scRNA-seq dataset from Xin et al to generate artificial 598 

bulk samples for evaluation. Next, as a multi-subject reference dataset, we used the 599 

pancreas scRNA-seq dataset from Segerstolpe et al.19, which contains single-cell 600 

expression data from 10 different subjects, 4 of which with type-2 Diabetes. For 601 
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Scaden, the Segerstolpe scRNA-seq dataset was split by subjects, and training 602 

datasets were generated for each subject, yielding in total 10,000 samples. For 603 

MuSiC, a processed version of this dataset was downloaded from the resources 604 

provided by the MuSiC authors8 and used as input reference dataset for the MuSiC 605 

deconvolution. Deconvolution was then performed according to the MuSiC tutorial, 606 

and performance compared according to the above-defined metrics. 607 

Cell Population Mapping (CPM)  608 

CPM is a deconvolution algorithm that uses single-cell expression profiles to identify 609 

a so-called ‘cell population map’ from bulk RNA-seq data9. In CPM, the cell population 610 

map is defined as composition of cells over a cell-state space, where a cell-state is 611 

defined as a current phenotype of a single cell. Contrary to other deconvolution 612 

methods, CPM tries to estimate the abundance of all cell-states and types for a given 613 

bulk mixture, instead of only deconvolving the cell types. As input, CPM requires a 614 

scRNA-seq dataset and a low-dimensional embedding of all cells in this dataset, which 615 

represents the cell-state map. As CPM estimates abundances of both cell-states and 616 

types, it can be used for cell type deconvolution by summing up all estimated fractions 617 

for all cell-states of a given cell type - a method that is implemented in the scBio R 618 

package, which contains the CPM method. To perform deconvolution with CPM, we 619 

used the data6k PBMC scRNA-seq dataset as input reference for all PBMC samples. 620 

For samples simulated from the data6k dataset, we used the data8k dataset as 621 

reference. According to the CPM paper, a dimension reduction method can be used 622 

to obtain the cell-state space. We therefore used UMAP, a dimension reduction 623 

method widely used for scRNA-seq data, to generate the cell-state space mapping for 624 

the input scRNA-seq data. Deconvolution was then performed using the CPM function 625 
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of the scBio package with a scRNA-seq and accompanying UMAP embedding as 626 

input. 627 
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List of abbreviations 629 

RNA-seq : Next Generation RNA Sequencing 630 

GEP : gene expression profile matrix 631 

SVR : Support Vector Regression 632 

DNN : Deep Neural Network 633 

scRNA-seq : single cell RNA-seq 634 

simulated tissue : training data generated by mixing proportions of scRNA-seq data 635 

PBMC : peripheral blood mononuclear cells 636 

CCC : concordance correlation coefficient 637 

r : Pearson’s correlation coefficient 638 

CS : CIBERSORT 639 

CSx : CIBERSORTx 640 

CPM : Cell Population Mapping  641 
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Supplementary Figures & Tables 744 

Tissue Name # cells # Subjects Source 

PBMC data6k 5,419 1 10X Genomics 

PBMC data8k 8,381 1 10X Genomics 

PBMC donorA 2,900 1 10X Genomics 

PBMC donorC 9,519 1 10X Genomics 

Mouse 

Brain 

Tasic 1,679 1 Tasic et al., Nat. 

Neurosci., 2016 

Mouse 

Brain 

Zeisel 3,005 1 Zeisel et al., Science, 

2015 

Mouse 

Brain 

Romanov 2,881 1 Romanov et al., Nat. 

Neurosci., 2018 

Mouse 

Brain 

Campbell 21,086 1 Campbell et al, Nat. 

Neurosci., 2017 

Mouse 

Brain 

Chen 14,437 1 Chen et al., Cell Rep., 

2017 

Pancreas Segerstolpe 3,514 10 Segerstolpe et al., Cell 

Metab., 2016 

Pancreas Baron 8,569 4 Baron et al., Cell Syst., 

2016 

Ascites Ascites 3,114 3 Schelker et al, Nat. 

Comm., 2018 

Table S1 scRNA-seq datasets used for the generation of simulated tissues for Scaden 745 

training. 746 
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 748 

Tissue # Samples # Datasets Size 

PBMC 32,000 4 1.2 GB 

Pancreas 14,000 2 0.6 GB 

Mouse Brain 30,000 5 1.5 GB 

Ascites 6,000 1 0.38 GB 

Table S2 Number of samples, datasets, and size of the simulated training data. 749 
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 751 

Parameter Values tested 

Batch size 32, 64, 128, 256, 512 

# Layers 2, 3, 4 

Layer sizes 2048, 1024, 512, 256, 128, 64, 32, 16 

Dropout rate [0, 0.8] 

Loss function L1, L2 

Table S3 Hyperparameters used for model optimization. 752 
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 754 

Figure S1 Overview of the Scaden neural network ensemble model. A bulk RNA-seq 755 

sample is the input to three separate deep neural networks with varying layer sizes 756 

and dropout regularization. The predictions of all three models are subsequently 757 

averaged to obtain the final Scaden predictions. During training, predictions are not 758 

averaged and each model is trained separately. 759 
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Model # Layers Layer sizes Dropout rates 

M256 4 256, 128, 64, 32 0, 0, 0, 0 

M512 4 512, 256, 128, 64 0, 0.3, 0.2., 0.1 

M1024 4 1024, 512, 256, 128 0, 0.6, 0.3, 0.1 

Table S4 Architectures of deep neural network models used in Scaden ensemble. 761 
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 763 

Table S5 Deconvolution evaluation on simulated PBMC data. 764 

  765 

Method DS RMSE Slope Correlation Intercept CCC 

CPM data6k 0.189 -0.011 -0.05 0.168 -0.021 

CPM data8k 0.183 -0.002 -0.005 0.167 -0.003 

CPM donorA 0.215 -0.008 -0.046 0.168 -0.016 

CPM donorC 0.174 -0.015 -0.062 0.168 -0.026 

CS data6k 0.131 0.664 0.728 0.074 0.717 

CS data8k 0.121 0.567 0.714 0.087 0.685 

CS donorA 0.131 0.708 0.788 0.049 0.784 

CS donorC 0.131 0.742 0.719 0.079 0.688 

CSx data6k 0.1 0.83 0.854 0.05 0.844 

CSx data8k 0.134 0.601 0.662 0.082 0.651 

CSx donorA 0.045 0.9 0.979 0.017 0.975 

CSx donorC 0.11 0.819 0.811 0.07 0.776 

MuSiC data6k 0.126 0.768 0.768 0.059 0.759 

MuSiC data8k 0.135 0.597 0.659 0.083 0.648 

MuSiC donorA 0.13 0.771 0.802 0.038 0.801 

MuSiC donorC 0.132 0.815 0.737 0.07 0.704 

Scaden data6k 0.077 0.855 0.917 0.047 0.904 

Scaden data8k 0.132 0.525 0.651 0.093 0.627 

Scaden donorA 0.034 0.924 0.989 0.013 0.986 

Scaden donorC 0.109 0.848 0.821 0.067 0.786 
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 766 

Table S6 Deconvolution performance on simulated pancreas data from Xin et al.. 767 

 768 

  769 

Method Celltype RMSE Correlation Slope Intercept CCC 

CSx ALPHA 0.282 0.816 0.691 0.431 0.375 

CSx BETA 0.309 0.833 0.175 -0.017 0.078 

CSx DELTA 0.04 0.812 1.567 -0.013 0.647 

CSx GAMMA 0.052 0.921 1.131 0.0 0.897 

CSx Total 0.212 0.79 1.113 -0.028 0.746 

MuSiC ALPHA 0.11 0.887 1.108 -0.042 0.863 

MuSiC BETA 0.148 0.752 1.067 0.017 0.694 

MuSiC DELTA 0.023 0.817 0.716 -0.003 0.707 

MuSiC GAMMA 0.068 0.881 0.552 -0.003 0.711 

MuSiC Total 0.099 0.938 1.078 -0.019 0.929 

Scaden ALPHA 0.067 0.949 1.071 -0.034 0.942 

Scaden BETA 0.07 0.936 1.152 -0.045 0.916 

Scaden DELTA 0.024 0.807 1.012 0.008 0.764 

Scaden GAMMA 0.045 0.914 0.89 -0.008 0.901 

Scaden Total 0.055 0.978 1.033 -0.008 0.976 
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 770 

Tissue Name # Samples Reference 

PBMC PBMC1 12 Zimmermann et al., PLOS one, 2016 

PBMC PBMC2 12 Monaco et al., Cell Reports, 2019 

Pancreas Xin 18 Xin et al., Cell Metab., 2016 

Human 

Brain 

ROSMAP 390 Bennett et al., Curr Alzheimer Res., 

2012 

Ascites Ascites 3 Schelker at al., Nat. Comm. 2018 

Table S7 Tissue RNA-seq datasets used for performance evaluation. 771 

 772 
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 774 

Table S8 Deconvolution performance on real PBMC RNA-seq datasets PBMC1 and 775 

PBMC2. 776 

  777 

Method Dataset Celltype RMSE Correlation Slope Intercept CCC 

CPM PBMC1 Total 0.18 -0.003 -0.003 0.167 -0.003 

CPM PBMC2 Total 0.114 -0.203 -0.094 0.182 -0.155 

CS PBMC1 Total 0.147 0.437 0.491 0.085 0.434 

CS PBMC2 Total 0.101 0.594 0.754 0.041 0.577 

CSx PBMC1 Total 0.16 0.603 0.925 0.012 0.552 

CSx PBMC2 Total 0.13 0.456 0.67 0.055 0.424 

MuSiC PBMC1 Total 0.316 -0.235 -0.468 0.245 -0.189 

MuSiC PBMC2 Total 0.299 -0.197 -0.542 0.257 -0.127 

Scaden PBMC1 Total 0.104 0.722 0.805 0.032 0.717 

Scaden PBMC2 Total 0.052 0.855 0.848 0.025 0.855 
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 778 

Figure S2 Comparison of Scaden deconvolution results on PBMC1 and PBMC2 779 

datasets with and withouth (Scaden_all, Scaden_SC, respectively) bulk RNA-seq 780 

samples included in training data. 781 
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 783 

Table S9 Deconvolution performance on real PBMC RNA-seq data for Scaden models trained 784 

only on scRNA-seq simulated tissues (Scaden_SC) or on a mix of simulated and real tissue 785 

data (Scaden_all). 786 

  787 

Method Dataset Celltype RMSE Correlation Slope Intercept CCC 

Scaden_SC PBMC1 Total 0.131 0.564 0.644 0.059 0.559 

Scaden_SC PBMC2 Total 0.077 0.684 0.689 0.052 0.684 

Scaden_all PBMC1 Total 0.104 0.722 0.805 0.032 0.717 

Scaden_all PBMC2 Total 0.052 0.855 0.848 0.025 0.855 

Scaden_SC PBMC1 Bcells 0.033 0.648 0.172 0.006 0.083 

Scaden_SC PBMC1 CD4Tcells 0.228 0.633 0.492 -0.055 0.149 

Scaden_SC PBMC1 CD8Tcells 0.101 0.603 0.761 0.108 0.562 

Scaden_SC PBMC1 Monocytes 0.178 0.556 0.885 0.173 0.186 

Scaden_SC PBMC1 NK 0.087 0.81 0.531 0.137 0.312 

Scaden_SC PBMC1 Unknown 0.029 0.577 0.361 0.009 0.287 

Scaden_SC PBMC2 Bcells 0.012 0.936 0.977 0.002 0.935 

Scaden_SC PBMC2 CD4Tcells 0.145 0.767 0.682 -0.057 0.119 

Scaden_SC PBMC2 CD8Tcells 0.049 0.67 0.403 0.129 0.587 

Scaden_SC PBMC2 Monocytes 0.078 0.865 0.994 0.071 0.558 

Scaden_SC PBMC2 NK 0.071 0.629 0.314 0.14 0.276 

Scaden_SC PBMC2 Unknown 0.025 0.247 0.217 0.044 0.209 

Scaden_all PBMC1 Bcells 0.031 0.668 0.188 0.007 0.1 

Scaden_all PBMC1 CD4Tcells 0.151 0.638 0.652 -0.017 0.345 

Scaden_all PBMC1 CD8Tcells 0.096 0.6 0.704 0.123 0.569 

Scaden_all PBMC1 Monocytes 0.172 0.518 0.777 0.184 0.177 

Scaden_all PBMC1 NK 0.036 0.804 0.488 0.058 0.71 

Scaden_all PBMC1 Unknown 0.026 0.64 0.41 0.01 0.365 

Scaden_all PBMC2 Bcells 0.013 0.936 0.94 0.0 0.917 

Scaden_all PBMC2 CD4Tcells 0.074 0.772 0.769 -0.005 0.373 

Scaden_all PBMC2 CD8Tcells 0.051 0.672 0.398 0.106 0.562 

Scaden_all PBMC2 Monocytes 0.072 0.895 1.058 0.049 0.614 

Scaden_all PBMC2 NK 0.045 0.69 0.301 0.103 0.467 

Scaden_all PBMC2 Unknown 0.023 0.241 0.178 0.043 0.203 
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Table S10 Deconvolution performance on real Ascites RNA-seq data. 788 

  789 

Method Type CCC Correlation Intercept RMSE Slope 

CPM Total -0.0 0.004 0.153 0.183 -0.0 

CSx Total 0.938 0.952 0.002 0.069 1.115 

MuSiC Total 0.876 0.907 0.033 0.079 0.696 

Scaden Total 0.948 0.955 -0.030 0.061 1.066 
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 790 

Figure S3 Deconvolution performance on real human brain RNA-seq data. Scaden was 791 

trained on mouse scRNA-seq data and the trained model was used to deconvolve cell 792 

fractions of ROSMAP human brain RNA-seq data. This data does not contain cell fraction 793 

ground-truth information. Instead, the box plot shows the decrease of neuronal cell fractions 794 

with increasing Braak disease stage, a well-known phenomenon in AD. 795 
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 797 

Figure S4 Deconvolution performance comparison of CS (LM22) and Scaden on the 798 

GSE65133 PBMC microarray dataset. 799 
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 801 

Table S11 Deconvolution performance on real PBMC microarray data. 802 

  803 

Method Celltype CCC Correlation Intercept RMSE Slope 

CS Bcells 0.122 0.33 0.029 0.068 0.109 

CS CD4Tcells 0.629 0.658 0.199 0.095 0.537 

CS CD8Tcells 0.285 0.635 0.018 0.12 0.375 

CS Monocytes 0.295 0.741 0.19 0.17 0.779 

CS NK 0.623 0.698 -0.003 0.059 0.78 

CS Total 0.717 0.728 0.026 0.11 0.869 

Scaden Bcells 0.431 0.728 0.012 0.055 0.388 

Scaden CD4Tcells 0.64 0.778 -0.195 0.153 1.474 

Scaden CD8Tcells 0.474 0.543 0.02 0.104 0.635 

Scaden Monocytes 0.43 0.838 0.033 0.191 1.764 

Scaden NK 0.516 0.741 -0.029 0.074 0.77 

Scaden Total 0.705 0.749 -0.015 0.126 1.067 
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 804 

Software Version 

pandas 0.23.4 

Python 3.6.8 

Tensorflow 1.10.0 

matplotlib 2.2.3 

nb_conda 2.2.1 

numpy 1.15.0 

scipy 1.1.0 

seaborn 0.9.0 

anndata 0.6.9 

scanpy 1.2.2 

scikit-learn 0.20.0 

ipython 6.5.0 

python-igraph 0.7.1.post6 

louvain 0.6.1 

tqdm 4.7.2 

igraph 0.7.1 

Table S12 Software packages and versions used. 805 
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 807 

Target Cell Type LM22 Cell Types 

B cells B cells naive, B cells memory 

CD8 T cells T cells CD8, T cells follicular helper, T cells 

gamma delta 

CD4 T cells T cells CD4 naive, T cells regulatory (Tregs), T 

cells CD4 memory resting, T cells CD4 

memory activated 

NK NK cells resting, NK cells activated 

Dendritic Dendritic cells resting, Dendritic cells activated 

Monocytes Monocytes, Macrophages M0, Macrophages 

M1, Macrophages M2 

Unknown Mast cells resting, Mast cells activated, 

Eosinophils, T cells folicular helper, T cells 

gamma delta, Plasma cells, Neutrophils, 

Dendritic 

Table S13 Mapping of the LM22 GEP to cell types. 808 

 809 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 4, 2019. ; https://doi.org/10.1101/659227doi: bioRxiv preprint 

https://doi.org/10.1101/659227
http://creativecommons.org/licenses/by-nc/4.0/

