
Interactive Multiresolution Visualization of Cellular Network
Processes

Oscar O. Ortega1, Carlos F. Lopez1,2*

1 Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee
2 Biochemistry Department, Vanderbilt University, Nashville, Tennessee

* c.lopez@vanderbilt.edu

Abstract

Computational models of network-driven processes have become a standard to explain
cellular systems-level behavior and predict cellular responses to perturbations. Modern
models can span a broad range of biochemical reactions and species that, in principle,
comprise the complexity of dynamic cellular processes. Visualization plays a central role
in the analysis of biochemical network processes to identify patterns that arise from
model dynamics and perform model exploratory analysis. However, most existing
visualization tools are limited in their capabilities to facilitate mechanism exploration of
large, dynamic, and complex models. Here, we present PyViPR, a visualization tool
that provides researchers static and dynamic representations of biochemical network
processes within a Python-based Literate Programming environment. PyViPR embeds
network visualizations on Jupyter notebooks, thus facilitating integration with Python
modeling, simulation, and analysis workflows. To present the capabilities of PyViPR,
we explore execution mechanisms of extrinsic apoptosis in HeLa cells. We show how
community-detection algorithms can identify groups of molecular species that represent
key biological regulatory functions and simplify the apoptosis network by placing those
groups into interactively collapsible nodes. We then show how dynamic execution of a
signal, under different kinetic parameter sets that fit the experimental data equally well,
exhibit significantly different signal-execution modes in mitochondrial outer-membrane
permeabilization – the point of no return in extrinsic apoptosis execution. Therefore,
PyViPR aids the conceptual understanding of dynamic network processes and
accelerates hypothesis generation for further testing and validation.

INTRODUCTION 1

Cellular processes are controlled by networks of biomolecular interactions that process 2

signals and trigger a response [1–3]. These molecular networks give rise to nonlinear 3

dynamic processes that are difficult to explain and predict using reductionist 4

methods [4]. Mathematical models of cellular signaling pathways have become 5

commonplace in order to gain insights and describe the molecular mechanisms that 6

control cellular processes [5–7]. In general, these models continue to grow in size and 7

complexity, which makes the exploration of network structure and dynamics increasingly 8

challenging. Visualization tools comprise one effective way to explore network processes 9

and acquire conceptual insights about signal-execution mechanisms. In addition, 10

visualization tools can facilitate detection of execution patterns, and aid in hypothesis 11

generation for experimental validation. However, to the best of our knowledge, most 12

tools focus on static network representations of models without strategies to deal with 13
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increasingly complex models, and generally lack support to visualize model dynamics. 14

Therefore, there is a need for novel tools that provide viable visualizations of large 15

models as well as support for intuitive visualizations of model dynamics. 16

Visualization tools can provide important insights into the complex relationships 17

among multiple interacting components in a network. Numerous tools have been 18

developed to generate network representations to capture relationships between model 19

components. Some examples include molecular species networks [8], species-reactions 20

networks [9], contact maps [10–12], model-defined rules [11,12], and rule-based 21

networks [13,14], among many others [15–17]. Although these tools have been 22

immensely useful within their domain, they exhibit limitations to visualize the structures 23

of increasingly complex networks due to the a large number of nodes, edges, and labels. 24

Further, standalone visualization tools can be difficult to incorporate into model 25

building and analysis workflows, thus compounding reproducibility in analysis pipelines. 26

Relevant biomolecules in a signaling network process can participate in multiple 27

dynamic interactions and exhibit nonlinear dependence on model initial conditions and 28

kinetic parameters. Identification of reactions that drive the cellular processes is central 29

to dynamic network analysis, yet highly challenging without visualization tools to 30

facilitate an intuitive understanding of the signal execution mechanisms. A handful of 31

tools to visualize dynamic network processes have been published, notably COPASI [8], 32

and the Kappa Dynamic Influence Network (KDIN) [18]. COPASI uses a network in 33

which nodes represent biochemical species and edges represent biochemical interactions, 34

and it qualitatively encodes the species concentrations obtained from a simulation in the 35

size of the box around the network nodes. Kappa employs a network in which nodes are 36

the model rules and the edges indicate that the rules have common reactants or 37

products species, and it quantitatively represents the temporal influence that each 38

biochemical rule exerts on other rules. Although both tools yield useful information 39

about dynamic network processes, information about the reactions that drive the 40

dynamic consumption and production of different proteins is not displayed in their 41

visualization, which is essential to understand signal execution mechanisms. 42

Additionally, these tools have been developed for specific software environments, thus 43

limiting their generalization for other modeling and analysis workflows. 44

In this work we tackle three main visualization challenges that we hope will catalyze 45

our conceptual understanding of biological network processes: (i) develop legible and 46

comprehensible visualizations of increasingly large networks; (ii) generate intuitive 47

dynamic network visualizations of model simulations; and (iii) facilitate the integration 48

of visualizations to model building and analysis pipelines. To tackle these challenges, we 49

developed Python Visualization of Processes and Reactions (PyViPR), a Python 50

framework that provides multiple static and dynamic representations of biological 51

processes. Importantly, PyViPR unifies tools typically used in isolation, applies network 52

community detection algorithms, and encode model simulations in node and edge 53

properties to enable the study of large model networks and their dynamics at different 54

resolutions. PyViPR embeds all network visualization and analysis onto Jupyter 55

Notebooks [19] in order to facilitate reproducibility and the development of shareable 56

model analysis pipelines. PyViPR currently supports rendering of rule-based models 57

declared in the PySB framework [20], BioNetGen (BNG) [10] and Kappa language [11], 58

as well as models encoded in the SBML format [21], thus providing a general tool to 59

visualize models of biochemical network processes. In what follows we describe how 60

PyViPR was designed and implemented, followed by a demonstration of community 61

detection in a complex network of apoptosis execution, and finally a use case to explore 62

dynamic execution of network processes. 63
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RESULTS 64

Overview of PyViPR 65

PyViPR is a python package designed to be used within Jupyter notebooks. We chose 66

Jupyter notebooks due to its literate programming paradigm [22] that enables the 67

definition of both code and documentation at the same time, allowing users to develop 68

shareable workflows for model definition, visualization, and analysis. PyViPR leverages 69

the capabilities of PySB to generate model objects, import models from BNGL and 70

SBML formats, and provide simulation-based results for dynamic visualization. 71

Importantly, PyViPR brings the power of cytoscape.js [23], a well-established JavaScript 72

library for graph visualization, to the python environment to interactively render static 73

and dynamic visualization of model networks. In this manner, PyViPR is a software 74

platform that integrates software packages that would traditionally be used in isolation 75

onto a common modeling framework. Importantly, PyViPR takes advantage of 76

community-driven software development, as it automatically accrues improvements and 77

enhancements made to any its software components. In addition, PyViPR motivates 78

community contributions through its open-source philosophy built around GitHub: 79

https://github.com/LoLab-VU/PyViPR. 80

A typical PyViPR workflow comprises the following steps. First, a supported model 81

file is passed to one of the PyViPR visualization functions. PyViPR then uses 82

NetworkX [24] to convert the model components into graph nodes an edges. The user 83

could then simplify the graph through community detection using the Louvain 84

algorithm [25] on the NetworkX graph object. The code will then create a compound 85

node and place all the nodes from a community within it. For dynamic visualization, 86

PyViPR maps the simulated species concentrations and reaction data to node and edge 87

properties. The resulting NetworkX graph is transferred to cytoscape.js via a JSON 88

dictionary and rendered real-time in a Jupyter notebook for visualization. We note that 89

the user can interact with all graph objects in a Jupyter notebook rendering to, e.g. 90

change the layout, groupings, or placement of a given graph. 91

Network creation from multiple model components 92

PyViPR supports visualization of multiple model components, including molecular 93

species, reactions, rules, compartments, macros functions [20] and modules comprising 94

independent model elements [20]. These components are depicted by either simple 95

nodes, which are fundamental units in a graph, or compound nodes, that can contain 96

children nodes and are used to group simple nodes with shared attributes or through 97

user-defined groupings. Model species, reactions, and rules are represented by simple 98

nodes, whereas model compartments, modules, and macros functions, are represented as 99

compound nodes. 100

To build a network PyViPR obtains a list of the reactions defined in a model, adds 101

the rules/reactions and the species involved as nodes to the network, and use edges to 102

connect reactants and products species nodes with their respective rule/reaction 103

node( Figure S1 A). To reduce the resolution, i.e. the number of nodes, these graphs 104

can be projected to a unipartite graph that contains only the species or rules/reactions 105

nodes ( Figure S1 B). This unipartite species graph can then be organized by grouping 106

the species nodes using the biological compartments on which they are located ( Figure 107

S1 C). Similarly, a unipartite rules graph can be grouped by the macro functions used 108

to create them or the model modules where they are defined. This allows users to 109

interactively explore and revise the model network topology at different resolutions. For 110

a complete list of the different model components that can be visualized in a network 111

see Figure S2. 112
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We also added the Louvain [25] method for community detection to automatically 113

cluster nodes and thereby simplify network complexity. Briefly, the Louvain method 114

optimizes graph modularity by first iterating over all nodes and assigning each node to 115

a community that results in the greatest local modularity increase, then each small 116

community is grouped into one node and the first step is repeated until no modularity 117

increase can occur. In this manner the Louvain algorithm finds groups of highly 118

connected nodes that could have similar biological functions or represent molecular 119

complex formation processes [26]. Additionally, due to the iterative nature of the 120

Louvain algorithm, it discovers a hierarchy of communities at different scales, which can 121

be useful for understanding the structure of a network. Finally, We embedded the 122

detected communities into collapsible/expandable compound nodes to facilitate the 123

exploration and navigation of large networks. 124

Alternatively, users can interactively define their own clusters of nodes. In this 125

manner, the visualization becomes a dynamic process whereby users can interact in 126

real-time with the rendered network to optimize the visualization to their needs. This 127

so-called ”human in the loop” or ”active” optimization for visualization purposes could 128

greatly accelerate how concepts are conveyed and shared by users in the systems biology 129

community [27,28]. 130

Dynamic visualization by incorporating simulation data 131

Models have complex dynamic patterns that arise from the temporal changes in protein 132

concentrations and reaction rates. These dynamics are difficult to track and follow in 133

models with large numbers of interacting proteins. Hence, the goal of PyViPR is to 134

provide a clear and easily interpretable visualization to distinguish the interactions that 135

drive changes in biological network processes. 136

PyViPR supports the dynamic visualization of results from deterministic and 137

stochastic model simulations( Figure S1 D). This visualization mode uses a network 138

whose nodes are the model species and the edges represent the reactions between the 139

species. To be able to visualize the simulation in a clear and easily interpretable way we 140

encoded the species concentrations and reaction rates into properties of nodes and 141

edges, respectively. 142

To represent the temporal change in the concentration of molecular species during a 143

simulation, we embedded pie charts inside the graph species nodes. The pie chart slices 144

within the nodes show the concentration of a species relative to the maximum amount 145

of the concentration attained across all time points of the simulation. The pie chart 146

slices are updated according to the concentration of the species at each time point of a 147

simulation. Additionally, we include information about the value of the species 148

concentration as tooltips that can be accessed by a click-hold gesture on the species of 149

interest. 150

Molecular species can be consumed or produced by the different interactions on 151

which they are involved. Each of those interactions is represented by an edge connected 152

to the species node. The speed at which these reactions occur changes over time and is 153

determined by the reaction rate values obtained from a simulation. To facilitate 154

visualization of a given molecular species consumption or production over time, each of 155

the producing (consuming) interactions is normalized relative to the sum-total of the 156

producing (consuming) interactions at each simulation time point. Then, the normalized 157

values are linearly mapped to a color shades. Lighter shades mean that the flux is 158

smaller compared to the total, conversely darker shades show that the flux is higher. 159

Edge width represents the relative value of the reaction normalized to the maximum 160

value that the edge can attain across all time points of the simulation. For consistency, 161

the visualization shows how all nodes are being consumed, or alternatively, how they are 162

produced at the same time. It is possible to change between the production and 163
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consumption visualization from a drop-down option in the rendered visualization. 164

Finally, the simulated reaction rate values for each interaction are included as tooltips 165

that can be accessed by a click-hold gesture on the species of interest. 166

Models have complex dynamic patterns that arise from the temporal changes in 167

protein concentrations and reaction rate. These dynamics are difficult to track and 168

follow in models with a large number of interacting proteins. Hence, the goal of this 169

node and edge encoding is to provide a clear and easily interpretable visualization to 170

distinguish the interactions that drive the changes in concentration of molecular species. 171

PyViPR to visualize apoptosis execution 172

To illustrate the visualization capabilities of PyViPR, we use the Extrinsic Apoptosis 173

Reaction Model (EARM v2.0) to study the receptor-mediated apoptosis signaling 174

cascade. 175

After a ligand binds a death receptor, the apoptosis signal can flow in two ways, 176

denoted Type I and Type II [29]. In Type I, an initiator caspase is activated which in 177

turn activates an effector caspase. Whereas in Type II, an initiator-effector caspase 178

cascade is initiated and induces the mitochondrial outer membrane permeabilization 179

(MOMP) which amplifies the cell death signal. MOMP is regulated by the complex 180

interaction of numerous pro-survival and pro-death signals. These include the Bcl-2 181

family of proteins, which may be anti-apoptotic (Bcl-2, Bcl-xL, Mcl1, A1, Bcl-w), 182

pro-apoptotic (Bax, Bak, Bok), activators (Bid, Bim), and sensitizers (Bad, Puma, 183

Noxa) [30]. The most relevant interactions from Type I and Type II apoptosis are 184

encoded in the Extrinsic Apoptosis Reaction Model (EARM 2.0) that uses the PySB 185

framework [20]. EARM is a relatively large model that comprises 74 molecular species, 186

127 parameters, 62 rules and 100 reactions. 187

Multiresolution visualization and exploration of EARM 188

We wanted to study the architecture of the network defined in EARM to see if it could 189

reveal insights about the molecular organization and function in the apoptosis pathway. 190

We started by inspecting the bipartite graph which contains 139 species and rules nodes, 191

as well as the edges that connects the reactant species with a rule and the subsequent 192

product species (Fig 1, EARM bipartite graph). However, this large network is difficult 193

to explore and it does not have a discernible structure that would allow a researcher to 194

understand how the collection of interactions between species and rules nodes drive the 195

apoptosis mechanism. Hence, to improve model exploration we projected the 196

species-rules bipartite graph into a species unipartite graph and grouped the nodes into 197

communities of highly connected nodes obtained by applying the Louvain algorithm 198

(Fig 1, Middle panel). Additionally, these communities can be interactively collapsed 199

(Fig 1 Lower panel) to obtain a coarse-grained representation of the apoptosis pathway. 200

To visualize the species network from EARM and the communities detected by the 201

Louvain algorithm we used the PyViPR function sp comm view. The community 202

detection algorithm found 9 communities, labeled 0-8 (Figure S3). Community 0 203

contains the ligand-receptor interactions that lead to the DISC formation and regulation 204

by Flip [31]. It is uniquely connected to community 1 that comprises initiator Caspase 8 205

(C8) activation by DISC and Caspase 6 and the subsequent truncation of Bid by 206

activated C8 [32]. Community 1 is particularly interesting because it is connected to 207

communities 3 and 4 which are the starting points for differentiation between Type I 208

and Type II apoptosis, respectively. This suggests that the proteins in Community 1 209

play an important role in apoptotic signaling as their interactions could determine the 210

type of apoptosis executed by a cell [33]. 211
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Fig 1. Multiscale visualization of EARM. Upper graph: EARM bipartite graph.
Green nodes represent molecular species and the red nodes represent rules defined in the
model. Middle graph: EARM compound graph. Densely connected nodes are grouped
into communities. Lower graph: EARM communities graph. This graph is obtained by
collapsing the communities into a single node. The name of the new node is determined
by the species with the highest number of interactions within the community.
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Community 4 includes the regulation of mitochondrial Bid (mBid), Bax and Bak by 212

the antiapoptotic proteins BclxL and Bcl2 [34], and it is connected to Community 6 213

that corresponds to the interactions of the anti-apoptotic protein Mcl1. Additionally, 214

Community 4 is also connected to communities 5 and 8 that correspond to Bak and Bax 215

activation, polymerization and pore formation, respectively. The interactions among 216

these communities describes the overall regulation at the mitochondria that lead to 217

MOMP formation, the point-of-no-return in Type II apoptosis execution. The 218

MOMP-related communites are connected to communities 2 and 7, which correspond to 219

the release of Cytochrome c and Smac from the MOM through pores made by Bax and 220

Bak. Finally, these communities connect to Community 3 which corresponds to the 221

activation of executioner Caspase 3 (C3). As shown, C3 can be directly activated by C8 222

(Type I) or by the apoptosome that is formed after Cytochrome c is released from the 223

MOM (Type II). 224

We found that the Louvain community detection algorithm grouped biochemical 225

species into biologically relevant functional processes of key protein activation and 226

regulation during the apoptosis signaling pathway. This suggests that community 227

detection could be used as a dynamic ”coarse-graining” methodology to automatically 228

group biochemical interactions in a network and simplify mechanism exploration. The 229

community detection analysis showed that C8 and C3 are the species with highest node 230

degree in their respective communities, indicating that they are likely essential for the 231

regulation of biochemical events happening in their communities. We also found that 232

mBid has the highest node degree of interactions with other communities indicating 233

that it is likely relevant to transmit information across pathway segments. 234

Parameter sets fit experimental data but yield different 235

network dynamics in EARM. 236

Systems biology models are sloppy [35], which means that only changes in a few 237

parameter combinations significantly affect model output while other parameters may 238

vary over a wide range of values without significantly affecting model output. As a 239

result, when models are calibrated there are many different parameter sets that fit the 240

experimental data equally well [36]. Therefore, we decided to investigate the 241

mechanistic implications of these different fitted parameters sets on apoptosis signal 242

execution. We focused on mitochondrial Bid as its dynamics is tightly linked to MOMP, 243

making it one of the most important regulators of time-to-death of cells [37] 244

We calibrated EARM to previously published experimental data [37] using a Particle 245

Swarm Optimization algorithm [38,39], and obtained 6572 different parameter sets that 246

fit equally well with a sum of squares error equal or less than 2.8. We applied the 247

z-score to standardize the parameter sets and then calculated all pairwise dissimilarities 248

using the euclidean distance. Next, we chose the two maximally different parameter 249

sets (Table S4), labelled parameter set 1 and parameter set 2, to study their effect in 250

the mBid interactions dynamics (Fig 2 EARM calibrated to experimental data). These 251

dynamics are dictated by the interactions of Bid with various anti-apoptotic and 252

pro-apoptotic proteins [30], which are difficult to simultaneously track and follow over 253

time. 254

We utilized the PyViPR sp dyn view function to visualize how the signal initialized 255

by the TNF-related apoptosis-inducing ligand (TRAIL) propagated through the EARM 256

network and focused on flow through the MOMP module. This visualization allowed us 257

to identify the molecular reactions that most rapidly consume mBid, indicating that 258

they are potential targets to effectively modulate the time-to-death of cells. For 259

parameter set 1, we observed that most of mBid was used to transport cytosolic Bax to 260

the MOM while no activation of Bak occurred, indicating that the pores in the MOM 261
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Fig 2. Dynamic visualization and analysis of the interactions of
mitochondrial Bid with two calibrated parameter sets. The upper panel
includes three snapshots that show the temporal changes in strength of the interactions
between mitochondrial Bid and the anti-apoptotic and pro-apoptotic proteins. The
lower left panel shows how the model simulations with the calibrated parameter set
reproduces the time-course data from the experiments. Finally, the lower right panel
corresponds to a in silico knock out of the protein involved in the dominant reaction
rate observed from the dynamic visualization.
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were primarily made by Bax and that the model with this parameter set is particularly 262

sensitive to Bax inhibition. In contrast, for parameter set 2 we observed that mBid 263

activity was inhibited primarily by the anti-apoptotic protein Mcl1, indicating that it 264

plays an important role in throttling MOMP (Fig 2 A and B, upper panel). To verify 265

our visualization-based analysis, we carried out two in-silico experiments. First, we did 266

a Bax knockout and ran a simulation of EARM with parameter set 1. We found that 267

knocking out Bax protected cells from apoptosis induction with TRAIL, confirming that 268

Bax has an essential role in apoptosis. Second, we did an Mcl1 knockout and ran a 269

simulation of EARM with parameter set 2. We found that the time-to-death was 270

reduced by 22.6%, corroborating that Mcl1 was delaying the apoptosis execution by 271

binding to mBid. These results demonstrated that although these two parameter sets fit 272

the data equally well, they executed the apoptosis signal in different ways; specifically, 273

in this case, the parameter sets determined whether Bax or Mcl1 played the key role in 274

regulating apoptosis execution. These observations align we experimental results that 275

showed how cell lines might depend on different proteins for apoptosis execution [40, 41]. 276

Therefore, visualization of the dynamic processes enabled us to identify key reactions 277

under different parameter sets and generate testable hypotheses used to further 278

understand apoptosis execution mechanisms. This same paradigm could be used to 279

generate model-driven hypothesis to test experimentally. 280

DISCUSSION 281

In this paper we present PyViPR, a novel tool to visualize the structure and dynamics 282

of biochemical models. PyViPR integrates a community detection algorithm to organize 283

the nodes of biochemical networks to improve the legibility of large networks. PyViPR 284

provides an intuitive dynamic visualization that facilitates the identification of 285

dominant reaction rates that are either consuming or producing proteins. 286

To illustrate the capabilities of PyViPR, we provided empirical evidence of how 287

visualization of biochemical reaction networks at multiple resolutions and with model 288

dynamics could quickly lead to biological knowledge and hypothesis generation. 289

Visualization of EARM communities (Fig 1) enabled us to identify groups of molecular 290

species that are functionally related to important processes during apoptosis execution, 291

and to the formation of protein complexes. This network organization by communities 292

can show how a specific outcome can be attained through different processes 293

(communities), thus providing an efficient way to identify potential targets to control 294

the signal in complex biochemical networks. Furthermore, Visualization of EARM 295

dynamics enabled us to identify key regulatory proteins in the apoptosis execution 296

process and their dependence in specific parameter values (Fig 2). Overall, PyViPR 297

enables researchers to explore hypotheses about the dynamic regulation of biochemical 298

models within an interactive setting that opens the door for novel workflow paradigms. 299

We believe that PyViPR could be incorporated onto existing modeling and 300

simulation workflows such as those provided by Python-based tools such as Tellurium 301

notebooks [42] and PySCeS [43]. In addition, non-Python users could also take 302

advantage of PyViPR using SBML import, thus providing a generalizable tool for model 303

exploration. In the future, we plan to incorporate more complex community-detection 304

algorithm that consider the weight of the edges for the clustering of nodes. Additionally, 305

we plan to improve the synchronization from the JavaScript frontend to the Python 306

backend to enable users to interactively modify model parameters and components. 307

All the model exploratory analyses, which includes model calibration, visualization, 308

hypothesis exploration, and testing, were performed in Jupyter Notebooks. These 309

notebooks, which are shareable and reusable, contain all the source code, and markup 310

text that explains the rationale for each step in the analysis (See Supplement Section 311
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and LINK). This promotes reproducibility and transparency by enabling other 312

researchers to rerun or expand the presented model analysis. We invite the community 313

to contribute to open-source tools such as PyViPR to improve model analysis and 314

visualization 315

STAR?METHODS 316

KEY RESOURCES TABLE 317

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data
HeLa cells FRET reporter proteins data [37] https://github.com/sorgerlab/earm

Software and Algorithms
PyViPR This paper https://github.com/LoLab-VU/pyvipr
PySB [20] http://pysb.org/
Networkx [24] https://networkx.github.io
Louvain algorithm [25] https://github.com/taynaud/python-louvain
cytoscape.js [23] http://js.cytoscape.org/

CONTACT FOR REAGENT AND RESOURCE SHARING 318

Further information and requests for resources and reagents should be directed to and 319

will be fulfilled by the Lead Contact, Carlos F. Lopez (c.lopez@vanderbilt.edu) 320

METHOD DETAILS 321

PyViPR was developed using Python and JavaScript. The Python package PySB [20] 322

was used to generate biochemical models, and import Bionetgen and SBML models. 323

Networkx [24] was used to generate node edge graphs that store information about 324

model components and simulation results. The louvain algorithm [25] was used to 325

cluster densely connected node in networks. 326

The JavaScript package cytoscape.js [23] was used to render NetworkX graphs, apply 327

layout algorithms to the rendered networks, and enable the dynamic visualization of 328

model simulation results. JavaScript was used to embed the resulting network into a 329

Jupyter Notebook [19]. 330

DATA AND SOFTWARE AVAILABILITY 331

The python package PyViPR is an open-source project under the MIT License. Stable 332

releases of PyViPR are available on pypi and the latest unreleased version can be 333

downloaded from github https://github.com/LoLab-VU/PyViPR. The documentation 334

with examples and description of the available functions is available at 335

https://PyViPR.readthedocs.io. A Jupyter notebook with the code to reproduce all 336

the figures included in the manuscript can be found in binder 337

https://mybinder.org/v2/gh/LoLab-VU/PyViPR/master. 338

Supporting information 339

June 3, 2019 10/17

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/659367doi: bioRxiv preprint 

https://github.com/LoLab-VU/PyViPR
https://PyViPR.readthedocs.io
https://mybinder.org/v2/gh/LoLab-VU/PyViPR/master
https://doi.org/10.1101/659367
http://creativecommons.org/licenses/by-nc/4.0/


Figure S1. Network visualization modes in PyViPR. PyViPR supports four 340

major modes of network visualization. (A) A bipartite graph where one set of nodes 341

represents the model species, the second set of nodes represents model model rules, and 342

the edges connect reactant and product species with their corresponding rule. (B) A 343

unipartite graph where each node represents a chemical species and edges represent 344

biochemical interactions. (C) A compound graph where the nodes are grouped by the 345

compartments on which they are located. (D) Snapshot of dynamic visualization in a 346

unipartite graph. Nodes represent chemical species, edges represent biochemical 347

reactions, and the pie charts inside nodes represent species concentration over time. 348

Figure S2. Names of functions to create model visualizations and the 349

model components included in a network. There are three types of model 350

components that can be used for visualization purposes. The first one are the primary 351

nodes which correspond to model species, rules and reactions. Second is the compound 352

nodes that include model compartment, modules/files, and communities detected by 353

clustering algorithms. Finally, we have the dynamics information which correspond to 354

the simulation results of a model. The marked check-boxes for each of the functions are 355

the information displayed in a network. 356

Figure S3. Communities detected in EARM. Species network of EARM. Each 357

of the nodes represents a molecular species defined in the model, and the edges depict 358

the interactions between species. Species nodes are clustered in 8 groups. These are the 359

communities, labeled from 0 to 7, detected by the Louvain algorithm 360

Table S4. Values of EARM calibrated parameters 361

Video S5. Video of signal execution for parameter set 1 in EARM. 362

Video S6. Video of signal execution for parameter set 2 in EARM. 363
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Figure S2.
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Figure S3.
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