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Abstract. Traumatic events can lead to lifelong inflexible adaptations in threat 9 

perception and behavior which characterize posttraumatic stress disorder (PTSD). This 10 

process involves associations between sensory cues and internal states of threat and 11 

then generalization of the threat responses to previously neutral cues. However, most 12 

formulations neglect adaptations to threat that are not specific to those associations. In 13 

order to incorporate non-associative responses to threat, we propose a computational 14 

theory of PTSD based on adaptation to the frequency of traumatic events using a 15 

reinforcement learning momentum model. Recent threat prediction errors generate 16 

momentum that influences subsequent threat perception in novel contexts. This model 17 

fits data acquired from a mouse model of PTSD, in which unpredictable footshocks in 18 

one context accelerate threat learning in a novel context. The theory is also consistent 19 

with epidemiological data showing that PTSD incidence increases with the number of 20 

traumatic events, as well as the disproportionate impact of early life trauma. Since the 21 

theory proposes that PTSD relates to the average of recent threat prediction errors 22 
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rather than the strength of a specific association, it makes novel predictions for the 23 

treatment of PTSD. 24 

 25 

Introduction 26 

 Computational psychiatry seeks to define psychiatric disorders in terms of 27 

fundamental algorithms for survival rather than only as pathological states (1-3). 28 

Quantitative models may allow personalization of mental health care, insight into the 29 

nature of the disorder, inform neurobiological investigations into psychiatric disorders, or 30 

predict the trajectory of symptoms (4-6). For example, depression has been conceived 31 

as an adaptation to periods of low reward availability (7). Similarly, hallucinations have 32 

been conceptualized as resulting from excessive weighting of prior expectations for 33 

auditory stimuli in a Bayesian model (8-9). One approach to describing a computational 34 

function of a neural system is using David Marr’s three levels of analysis (10) (Figure 35 

1A), which seeks to map connections between computational goals, algorithmic 36 

procedures to achieve them, and the neurobiological substrate underlying these 37 

processes. 38 

 Posttraumatic stress disorder has a computational description that organizes 39 

theory and neurobiological data across Marr’s three levels - associative fear learning 40 

(Figure 1B, refs. 11-15). Learning models have been successfully applied to PTSD and 41 

underlie current conceptualizations of the disorder and treatment options (16-17). PTSD 42 

is seen as an extreme outcome of associative fear learning, which in turn is a 43 

fundamental mechanism for predicting threats based on previous experience (18). In 44 

this model, PTSD occurs when life-threatening situations create potent associations 45 
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between sensory reminders of the traumatic event and the emotional experience of fear 46 

(17). The intensity of this association then motivates a person to avoid (19) future 47 

trauma cues, limits extinction of the fear memory (20), and supports the subsequent 48 

formation of new fear memories via generalization and second-order conditioning (21). 49 

This process can be described mathematically, enabling learning parameters to be 50 

precisely measured during new associative learning in a laboratory setting (18). The 51 

precision with which associative learning can be controlled has enabled neurobiological 52 

studies into circuit mechanisms in both humans and animals (22). 53 

 In contrast, non-associative learning – increases (sensitization) or decreases 54 

(habituation) in response to a repeated stimulus (23) – is a prominent component of 55 

PTSD that lacks a formal algorithmic description (Figure 1B). In humans, repeated 56 

traumatic events increase the probability of developing PTSD and may change the 57 

nature of the disorder (24-25). Core PTSD symptoms, such as hyperarousal, inherently 58 

involve an exaggerated response to sensory cues – importantly, these cues need not be 59 

associated with the traumatic event to trigger the response (26) but may instead result 60 

from sensitization of neuromodulatory systems (27-28). Neurobiological studies in 61 

animals have shown that stress enhances both innate defensive behaviors (29) and 62 

learning about unrelated fear cues (30). There are conceptual models of how 63 

habituation and sensitization occur (Dual Process Theory, ref. 31; Wagner-Koniorsky 64 

Theory, ref. 32), which center the role of arousal in changing the response to a stimulus 65 

with repetition. However, these models lack the algorithmic detail and clear relation to 66 

survival value of Rescorla-Wagner and related reinforcement learning (RL) models (33). 67 
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This has limited the ability to parametrically manipulate and therefore understand non-68 

associative learning in PTSD patients and animal models.  69 

Here, we posit an ecological role for non-associative learning in estimating the 70 

frequency of predator attacks (or other violence). We then apply a Bayesian approach 71 

to understand how well an ideal agent could estimate predation risk from its own life 72 

history. We show that a natural consequence of this approach is that early life trauma 73 

has disproportionate impact on estimated risk even when controlling for the number of 74 

traumatic events. After describing the behavior of such an ideal Bayesian agent, we turn 75 

to a recently developed RL model (7, 34-36) in order to integrate associative and non-76 

associative learning. Non-associative learning becomes more important as traumas 77 

occur in more different contexts and less distant times. The RL model points towards 78 

novel interventions and future neurobiological approaches to improve PTSD symptoms.   79 

  80 

Methods 81 

Models of threat estimation. Two models of threat estimation are identified and 82 

compared: (1) a Bayesian model, in which an agent experiences events (attacks) and 83 

attempts to estimate the frequency of those attacks and (2) a reinforcement learning 84 

agent, which experiences events (attacks) in contexts (all attacks occur in different 85 

contexts) over time and must estimate the threat in each environement. The 86 

reinforcement learning model is then compared with behavioral data for a mouse 87 

undergoing a stress procedure. 88 

     Bayesian attack model. At each time step, events (attacks) are binomially 89 

distributed with probability of attack �� for 700 time steps (Figure 2a). Deaths occur with 90 
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probability �� contingent on an attack occurring. The agent’s estimate of �� and �� is 91 

derived from the sequence of attack observations (�� � 0,0,1 … 0) according to Bayes’ 92 

rule 93 

���� , ��|��

� � ����|��,��	����,��	


������,��	���
  (1) 94 

 using a Markov Chain Monte Carlo sampler with a flat prior at time t=0. Specifically, an 95 

affine invariant ensemble MCMC sampler (MCMC Hammer, ref. 37) toolbox for Matlab 96 

with 31 walkers was used to estimate the posterior. For subsequent timepoints, 97 

Bayesian estimation is performed with the prior distribution as the posterior of the 98 

previous time step. 99 

 Autocorrelated attack rate time series were generated for an AR(1) 100 

autoregressive process  101 

��,� � ���,��   ��0,0.1�,  (2) 102 

where ��,� is the attack rate at time t, � is a constant equal to the correlation of 103 

successive time steps, and ���, �� is normally distributed noise with mean � and 104 

standard deviation �. Simulations used the arima function in Matlab. N=10,000 105 

simulated lifetime attack rate time series were generated, then for each an agent’s 106 

experienced attack time series was generated and the MCMC Hammer estimator was 107 

then used to progressively estimate attack rates as above. 108 

     Reinforcement learning models. In temporal difference learning, threat at time t in 109 

context c (��,�) is learned from a sequence of unconditioned stimuli (��) which produce 110 

prediction errors according to 111 

��,� � ��,��   ���� � ���,���,  (3) 112 
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where � is a learning rate and � is a decay rate constant. Equation 3 is referred to as 113 

RL model in the Results section, and describes the formation of associative threat 114 

learning. The addition of a momentum term (7) allows prediction errors from different 115 

states to influence one another according to an RL momentum model 116 

��,� � ��,��   ���� � ���,���  ���,  (3) 117 

where f is a scaling constant and �� is the momentum at time t. This momentum term is 118 

defined by  119 

�� � ���  �� ∑ ���� � ��,�������,�,… �   (4) 120 

in which the sum of decayed prediction errors across all contexts � � ��, �, …   with 121 

momentum decay constant ��. This can lead to either oscillatory behavior or slow 122 

summation of prediction errors across states depending on ��. Reinforcement learning 123 

models (RL – equation 3, RL with momentum – equation 4) were fit to smoothed 124 

freezing (sliding window, 15s) on days 1, 6, and 7. Inputs to the model were shock times 125 

and threat was fit for both Context A and Context B. Parameters for each model were fit 126 

using maximum likelihood estimation in Matlab. Maximum likelihood fit was compared 127 

by calculating the Bayes Information Criterion (BIC) for RL and RL with momentum 128 

models at the single animal level for both stressed and unstressed mice.  129 

Stress enhanced fear learning. All procedures were carried out in accordance with the 130 

ethical guidelines of the National Institutes of Health and were approved by the 131 

Institutional Animal Care & Use Committee of Yale University. 8-12 week old C57Bl/6 132 

male mice were stressed using using the Stress-Enhanced Fear Learning model (30), 133 

which has been shown to lead to long-lasting enhancement of fear and anxiety 134 

behaviors in both mice (30) and rats (38). This model consists of 15 unpredictable 135 
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footshocks (1mA, 1s) with random intershock intervals between 4 and 8 minutes. For 136 

contextual fear experiments, a second context (Context B) was used on day 6, in a 137 

separate room with different ambient auditory, visual, tactile, and olfactory 138 

characteristics. On Day 6, a single 1mA 1s shock was administered after 5 minutes, and 139 

then freezing was assessed for 5 more minutes. On day 7, mice were returned to 140 

Context B for 10 minutes. MedAssociates boxes were used for all footshock 141 

experiments, and freezing was assessed as complete cessation of movement other 142 

than breathing (motion <18 a.u.) with automated VideoFreeze software. 143 

 144 

Results 145 

 Previous approaches to computational modeling of PTSD have focused on 146 

defining changes in associative learning after traumatic experience (11-15). PTSD is 147 

thus framed as a consequence of underlying mechanisms for predicting threat based on 148 

previous associations. In contrast, we were interested in whether PTSD might arise 149 

from an agent estimating the frequency of threat exposure. In order to determine how 150 

an ideal observer would estimate the frequency of threat exposure, we first posit a 151 

simplified model of exposure to repeated traumatic events. By constructing an ideal 152 

Bayesian observer of these traumatic events, we establish a baseline for what can be 153 

inferred from repeated events without association. We then turn to a recently developed 154 

reinforcement learning model (7, 34-36) to integrate non-associative learning (about the 155 

frequency of threat) with associative learning (about the associations of threat). Finally, 156 

we fit the reinforcement learning model to data derived from mice undergoing Stress-157 

enhanced Fear Learning (SEFL), a rodent model of PTSD (30). We then consider the 158 
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implications of our findings for treatment and future research into the neurobiology of 159 

PTSD. 160 

Model 1 – PTSD as trauma rate estimation 161 

 An organism must estimate the threat of violence to adapt to it. This process of 162 

estimation must necessarily involve information gathered across timescales, since 163 

threat may increase suddenly or may increase over long periods (39). Longer timescale 164 

estimation of threat involves integrating experience in disparate environments.  165 

 To consider a concrete example: predator attacks are events which carry a 166 

significant probability of death (20% for mice exposed to an owl, ref. 40). If the 167 

probability of death is high, then the animal will experience few attacks before dying 168 

(Figure 2B). In this information-poor environment, the animal must maximize the 169 

available information in estimating the rate of such attacks. In order to determine how 170 

well an ideal observer could do under such conditions, we constructed a simple 171 

probabilistic model with a fixed probability of attacks �� and probability of dying per 172 

attack  ��  at each time point (Figure 2A). Using a Markov Chain Monte Carlo sampler, 173 

we were able to estimate the posterior distribution of �� (Figure 2C), which makes it 174 

possible to identify the estimate available to a Bayesian observer. As expected, 175 

variance in �� decreases progressively over the lifetime of the agent as more samples 176 

become available (Figure 2D).  177 

 The disproportionate impact of early life stress (ELS) on adult behavior (39) is 178 

explained by the Bayesian trauma rate model. Childhood traumatic experiences have a 179 

strong impact on adult brain structure and function (41). Life History Theory explains 180 

this by positing that stressful experiences in childhood provide information about 181 
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organismal strategies that will be adaptive in the adult environment (42). We evaluated 182 

the Bayesian trauma rate estimator in two scenarios with the same total number of 183 

traumatic events, one in which traumas occur early in life (ELS) and one in which they 184 

are spread across the lifespan (Figure 3A). Variance in �̂�  decreases with time in both 185 

models, as traumatic events reduce uncertainty in the true rate of violence (Figure 3B). 186 

However, over the course of the lifespan the ELS model shows a higher estimated rate 187 

of violence (�̂�). Thus, the increased response to ELS does not require specialized 188 

critical period mechanisms, but instead arises naturally in a normative estimator of 189 

violence rate.  190 

Model 2 – PTSD as threat momentum 191 

Normative Bayesian models can explain the performance of an ideal behavior, 192 

but are difficult to implement in biological systems due to the computational difficulty in 193 

integrating probability distributions to find the posterior (43). It can therefore be useful to 194 

define more biologically plausible models which can then be compared to the 195 

performance of the ideal Bayesian observer (37). Reinforcement learning (RL) is a 196 

flexible class of models that can be used to learn in real time from experience. Unlike 197 

Bayesian models, RL involves updating stored values of stimuli or actions based on set 198 

learning rules. Parameters of RL models can then be fit to empirical behavioral data of 199 

animals or human subjects, to derive differences in parameters between groups. RL 200 

models can also be used to explain learning processes, or to identify neural processes 201 

that map onto learning processes. 202 

In this section, we propose that a recently proposed RL momentum model (7, 34-203 

36) can explain features of PTSD not explained by classical associative learning 204 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2019. ; https://doi.org/10.1101/659425doi: bioRxiv preprint 

https://doi.org/10.1101/659425
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

models. Traumatic events may come in clusters, so learning from trauma involves 205 

combining information from distinct experiences that occur close in time. The 206 

momentum model as applied to neuropsychiatric disorders suggests that a common 207 

tendency, or mood, may underlie motivated behaviors over a period of time. For intuition 208 

into the reason why traumatic events occur together, consider an agent subject to 209 

predation risk. Empirical measurements of predator-prey interactions confirm the 210 

existence of large fluctuations in predator number (39), which are also predicted by 211 

mathematical models of predator-prey interactions such as the Lotka-Volterra 212 

equations. In order to adapt to time-varying predator rates, an organism must be 213 

capable of tracking the rate of attacks it experiences. 214 

Classical RL models, such as temporal difference learning (Figure 4A), enable an 215 

organism to associate threatening experiences with the context in which they are 216 

experienced. However, threats in one context do not influence threats in another (Figure 217 

4A). In contrast, in the RL-momentum model, traumatic events occurring close in time 218 

but in unrelated environments contribute to a slowly varying momentum term (Figure 219 

4B), which can be thought of as a pervasive mood biasing subsequent experience. 220 

Momentum carries information about recent threats, allowing the agent to correctly 221 

assess risk in a changing environment. The ideal length of time for momentum to persist 222 

depends on how long threats persist (Figure 4C). When attacks are uncorrelated in 223 

time, there is no advantage to momentum and the optimal momentum learning rate 224 

(highest correlation to the underlying threat rate) is zero, reducing the RL momentum 225 

model to a classical RL model. When attacks are correlated (Figure 4C, light blue), a 226 

substantial improvement in threat estimation can be obtained by including the 227 
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momentum parameter. The long-time scale of optimal threat adaptation offers a 228 

potential explanation for the persistence of PTSD symptoms. If threat momentum, rather 229 

than the specific association with the initial traumatic event, were the source of PTSD 230 

symptoms, then this would have substantial implications for the understanding of PTSD.  231 

To test this idea, we induced stress in a mouse model of PTSD (Stress-232 

Enhanced Fear Learning; SEFL) and compared the performance of temporal difference 233 

learning (RL model) and a momentum model (RL momentum model) in explaining 234 

defensive behavior (Figure 5). In this model, mice receive unpredictable footshocks in 235 

one context (Context A) and then show sensitized threat responses to a single 236 

footshock in another context (Context B) later (Figure 5A, top). The RL momentum 237 

model fits the observed freezing behavior (Figure 5A, bottom) well, showing a 238 

disproportionate freezing response to the single footshock in a novel context. This 239 

sensitized freezing behavior can be explained by the momentum term in the model, 240 

which links the threat prediction errors produced across contexts. 241 

We compared Maximum Likelihood fits between the RL and RL momentum 242 

models (n=18 unstressed, n=17 stressed mice), using the Bayes Information Criteria 243 

(BIC; Figure 5B). When the momentum learning parameter (") is zero, the two models 244 

are equivalent, but the the RL momentum model has a greater number of parameters (4 245 

for RL momentum, 2 for RL model). Since the BIC penalizes the number of parameters, 246 

this produces model fits where the RL model is preferred (for unstressed mice, RL 247 

model was preferred in 17/18 animals). For stressed mice, however, the BIC strongly 248 

favored fits from the RL momentum model (14/17 animals). The RL momentum model 249 
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predicts greater freezing in a novel context in stressed animals than the RL model, 250 

which accounts for the improved predictions over the RL model. 251 

The RL-momentum model of PTSD presents an additional learning mechanism 252 

by which PTSD symptoms may be ameliorated. In the classical RL model of PTSD, 253 

extinction learning (Figure 6A) works to reduce PTSD by generating small prediction 254 

errors when the agent is re-exposed to the traumatic context. This approach underlies 255 

evidence-based psychological therapies for PTSD, such as prolonged exposure and 256 

cognitive reprocessing therapy. The RL momentum model retains extinction of learned 257 

associations, but the threat prediction errors generated by extinction also generate 258 

negative momentum that reduces responses to novel threats (Figure 6B). This model 259 

also offers a novel perspective on treatment failure of exposure therapy in PTSD.  260 

Current learning-based accounts of this phenomenon posit that individuals may 261 

experience extinction renewal or extinction resistance, in which either extinction fails to 262 

occur or in which the extinction memory may be specific to the context in which it was 263 

generated (e.g., the therapy session). In contrast, the RL momentum proffers a simple 264 

explanation – unrelated mild stressors generate threat momentum, which increases 265 

threat associated with the original traumatic context (Figure 6C). Similarly, an 266 

implication of this model is that exposure to novel threats independent of the traumatic 267 

context could reduce threat momentum. For example, an agent encountering an intense 268 

innate threat (e.g., standing on the side of a high cliff) without injury might experience a 269 

strong negative prediction error which would reduce threat momentum for the same 270 

reason as exposure to a cue associated to a traumatic event.  271 

Discussion  272 
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We formulated PTSD as a learning process directed at estimating the rate of 273 

trauma rather than the specific associations with the trauma. The Bayesian formulation 274 

of this problem treated the agent experiencing trauma as an ideal observer. We found 275 

that the rate of traumatic events could be estimated well by this agent. Early life trauma 276 

had disproportionate impact in this model even without specialized mechanisms for 277 

amplifying early life experience. We applied the reinforcement learning momentum 278 

model to PTSD, and found that RL-momentum performs well when violence is clustered 279 

in time. The slower the change in trauma rate, the more momentum contributes to 280 

optimal learning from traumatic stress. This model also offers a novel conceptualization 281 

of extinction learning, and suggests that exposure to unassociated strong threats could 282 

affect threat momentum. Understanding the impact of innate danger on threat 283 

momentum requires further modeling and empirical investigation, since exposure to 284 

innate threat could lead to either positive or negative changes in threat momentum. 285 

Previous formal approaches to learning in PTSD have focused primarily on 286 

associative mechanisms. However, experimental observations of sensitization to new 287 

threats by previous stress are often used to model PTSD (26,29-30). We show that 288 

stress sensitization of threat, a model of PTSD, is well fit by the RL-momentum model. 289 

However, our ability to precisely fit the parameters of the RL-momentum model is 290 

limited by the binary nature of the stress in this dataset. Full validation and parameter-291 

fitting for the RL-momentum model will require more precise manipulations of the 292 

sequence of threat prediction errors over time.  293 

A further limitation of this study is that we did not consider parameter regimes 294 

that may give rise to habituation (decrease in response to repeated stimuli). Both 295 
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sensitization and habituation can occur in the RL-momentum model, depending on 296 

chosen parameters (7). In PTSD, habituation has recently been suggested as an 297 

outcome of repeated trauma (44), and may relate to the numbing symptoms in PTSD. 298 

Habituation and sensitization have been thought of as separate processes which 299 

competitively modulate responses to repeated stimuli (45). PTSD involves both 300 

excessive (hyperarousal) and decreased (numbing) emotional reactions occur after 301 

traumatic stress (45-47). A more complete model of the impact of a sequence of threat 302 

prediction errors on subsequent emotional responses may explain this apparent 303 

contradiction. 304 

Future progress in understanding the role of non-associative learning in PTSD 305 

may depend on measuring the neural substrate of threat momentum (or estimated 306 

attack rate in the Bayesian model). Applying David Marr’s three levels of analysis to 307 

non-associative learning from threat (Figure 1), we have defined the computational 308 

problem (“predicting future threats based on a sequence of attacks”) that must be 309 

solved. We have compared two algorithms for accomplishing this goal: Bayesian MCMC 310 

sampling and RL momentum. We find the RL momentum model offers a formal 311 

mathematical approach at the implementation level which explains clinical features of 312 

PTSD and behavior in a mouse model of PTSD. However, the implementation level of 313 

the RL momentum has not been identified. 314 

Identifying PTSD with threat momentum may facilitate future neurobiological and 315 

translational studies of PTSD. Extensive work has shown that patients with PTSD have 316 

different learning rate parameters during fear and extinction learning (11-15) than 317 

controls in the formation of associations. This study extends these findings by offering a 318 
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model of how the sequence of threat prediction errors may generate other associative 319 

learning alterations in PTSD. The neurobiological correlates of threat momentum would 320 

be slowly varying summing functions of previous threat prediction errors which sensitize 321 

defensive behaviors, such as neuromodulatory systems (29) or molecular switches 322 

leading to persistent neural changes (48). Future extensions of this approach may link 323 

effects of arousal on learning rates (rather than overall threat) to averaged recent threat 324 

prediction errors, similar to Pearce-Hall learning (49). Thus, the present study may 325 

facilitate future work linking non-associative and associative mechanisms in PTSD. 326 

Such links are evident in behavioral and epidemiological data and have plausible 327 

biological mechanisms, but have previously lacked a computational model to facilitate 328 

the design of future experiments. 329 

  330 
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 466 

 467 
Figure 1 – David Marr’s Levels of Analysis for computational neuroscience as applied to 468 

PTSD. (A) Definition of the three levels of analysis from ref. 7. (B) Application of those 469 

levels to associative learning (left) and non-associative learning (right) in PTSD. (left) 470 

Associative learning is a well-characterized system with a clear computational goal of 471 

ethological relevance (Computational), a mathematically defined formal model 472 

(Algorithm), and neural circuit mechanisms (Implementation).  (right) Non-associative 473 

learning is less well-understood. The goal posited here is that it’s purpose is to predict 474 

threats based on repetition of traumatic events (Computational). Schematized models 475 

exist (Algorithmic) but lack a formal mathematical model, and the neurobiological 476 

correlates of this are not fully understood (Implementation). 477 
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 478 

Figure 2 - A Bayesian observer can measure the rate of traumatic attacks. (A) 479 

Schematic of a simplified doubly stochastic model of attacks (i.e., traumatic events). 480 

Attacks occur randomly at each timepoint with a fixed probability �� . Conditional on 481 

attacks occurring, agents die with probability ��. If agents survive, they estimate the 482 

ongoing probability of attacks according to Bayes’ rule. (B) Agents must estimate �� and 483 

�� in an information-poor environment. The number of attacks experienced by the 484 

typical agent is low, usually 3-5 over the course of a lifetime for ��=0.2, a typical value 485 

for the lethality of predator attacks (30). (C) The Bayesian estimator of the posterior 486 

estimates of �� and �� for a typical example sequence of attacks (�� � 0.01, �� � 0.2� 487 

shows convergence for �� (blue)and for �� (green). The autocorrelation of the MCMC 488 

sampler goes to zero rapidly at long timelags for both parameters, demonstrating 489 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2019. ; https://doi.org/10.1101/659425doi: bioRxiv preprint 

https://doi.org/10.1101/659425
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

convergence in the MCMC sampler. (D) As the agent continues over its lifetime (red to 490 

blue map), the estimate of �� slowly narrows (vertical lines, 95% intervals). Greater time 491 

allows the agent to accumulate greater evidence about the true value of ��. 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 
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  502 

Figure 3 – Early life traumas have a disproportionate effect on the estimated attack rate. 503 

(A) Characteristic examples of two distributions of attack frequencies. In the random 504 

attack model, attacks are uniformly distributed across the lifespan. In the early life stress 505 

(ELS) model, an identical number of attacks are uniformly distributed across the first 506 

half of the lifespan. (B) Bayesian agents’ posterior distributions for attack rate 507 

sequentially measured across the lifespan, for the random and early attack models (�� 508 

= 0.01 and �� � 0.2�  . The discrepancy between estimated and true attack rate is 509 

greatest at the start of life due to a higher density of attacks in the early life stress 510 

model. Over the course of the lifespan, these two models arrive at similar estimates.  511 

  512 
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 513 

 514 
Figure 4 – Varying attack rates lead to misestimation of trauma rate. (A) Autoregressive 515 

time series are random processes where adjacent timepoints are correlated according 516 

to $� � �$��   ��0,0.1� . The consequence of this is that the random attack rate $ is 517 

correlated across longer timescales, depending on the value of c. Timescales of 518 

correlation are shown for five values of c, from lowest (dark blue) to highest (light blue). 519 

(B) Example attack rates produced by such an autoregressive time series.  (C) These 520 

example attack rates can then be used to produce attack sequences for each c value, 521 

which can enable analysis of the performance of an optimal Bayesian agent. For 522 

n=10000 simulations per autocorrelation (c) value, the error of estimated attack rates is 523 

highest for long timescales of autocorrelation.  524 
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 525 
Figure 5 – Reinforcement learning with momentum allows improved estimation of 526 

autocorrelated attack rates. (A) Single traumatic events occur in different environmental 527 

states (contexts), leading to increased associated threat according to the RL model. (B) 528 

In the RL momentum model, the same series of attacks produces momentum which 529 

couples threat across contexts. Context C threat is due to momentum since the animal 530 

receives no footshocks in that state. (C) The momentum learning rate term of the RL 531 

momentum model enables extraction of information about fluctuating attack rates. 532 

Autoregressive attack rates were produced as shown in figure 3 to produce n=10000 533 

simulated attack sequences (light blue, highest autoregression to dark blue, lowest 534 

autoregression). All attacks occur in a different context. In the absence of momentum, 535 

the agent cannot extract information about fluctuations in underlying attack rate. With 536 

higher momentum, the agent can extract information about the underlying attack rate 537 

fluctuations. 538 

 539 
 540 
 541 
  542 
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 543 

Figure 6 – RL momentum fits threat behavioral data in a mouse model of PTSD. (A) 544 

Example mouse behavioral data across three days of in the stress-enhanced fear 545 

learning model of PTSD (upper), along with RL momentum fit to behavioral data (lower). 546 

(upper left) Freezing across 90 minutes (red) of exposure to 15 unpredictable 547 

footshocks (black; 1mA, 1s). (upper center) Freezing across subsequent exposure to 1 548 

uncued footshock in a new context. (upper right) Freezing during re-test in the new 549 

context (lower left) Threat according to maximum likelihood model fit of the RL 550 
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momentum model (threat associated with context A – blue, context B- green) on day 1, 551 

(lower center) day 6, and (lower right)  day7. (B) Model comparison between classic RL 552 

model and RL momentum model for SEFL mice (n=17 stressed, n=18 controls). Bayes 553 

information criterion (BIC) was calculated (see Methods) for maximum likelihood fits of 554 

the RL model and RL momentum model for either unstressed animals (0 shocks on day 555 

1) or stressed animals (15 shocks on day 1). Difference in BIC between the two models 556 

is shown for individual animals (gray dots; black dot for example data from (A)), mean 557 

BIC difference per condition as bars (blue – unstressed, pink – stressed). 558 

 559 

 560 
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 562 

563 

Figure 7 – RL momentum model offers a new perspective on mechanisms of extinction 564 

and symptom exacerbation in PTSD. (A) RL model: Two traumatic events in an initial 565 

context (context A; blue highlight) produce threat learning associated with that context 566 

(blue line) but no threat associated with a novel contet (context B; green line) during 567 

exposure to that context (green highlights). Extinction occurs when exposure to the 568 

initial context A after the traumatic events causes threat prediction errors which 569 

decrease threat associated with context A (blue highlights, second and third exposures).570 

(B) RL momentum model: Two traumatic events in initial context produce a momentum 571 

which increases threat in a novel context (green line). Re-exposure to initial threat 572 

context (context A; blue highlights) reduces threat associated with context A (blue line) 573 

but also reduces threat momentum (green line). Green dotted line shows counterfactual 574 

threat momentum if no re-exposure to context A had occurred). (C) RL momentum 575 

model demonstrates a novel explanation for relapse during exposure therapy. Exposure 576 

to smaller stressors (small lines) in a novel context increases threat associated with 577 

context B (green line) but also, via the momentum term, increases threat associated 578 

with the initial traumatic context A (blue line). 579 
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