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ABSTRACT

Long non-coding RNAs (lncRNAs) have emerged as key coordinators of biological and cellular processes. Characterizing
lncRNA expression across cells and tissues is key to understanding their role in determining phenotypes including disease.
We present here FC-R2, a comprehensive expression atlas across a broadly-defined human transcriptome, inclusive of over
100,000 coding and non-coding genes as described by the FANTOM CAGE-Associated Transcriptome (FANTOM-CAT) study.
This atlas greatly extends the gene annotation used in the original recount2 resource. We demonstrate the utility of the FC-R2
atlas by reproducing key findings from published large studies and by generating new results across normal and diseased human
samples. In particular, we (a) identify tissue specific transcription profiles for distinct classes of coding and non-coding genes,
(b) perform differential expression analysis across thirteen cancer types, providing new insights linking promoter and enhancer
lncRNAs expression to tumor pathogenesis, and (c) confirm the prognostic value of several enhancers in cancer. Comprised of
over 70,000 samples, FC-R2 will empower other researchers to investigate the roles of both known genes and recently described
lncRNAs. Access to the FC-R2 atlas is available from https://jhubiostatistics.shinyapps.io/recount/, the
recount Bioconductor package, and http://marchionnilab.org/fcr2.html.
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Introduction

Long non-coding RNAs (lncRNAs) are commonly defined as transcripts devoid of open reading frames (ORFs) longer than

200 nucleotides, which are often polyadenylated. This definition is not based on their function, since lncRNAs are involved in

distinct molecular processes and biological contexts not yet fully characterized1. Over the past few years, the importance of

lncRNAs has been clarified, leading to an increasing focus on decoding the consequences of their modulation and studying

their involvement in the regulation of key biological mechanisms during development, normal tissue and cellular homeostasis,

and in disease1–3.

Given the emerging and previously underestimated importance of non-coding RNAs, the FANTOM consortium has initiated

the systematic characterization of their biological function. Through the use of Cap Analysis of Gene Expression sequencing

(CAGE-seq), combined with RNA-seq data from the public domain, the FANTOM consortium released a comprehensive atlas

of the human transcriptome, encompassing more accurate transcriptional start sites (TSS) for coding and non-coding genes,

including numerous novel long non-coding genes: the FANTOM CAGE Associated Transcriptome (FANTOM-CAT)4. We

hypothesized that these lncRNAs can be measured in many RNA-seq datasets from the public domain and that they have been

so far missed by the lack of a comprehensive gene annotation.

Although the systematic analysis of lncRNAs function is being addressed by the FANTOM consortium in loss of function

studies, increasing the detection rate of these transcripts combining different studies is difficult because the heterogeneity

of analytic methods employed. Current resources that apply uniform analytic methods to create expression summaries from

public data do exist but can miss several lncRNAs because their dependency on a pre-existing gene annotation for creating the

genes expression summaries5, 6. We recently created recount27, a collection of uniformly-processed human RNA-seq data,

wherein we summarized 4.4 trillion reads from over 70,000 human samples from the Sequence Reads Archive (SRA), The

Cancer Genome Atlas (TCGA)8, and the Genotype-Tissue Expression (GTEx)9 projects7. Importantly, recount2 provides

annotation-agnostic coverage files that allow re-quantification using a new annotation without having to re-process the RNA-seq

data.

Given the unique opportunity to access lastest results to the most comprehensive human transcriptome (the FANTOM-

CATproject) and the recount2 gene agnostic summaries, we addressed the previous described challenges building a comprehen-

sive atlas of coding and non-coding gene expression across the human genome: the FANTOM-CAT/recount2 expression atlas

(FC-R2 hereafter). Our resource contains expression profiles for 109,873 putative genes across over 70,000 samples, enabling

an unparalleled resource for the analysis of the human coding and non-coding transcriptome.

Results

Building the FANTOM-CAT/recount2 resource

The recount2 resource includes a coverage track, in the form of a BigWig file, for each processed sample. We built the

FC-R2 expression atlas by extracting expression levels from recount2 coverage tracks in regions that overlapped unambiguous

2/18

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/659490doi: bioRxiv preprint 

https://doi.org/10.1101/659490
http://creativecommons.org/licenses/by-nd/4.0/


exon coordinates for the permissive set of FANTOM-CAT transcripts, according to the pipeline shown in Figure 1. Since

recount2’s coverage tracks does not distinguish from between genomic strands, we removed ambiguous segments that presented

overlapping exon annotations from both strands (see Methods section). After such disambiguation procedure, the remaining

1,066,515 exonic segments mapped back to 109,869 genes in FANTOM-CAT (out of the 124,047 starting ones included in the

permissive set4). Overall, the FC-R2 expression atlas encompasses 2,041 studies with 71,045 RNA-seq samples, providing

expression information for 22,116 coding genes and 87,763 non-coding genes, such as enhancers, promoters, and others

lncRNAs.

Figure 1. Overview of the FANTOM-CAT/recount2 resource development. FC-R2 leverages two public resources, the
FANTOM-CAT gene models and recount2. FC-R2 provides expression information for 109,873 genes, both coding (22,110)
and non-coding (87,693). This latter group encompasses enhancers, promoters, and others lncRNAs.

Validating the FANTOM-CAT/recount2 resource

We first assessed how gene expression estimates in FC-R2 compared to previous gene expression estimates from other projects.

Specifically, we considered data from the GTEx consortium (v6), spanning 9,662 samples from 551 individuals and 54 tissues

types9. First, we correlated gene expression levels between the FC-R2 atlas and quantification based on GENCODE (v25) in

recount2 for the GTEx data, observing a median correlation � 0.986 for the 32,922 genes in common. This result supports the

notion that our pre-processing steps to disambiguate overlapping exon regions between strands did not significantly alter gene

expression quantification.

Next, we assesed whether gene expression specificity, as measured in FC-R2, was maintained across tissue types. To

this end, we selected and compared gene expression for known tissue-specific expression patterns, such as Keratin 1 (KRT1),

Estrogen Receptor 1 (ESR1), and Neuronal Differentiation 1 (NEUROD1) (Figure 2). Overall, all analyzed tissue specific

markers presented nearly identical expression profiles across GTEx tissue types between the alternative gene models considered
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(see Figure 2 and S1), confirming the consistency between gene expression quantification in FC-R2 and those based on

GENCODE.

Figure 2. Tissue specific expression in GTEx. Log2 expression for three tissue specific genes (KRT1, NEUROD1, and
ESR1) in GTEx data stratify by tissue type using FC-R2 and GENCODE based quantification. Expression profiles are highly
correlated and expressed consistently in the expected tissue types (e.g., KRT1 is most expressed in skin, NEUROD1 in brain,
and ESR1 in estrogen sensitive tissue types like uterus, Fallopian tubes, and breast). Correlations are shown on top for each
tissue marker. Center lines, upper/lower quartiles and Whiskers represents the median, 25/75 quartiles and 1.5 interquartile
range, recpectively.

Tissue-specific expression of lncRNAs

It has been shown that, although expressed at a lower level, enhancers and promoters are not ubiquitously expressed and are

more specific for different cell types than coding genes4. In order to verify this finding, we used GTEx data to assess expression

levels and specificity profiles across samples from each of the 54 analyzed tissue types, stratified into four distinct gene

categories: coding mRNA, intergenic promoter lncRNA (ip-lncRNA), divergent promoter lncRNA (dp-lncRNA), and enhancers

lncRNA (e-lncRNA). Overall, we were able to confirm that these RNA classes are expressed at different levels, and that they

display distinct specificity patterns across tissues, as shown for primary cell types by Hon et al.4, albeit with more variability

likely due to the increased cellular complexity present in tissues. Specifically, coding mRNAs were expressed at higher levels
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than lncRNAs (log2 median expression of 6.6 for coding mRNAs, and of 4.1, 3.8 and 3.1, for ip-lncRNA, dp-lncRNA, and

e-lncRNA, respectively). In contrast, the expression of enhancers and intergenic promoters was more tissue-specific (median =

0.41 and 0.30) than what observed for divergent promoters and coding mRNAs (median = 0.13 and 0.09) (Figure 3). Finally,

when analyzing the percentage of genes expressed across tissues by category, we observed that coding genes are, in general,

ubiquitous, while lncRNAs are more specific, with enhancers showing the lowest percentages of expressed (mean ranging from

88.42% to 41.98%, see Figure 3B), in agreement with the notion that enhancer transcription is tissue specific10.

Figure 3. Expression profiles across GTEx tissues. A) Expression level and tissue specificity across four distinct RNA
categories. The Y-axis shows log2 expression levels representing each gene using its maximum expression in GTEx tissues
expressed as transcripts per million (TMP). The X-axis shows expression specificity based on entropy computed from median
expression of each gene across the GTEx tissue types. Individual genes are highlighted in the figure panels. B) Percentage of
genes expressed for each RNA category stratified by GTEx tissue facets. The dots represent the mean among samples within a
facet and the error bars represent 99.99% confidence intervals. Dashed lines represent the means among all samples.

Differential expression analysis of coding and non-coding genes in cancer

We analyzed coding and non-coding gene expression in cancer using TCGA data. To this end, we compared cancer to normal

samples separately for 13 tumor types, using FC-R2 re-quantified data. We further identified the differentially expressed genes

(DEG) in common across the distinct cancer types (see Figure 4). Overall, the number of DEG varied across cancer types

and by gene class, with a higher number of significant coding than non-coding genes (FDR < 0.01, see table 1). Importantly,

a substantial fraction of these genes was exclusively annotated in the FANTOM-CAT, suggesting that relying on other gene
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models would result in missing many potential important genes (see Table 1). We then analyzed the consensus among cancer

types. A total of 41 coding mRNAs were differentially expressed across all the 13 tumor types after global correction for

multiple testing (FDR < 10-6, see Supplementary table S1). For lncRNAs, a total of 28 divergent promoters, 4 intergenic

promoters, and 3 enhancers were consistently up- or down-regulated across all the 13 tumor types after global correction for

multiple testing (FDR < 0.1, see Supplementary tables S2, S3, S4, respectively).

Table 1. Differentially expressed genes in cancer. The table below summarizes the number of significant DEG
(FDR  0.01) between tumor and normal samples across the 13 cancer types analyzed for each gene class considered (coding
mRNA, ip-lncRNA, dp-lncRNA, and e-lncRNA). Counts are reported separately for DEG up- and down-regulated in cancer,
and values in parenthesis represents the number of genes exclusively annotated in the FANTOM-CAT gene model. Mean and
standard deviation across cancer types is shown at the bottom.

dp-lncRNA e-lncRNA ip-lncRNA mRNA

Cancer type Total Up Down Up Down Up Down Up Down

Bile 7010 200 (60) 313 (90) 186 (89) 203 (99) 47 (12) 84 (17) 2658 (106) 3319 (97)

Bladder 7680 344 (125) 319 (87) 140 (68) 149 (67) 65 (19) 82 (7) 3112 (201) 3469 (61)

Breast 15290 753 (291) 721 (202) 656 (377) 583 (305) 207 (50) 178 (32) 6109 (296) 6083 (244)

Colorectal 13685 490 (164) 592 (168) 381 (203) 400 (196) 130 (32) 160 (28) 5538 (371) 5994 (132)

Esophagus 4883 87 (21) 193 (50) 90 (38) 184 (103) 40 (11) 48 (2) 1921 (83) 2320 (77)

Head and Neck 10517 442 (138) 401 (96) 267 (139) 251 (112) 100 (23) 109 (18) 4329 (256) 4618 (53)

Kidney 15697 734 (238) 820 (281) 535 (299) 486 (209) 203 (45) 200 (48) 6349 (525) 6370 (114)

Liver 10554 346 (94) 395 (106) 230 (102) 248 (123) 90 (16) 112 (19) 4164 (174) 4969 (95)

Lung 17143 864 (338) 835 (304) 893 (512) 729 (396) 242 (76) 213 (39) 7523 (532) 5844 (212)

Prostate 13183 686 (287) 654 (218) 418 (254) 452 (214) 175 (55) 167 (30) 5153 (489) 5478 (128)

Stomach 11309 528 (213) 518 (164) 462 (291) 436 (240) 144 (51) 129 (22) 4509 (558) 4583 (89)

Thyroid 14264 752 (284) 804 (318) 527 (295) 594 (332) 161 (39) 174 (47) 5403 (189) 5849 (308)

Uterus 12906 641 (285) 713 (235) 454 (263) 612 (341) 210 (79) 225 (54) 5135 (335) 4916 (181)

Mean 11855 528 (195) 560 (178) 403 (225) 410 (211) 140 (39) 145 (28) 4762 (317) 4909 (138)

St. Dev 3650 237 (102) 218 (89) 225 (137) 189 (107) 67 (23) 55 (16) 1557 (167) 1234 (77)

Next, we reviewed the literature to assess functional correlates for these consensus genes. Most of the consensus up-

regulated coding genes (Supplementary Table S1) participate in cell cycle regulation, cell division, DNA replication and repair,

and chromosome segregation, and mitotic spindle checkpoints. Most of the consensus down-regulated mRNAs (Supplementary

Table S1) are associated with metabolism and oxidative stress, transcriptional regulation, cell migration and adhesion, and with

modulation of of DNA damage repair and apoptosis.

Down-regulated dp-lncRNAs were mostly those associated with immune cells (e.g., natural killer cells, T cell, and mature

B-cells). Three genes, RP11-276H19, RPL34-AS1, and RAP2C-AS1, were reported to be implicated in cancer (Supplementary

Table S2). The first controls epithelial-mesenchymal transition, the second is associated with tumor size increase, and the

6/18

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/659490doi: bioRxiv preprint 

https://doi.org/10.1101/659490
http://creativecommons.org/licenses/by-nd/4.0/


third is associated with urothelial cancer after kidney cancer transplantation11–13. Among up-regulated dp-lncRNA, SNHG1

(Supplementary Table S2) was implicated in cellular proliferation, migration, invasion of different cancer types, and strongly

up-regulated in osteosarcoma, non-small lung cancer, and gastric cancer14, 15.

Figure 4. Differential expression for selected transcripts from distinct RNA classes across tumor types. Boxplots
showing raw expression levels of differential expressed genes between tumor and normal tissue samples for all 13 tumor types
analyzed. For each tissue of origin, the most up-regulated (on the left) and down-regulated (on the right) gene for each RNA
class is shown. Center lines, upper/lower quartiles and Whiskers represents the median, 25/75 quartiles and 1.5 interquartile
range, recpectively. Color coding on top of the figure indicates the RNA class (red for mRNA, purple for dp-lncRNA, cyan
ip-lncRNA, and green for e-lncRNA. These genes were select after global multiple testing correction (see Supplementary
Tables S1, S2, S3, and S4)

Among the ubiquitously down-regulated ip-lncRNAs (see Supplementary Table S3), LINC00478 has been previously

reported in many different tumors including leukemia, breast, vulvar, prostate, and bladder cancer16–20. In vulvar squamous

cell carcinoma, there is a statistical relationship between LINC00478 and MIR31HG expression and tumor differentiation17.

Additionally, LINC00478 down-regulated in ER positive breast tumors was shown to be associated with progression, recurrence,

and metastasis18. In contrast, increased expression of SNHG17 (an ip-lncRNA, see Supplementary Table S3), was associated

with short term survival in breast cancer, and with tumor size, stage, and lymph node metastasis in colorectal cancer21, 22.

Another ip-lncRNA, AC004463, (Supplementary Table S3), was found up-regulated in liver cancer and metastatic prostate

cancer23. Regarding the last lncRNA category considered here, we could not find any cancer association for common e-lncRNAs,

nevertheless one, RP5-965F6, was previously reported to be up-regulated in late-onset Alzheimer’s disease24. The e-lncRNAs

category also yielded the lowest number of genes in common among all cancer types, reinforcing the concept that lncRNAs,

specially enhancers are expressed in a specific manner (Supplementary Table S4).

Finally, as a prototypical example, we considered prostate cancer (PCa), and we were able to confirm findings from previous
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reports for both coding and non-coding genes (see Supplementary Figure S2). For coding genes, we confirmed differential

expression for known markers of PCa progression and mortality, like ERG, FOXA1, RNASEL, ARVCF, and SLC43A125, 26.

Similarly, we also confirmed differential expression for non-coding genes, like PCA3, the first clinically approved lncRNA

marker for PCa27, 28, PCAT1, a prostate-specific lncRNA involved in disease progression29, MALAT1, which is associated

with PCa poor prognosis30, CDKN2B-AS1, an anti-sense lncRNA up-regulated in PCa that inhibits tumor suppressor genes

activity31, 32, and the MIR135 host gene, which is associated with castration-resistant PCa33.

Enhancer expression levels hold prognostic value

The number of lncRNAs involved in cancer development and progression is rapidly increasing, we therefore analyzed the

prognostic value of the lncRNAs we identified in our gene expression differential analysis in TCGA, as well as those previously

reported in other studies. To this end, Chen and collaborators have recently surveyed enhancers expression in nearly 9,000

patients from the TCGA34, using genomic coordinates from the FANTOM5 project35, identifying 4,803 enhancers with

prognostic potential in one or more tumor types in the TCGA. We therefore leveraged the FC-R2 atlas to identify prognostic

coding and non-coding genes using Univariate Cox proportional hazard models, comparing our results for e-lncRNAs with

those reported by Chen and colleagues.

When we considered e-lncRNAexpression levels, we identified a total of 5,382 prognostic e-lncRNAs (FDR  0.05), and

no single one was predictive across all cancer types. Overall, the number of significant prognostic e-lncRNAs varied across

tumors, ranging from 3 in head and neck cancer to 3,850 in kidney cancers (see Supplementary Table S6). Notably, two (out of

three) e-lncRNAs from our differential gene expression consensus list across all tumor types were also prognostic. Specifically,

CATG00000107122 was associated with worst prognosis in kidney cancer, while ENSG00000255958 was associated with

worse survival in stomach tumor. Overall, despite differences in annotation and quantification (see Supplementary Table S5),

we were able to confirm prognostic value for 2,765 e-lncRNAs out of the 4,803 reported by Chen et al34, including “enhancer

22” (ENSG00000272666, which was highlighted as a promising prognostic marker for kidney cancer (Supplementary Figure

S3).

Finally, we analyzed the prognostic value for dp-lncRNAs, ip-lncRNAs, and mRNAs (See Supplementary Tables S7, S8,

and S9, respectively), and assessed the survival prognostic potential of our consensus genes across tumor types. Thirty-seven of

the 41 coding mRNAs, 22 of the 28 differentially expressed dp-lncRNAs, and two out of the four DE ip-lncRNAs, respectively,

were found to be prognostic (See Supplementary Tables S10, S11, S12, and S13). Kaplan-Meier survival curves for one selected

DE gene on each RNA subtype evaluated here are shown in supplementary figure S4.

Discussion

The importance of lncRNAs in cell biology and disease has clearly emerged in the past few years and different classes of

lncRNAs have been shown to play crucial roles in cell regulation and homeostasis36. For instance, enhancers – a major category

of gene regulatory elements, which has been shown to be expressed35, 37 – play a prominent role in oncogenic processes38, 39
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and other human diseases40, 41. Despite their importance, however, there is a scarcity of large-scale datasets investigating

enhancers and other lncRNA classes, in part due to the technical difficulty in applying high-throughput techniques such as

ChIP-seq and Hi-C over large cohorts, and to the use of gene models that do not account for them in transcriptomics analyses.

Furthermore, the large majority of the lncRNAs that are already known – and that have been shown to be associated with some

phenotype – are still lacking functional annotation.

To address these needs, the FANTOM consortium has first constructed the FANTOM-CAT meta-transcriptome, a com-

prehensive atlas of coding and non-coding genes with robust support from CAGE-seq data4, then it has undertaken a large

scale project to systematically target lncRNAs and characterize their function using a multi-pronged approach (Jordan et al.,

under review). In a complementary effort, we have leveraged public domain gene expression data from recount27, 42 to create a

comprehensive gene expression compendium across human cells and tissues based on the FANTOM-CAT gene model, with the

ultimate goal of facilitating lncRNAs annotation through association studies.

In order to validate our resource, we have compared the gene expression summaries based on FANTOM-CAT gene models

with previous, well-established quantification of gene expression, demonstrating virtually identical profiles across tissue types

overall and for specific tissue markers. We have then confirmed that distinct classes of coding and non-coding genes differ in

terms of overall expression levels and specificity patterns across cell types and tissues. Furthermore, with this approach, we

were also able to identify mRNAs, promoters, enhancers, and other lncRNAs that are differentially expressed in cancer, both

confirming previously reported findings, and identifying novel cancer genes exclusively annotated in the FANTOM-CAT gene

model, which have been therefore missed in prior analyses with TCGA data. Finally, we also analyzed the prognostic value of

the coding and non-coding genes we identified in our analyses, and confirmed the association with overall survival in TCGA

for measurable enhancers.

Collectively, by confirming findings reported in previous studies, our results demonstrate that the FC-R2 gene expression

atlas is a reliable and powerful resource for exploring both the coding and non-coding transcriptome, providing compelling

evidence and robust support to the notion that lncRNA gene classes, including enhancers and promoters, despite not being

yet fully understood, portend significant biological functions. Our resource, therefore, constitutes a suitable and promising

platform for future large scales studies in cancer and other human diseases, which in turn hold the potential to reveal important

cues to the understanding of their biological, physiological, and pathological roles, potentially leading to improved diagnostic

and therapeutic interventions.

Finally, all results and data from the FC-R2 atlas are available as a public tool. With uniformly processed expression data

for over 70,000 samples and 109,873 genes ready to analyze, we want to encourage researchers to dive deeper into the study of

ncRNAs, their interaction with coding and non-coding genes, and their influence on normal and disease tissues. We hope this

new resource will help paving the way to develop new hypotheses that can be followed to unwind the biological role of the

transcriptome as a whole.
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Methods

Data and pre-processing.

FANTOM CAT permissive catalog was obtained from the pre-FANTOM6 consortium. This catalog initially comprised 124,245

genes defined by CAGE peaks published by Hon et al4. In order to remove ambiguity, BED files containing the coordinates for

each gene/exon were imported into an R session and processed with the GenomicRanges package43 by disjoining the exon

coordinates. To avoid losing strand information we processed it in a two-step approach by first disjoining overlapping segments

on the same strand and latter across strands (Figure 5). Genomic ranges (disjoined exons segments) that mapped back to

more than one gene were discarded. The expression values for these ranges were then quantified using recount.bwtool44 (code

at https://github.com/LieberInstitute/marchionni_projects). The resulting expression quantifications

were processed to generate RangedSummarizedExperiment objects compatible with the recount2 framework7, 42 (code

at https://github.com/eddieimada/fcr2). Thus FC-R2 provides expression information for coding mRNAs,

enhancers and promoters (divergent and intergenic) for 9,662 samples from the Genotype-Tissue Expression (GTEx) project,

11,350 samples from The Cancer Genome Atlas (TCGA) consortium, and over 50,000 samples from the Sequence Read

Archive (SRA).

Correlation with other studies.

To test if the pre-processing step had a major impact on expression quantification, we compared our counts tables to the

published GTEx counts from recount2. The version 2 of the gene counts for the GTEx samples were downloaded from the

recount website (https://jhubiostatistics.shinyapps.io/recount/). We compared distribution of tissue

specific genes across tissues and computed the Pearson correlation for each gene in common across the original recount2 gene

counts estimates and our version.

Expression specificity of tissue facets.

We analyzed the expression level and specificity of each gene stratified by RNA class (i.e. mRNA, e-lncRNA, dp-lncRNA,

ip-lncRNA). Expression levels for each gene were represented by the maximum transcripts per million (TPM) of all samples

within a facet. To compute the gene specificity we followed the same approach used in Hon et al4. The 99.99 percent confidence

intervals for the expression of each category by facet were calculated based on TPM values. Genes with a TPM greater than

0.01 were considered expressed.

Identification of differentially expressed genes.

Differential gene expression was tested in 13 cancer types, comparing primary tumor with normal samples using TCGA FC-R2

gene expression summaries. Summaries for each cancer type were split by RNA class (coding mRNA, intergenic promoter

lncRNA, divergent promoter lncRNA and enhancer lncRNA) and analyzed independently. A generalized linear model approach

coupled with empirical Bayes standard errors45 was used to identify differentially expressed genes between the samples. The
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Figure 5. FANTOM-CAT genomic ranges. Representation of the disjoining and exon disambiguation processes. (A)
Representation of a genome segment and its annotation containing 3 genes with gene A having two isoforms, and genes B and
C with one isoform each. Each box can be interpreted as one nucleotide with boxes colored blue or orange to represent exons
on opposite strands. (B) Representation of disjoined exon ranges from example A. Each feature is reduced to a set of
non-overlapping genomic ranges, then genomic ranges mapping back to two or more genes are removed (crossed boxes). After
removal of ambiguous ranges, the remaining ranges are summarized at gene level. Grey boxes represent segments with
ambiguous strand.

model was adjusted for the three most variable coefficients for data heterogeneity as estimated by surrogate variable analysis

(SVA)46. Correction for multiple testing was performed across RNA classes by merging the resulting p-values for each cancer

type and applying the Benjamini-Hochberg method47.

Prognostic analysis.

To evaluate the prognostic potential of the genes in FC-R2we applied a univariate Cox proportional regression model in

four RNA classes (22106 mRNAs, 17,404 e-lncRNAs, 6,204 dp-lncRNAs, and 1,948 ip-lncRNAs) comprised in FC-R2

across each of the 13 TCGA cancer types with available survival follow-up. Genes with FDR equal or less than 0.05 using

Benjamini-Hochberg47 correction within the cancer type and RNA class, were selected as significant prognostic factors. To

indentify differentially expressed genes that portrait predictive potential, the DE lists were intersected with the significant

prognostic genes lists. Supplementary data from Chen et al34 containing enhancers position and prognostic potential were
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obtained from the original publication and a liftover to hg38 genome assembly was performed to match FC-R2 coordinates in

order to compare the results.

Data Availability

All data is available in http://marchionnilab.org/fcr2.html. Expression data can be directly accessed through

https://jhubiostatistics.shinyapps.io/recount/ and the recount Bioconductor package (v1.9.5 or newer)

at https://bioconductor.org/packages/recount as RangedSummarizedExperiment objects organized by The

Sequence Read Archive (SRA) study ID. The data can be loaded using R-programming language and is ready to be analyzed

using Bioconductor packages or the data can be exported to other formats for use in another environment.

Code Availability

All code used in this manuscript is available in: https://github.com/eddieimada/fcr2 and https://github.

com/LieberInstitute/marchionni_projects for reproducibility purposes.
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