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ABSTRACT
A functional readout of the gut microbiome is necessary to enable 
precise control of the gut microbiome’s functions, which support 
human health and prevent or minimize a wide range of chronic 
diseases. Stool metatranscriptomic analysis offers a comprehensive 
functional view of the gut microbiome, but despite its usefulness, it 
has rarely been used in clinical studies due to its complexity, cost, 
and bioinformatic challenges. This method has also received crit-
icism due to potential intra-sample variability, rapid changes, and 
RNA degradation. Here, we describe a robust and automated stool 
metatranscriptomic method, called Viomega, which was specifically 
developed for population-scale studies. Viomega includes sample 
collection, ambient temperature sample preservation, total RNA ex-
traction, physical removal of ribosomal RNAs (rRNAs), preparation 
of directional Illumina libraries, Illumina sequencing, taxonomic clas-
sification based on a database of >110,000 microbial genomes, and 
quantitative microbial gene expression analysis using a database 
of ~100 million microbial genes. We applied this method to 10,000 
human stool samples, and performed several small-scale studies 
to demonstrate sample stability and consistency. In summary, Vio-
mega is an inexpensive, high throughput, automated, and accurate 
sample-to-result stool metatranscriptomic technology platform for 
large-scale studies and a wide range of applications.

INTRODUCTION
The human gut contains a vast number of commensal microorgan-
isms performing a wide variety of metabolic functions. Metabolites 
produced by these microorganisms can have profound effects on 
human physiology, with direct links to health and disease status [1-4]. 
Gut dysbiosis likely contributes to the development and progression 
of many diseases and disorders, such as cardiovascular disease, 
hypertension, obesity, diabetes, and autoimmune diseases [5-9]. 
There is also strong evidence that the gut microorganisms directly 
interact with the nervous system, establishing the gut-brain axis [10]. 
The gut-brain axis has been shown to modulate the development 
of neurodegenerative diseases such as Alzheimer’s disease, Autism 
Spectrum Disorder (ASD) and Parkinson’s disease [11-14].

The gut microbiome plays a critical role in physiological homeo-
stasis, resulting in increasing scientific investigation into the extent 
of the gut microbiome’s role in human health and disease. Humans 
have co-evolved with the microbiome and have become dependent on 
its biochemical output, such as certain vitamins and short-chain fatty 

acids [15,16]. The gut microbiome can also produce harmful biochem-
icals that have been implicated in various disease states [15]. To fully 
understand the relationships between the gut microbiome and human 
health status, biochemical functions of the microorganisms must be 
identified and quantified. Several next generation sequencing-based 
methods have been used for analyzing the gut microbiome, each with 
clear advantages and disadvantages. The simplest, least expensive, 
and most common method is 16S rRNA gene sequencing [17], which 
sequences a small portion of the highly conserved prokaryotic 16S 
ribosomal RNA gene [18]. This method can provide taxonomic resolu-
tion to the genus level [19,20], but does not measure the biochemical 
functions of the microorganisms [18] or distinguish living from dead 
organisms. In addition, traditional 16S rRNA sequencing excludes 
some bacteria, most archaea, and all eukaryotic organisms and virus-
es [21], resulting in a limited view of the gut microbiome ecosystem.

Metagenomic (shotgun DNA) sequencing provides strain-level 
resolution of all DNA-based microorganisms [18] (it does not detect 
RNA viruses or RNA bacteriophages). However, it can only identify 
the potential biochemical functions of the microbiome and can nei-
ther identify nor quantify the active biochemical pathways. This is a 
disadvantage for studying dysbiosis-related disease states, such as 
inflammatory bowel disease (IBD), which has been shown to have a 
disparity between metagenomic potential pathways and actual bio-
chemical pathways expressed in disease and control populations [22]. 

Metatranscriptomic analysis (metatranscriptomics, RNA sequenc-
ing, RNAseq) offers insights into the biochemical activities of the 
gut microbiome by quantifying expression levels of active microbial 
genes, allowing for assessment of pathway activities, while also 
providing strain-level taxonomic resolution for all metabolically active 
organisms and viruses [23,24]. To date, metatranscriptomic analyses 
of stool samples have been limited due to the cost and complexity of 
both laboratory and bioinformatic methods [25].  By removing less in-
formative rRNA, more valuable transcriptome data can be generated 
with less sequencing depth [26,24], resulting in reduced per-sample 
sequencing costs.

An automated technology has been developed for metatran-
scriptomic analysis of human clinical samples, called Viomega. In this 
study, Viomega was applied to 10,000 human stool samples to gain 
a better understanding of the strain-level taxonomies and microbial 
functions. Several small-scale studies were performed to quantify 
the metatranscriptomic stability in the lower colon and measure the 
intra-sample variability of metatranscriptomic analyses.
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MATERIALS AND METHODS 
Study participants, ethics, and sample collection and transpor-
tation
For this study, Viome used data from 10,000 participants. All study 
participants gave consent to being in the study, and all study 
procedures were approved by a federally accredited Institutional 
Review Board (IRB). Participants were recruited from any age, gen-
der, and ethnic group.

Stool samples were collected using Viome’s Gut Intelligence kit 
by each study participant at their own residences. The kit included 
a sample collection tube with an integrated scoop, a proprietary 
RNA preservative, and sterile glass beads. A pea-sized stool sample 
was collected and placed inside the tube and vigorously shaken to 
homogenize the sample, exposing it to the RNA preservative. The 
sample was then shipped at room temperature using a common 
courier to Viome labs for analysis. Shipping times ranged from one 
to twelve days. Each participant completed a questionnaire with 
general lifestyle and health information.

Metatranscriptomic analysis of stool samples
For the metatranscriptomic analysis of 10,000 stool samples, a 
proprietary sample-to-result automated platform called Viomega 
was used. Stool samples were lysed using bead-beating in a strong 
chemical denaturant and then placed on an automated liquid handler, 
which performed all downstream laboratory methods. Samples were 
processed in batches in a 96-well microplate; each batch consisted 
of ninety-four human stool samples, a negative process control (NPC, 
water), and a positive process control (PPC, custom synthetic RNA). 
RNA was extracted using a proprietary method.  Briefly, silica-coated 
beads and a series of washes were used to purify RNA after lysis and 
RNA was eluted in water. DNA was degraded using RNase-free DNase.

The majority of prokaryotic ribosomal RNAs (rRNAs: 16S and 
23S) were removed using a custom subtractive hybridization method. 
Biotinylated DNA probes with sequences complementary to rRNAs 
were added to total RNA, the mixture was heated and cooled, and the 
probe-rRNA complexes were removed using magnetic streptavidin 
beads. The remaining RNAs were converted to directional sequencing 
libraries with unique dual-barcoded adapters and ultra-pure reagents. 
Libraries were pooled and quality controlled with dsDNA Qubit (Ther-
moFisher) and Fragment Analyzer (Advanced Analytical). Library 
pools were sequenced on Illumina NextSeq or NovaSeq instruments 
using 300 cycle kits.

Viomega’s bioinformatics module operates on Amazon Web Ser-
vices and includes quality control, taxonomic profiling and functional 
analysis. Quality control tools trim and filter the raw reads and quan-
tify the amounts of sample-to-sample cross-talk and background 
contamination by microbial taxa. Viomega generates read-based 
taxonomy assignments using a multi-step process. The sequencing 
reads are aligned to a proprietary database of pre-computed genomic 
signatures at three taxonomic levels: strain, species, and genus. The 
unique signatures are computed from full-length genomes by remov-
ing short subsequences of a defined length, k, (k-mers) shared among 
more than one genome and keeping unique k-mers that make up 
the signature [27]. The Viomega taxonomy database was generated 
from a large RefSeq database containing more than 110,000 microbial 
genomes. After the initial taxonomic assignments were generated, 

potential false-positives were removed using an auto-blast algorithm 
that uses an even larger database of organisms.

Identity and relative activity of microbial genes and enzymatic 
functions in the stool samples were assessed using a proprietary 
algorithm. At a high level, this involves a multi-tiered approach to 
align the sample reads to the integrated gene catalog (IGC) [28] 
library of genes to first identify and then quantify the genes in the 
sample. Informative genes (i.e. non-rRNA) were quantified in units of 
transcripts per million (TPM) to allow for cross-sample comparisons. 
Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) [29] 
annotation mapping of IGC genes to KEGG orthologies (KOs), the 
enzymic functions and activity were quantified in these samples as 
the aggregate TPM. The KEGG mapping also allows for functional 
modules and pathway analysis.

Small-scale studies
For the validation of sample lysis in the Viomega pipeline the following 
organisms were grown in nutrient broth at 37°C and 450 rpm in a 
VWR incubating mini shaker: Bacillus subtilis Marburg strain (ATCC 
6051-U), Corynebacterium stationis strain NCTC 2399 (ATCC 6872), 
Citrobacter freundii strain ATCC 13316, NCTC 9750 (ATCC 8090), and 
Serratia liquefaciens strain CDC 1284-57 ATCC 12926 (ATCC 27592). 
In addition, the following organisms were grown in yeast mold broth at 
37°C and 450 rpm in a VWR incubating mini shaker: Saccharomyces 
cerevisiae strain S288C (ATCC 204508) and Candida dubliniensis 
strain CBS 7987 (ATCC MYA-646). 

To illustrate the accuracy of taxonomic classification at the spe-
cies level of the Viomega technology the 10 Strain Even Mix Whole 
Cell Material (ATCC® MSA-2003™) product was utilized. As stated by 
the manufacturer, this product is comprised of an even mixture of the 
following organisms:  Bacillus cereus (ATCC 10987), Bifidobacterium 
adolescentis (ATCC 15703), Clostridium beijerinckii (ATCC 35702), 
Deinococcus radiodurans (ATCC BAA 816), Enterococcus faecalis 
(ATCC 47077), Escherichia coli (ATCC 700926), Lactobacillus gasseri 
(ATCC 33323), Rhodobacter sphaeroides (ATCC 17029), Staphylo-
coccus epidermidis (ATCC 12228), and Streptococcus mutans (ATCC 
700610).   

RESULTS AND DISCUSSION
Validation of Viomega technology
Sample lysis
Uneven sample lysis can introduce major errors in any method since 
sample composition can vary widely in terms of easy-to-lyse microor-
ganisms (viruses and Gram(-) bacteria) and difficult to very-difficult-
to-lyse Gram(+) bacteria and yeast. Viomega utilizes a combination of 
chemical (denaturant) and physical (bead beating) sample lysis, which 
has been shown to have the best efficiency. To test this method, two 
strains of Gram(-), two strains of Gram(+), and two strains of yeast 
were grown to an optical density range of 0.4-0.8 AU. Equal amounts 
of each organism in triplicate then underwent chemical and physical 
sample lysis and total RNA was extracted from each sample. RNA 
yields obtained were consistent and show no bias against Gram(+) 
bacteria or yeast (average yield: G(-) = 93.3 ng/µL, 83.6 ng/µL; G(+) = 
131.9 ng/µL, 152.3 ng/µL; yeast = 113.1 ng/µL, 100.8 ng/µL) (Figure 1).  
The process was also reproducible, with very small variability across 
technical replicates (standard deviation range = 3.4 - 11.0 ng/µL).
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Figure 1. Average RNA yields (ng/µL) of model organisms after 
sample lysis and RNA extraction (B. subtilis: 131.9 +/- 4.0 ng/µL; 
C. stationis: 152.3 +/- 3.9 ng/µL; C. fruendii: 93.3 +/- 14.4 ng/µL; S. 
liquefaciens: 83.6 +/- 3.4 ng/µL; S. cerevisiae: 113.1 +/- 4.8 ng/µL; C. 
dubliniensis: 100.8 +/- 11.0 ng/µL; n = 3)

Figure 2. Spearman Correlation of taxonomic data (blue) and 
functional data (orange) between and within storage conditions.  
Median correlation of taxonomic data: T0 vs T0 = 0.8493; T0 vs 
T4weeksRT = 0.8503; T0 vs T4weeksSHIP = 0.8493.  Median correlation 
values of functional data: T0 vs T0 = 0.932; T0 vs T4weeksRT = 
0.9341; T0 vs T4weeksSHIP = 0.9349.

Figure 3. Sample-to-sample cross-talk (reads per million) for 178 
stool samples sequenced on the Illumina NovaSeq platform using 
Viomega dual unique barcode sequences.  Sample-to-sample 
cross-talk determined by measuring the occurrence of non-natural 
PPC reads in each stool sample.  Range = 0 - 1.34 reads per million; 
median = 0.33 reads per million. 

Figure 4. Accuracy and relative 
abundance of Viomega analysis on a 
commercial mock community. Species 
contents of the mock community as 
listed by the supplier are shown (left); 
supplier lists relative abundance of 
whole cells as equal among all species.  
Viomega achieves 100% accuracy at 
species level identification.  
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Ambient temperature sample transportation
A noted shortcoming of metatranscriptomics is that it analyzes labile 
RNA molecules.  This is most apparent in the case of dead organisms, 
as the existing RNA is rapidly degraded, while no new transcripts are 
made. In living organisms, however, RNA is continuously made and 
degraded. By exposing living organisms to appropriate reagents, this 
dynamic equilibrium of gene expression can be “frozen in time” at the 
time of sample collection and quantitatively analyzed later. To achieve 
this, Viomega uses a chemical denaturant/RNA stabilizing solution 
that ensures the preservation of RNA integrity during sample trans-
port at ambient temperatures.   Fourteen aliquots were made from 
a single donor sample; four aliquots were processed using Viomega 
immediately, while three samples were stored at room temperature 
(RT) for four weeks prior to processing. Seven aliquots were shipped 
through a standard courier and held on-site at the laboratory for a 
total time of four weeks prior to processing.  All comparisons show 
very strong correlation with a Spearman correlation value of 0.8 or 
greater (Figure 2) [30]. No difference was found in taxonomic profiling 
or functional composition between time to processing or shipping 
conditions prior to processing (Figure 2).

Sample-to-sample cross-talk (STSC)
STSC (also known as barcode switching, barcode hopping, or read 
misassignment) can cause significant errors when sequencing many 
samples on a single sequencing run. Standard library preparation 
methods for sample barcoding have high error rates, from 0.2-5%, 
especially on the newest generation of Illumina platforms that use 
ExAmp technology [31,32]. This phenomenon can cause errors in the 
reported taxonomies, e.g. abundant taxa in a sequencing run being 
assigned to samples in which those taxa did not exist. Viomega min-
imizes STSC by a combination of specially produced barcode oligos, 
dual unique barcode sequences of 11 bps each, and only reporting 
the taxa that did not exceed the rate of measured STSC on each 
batch of 96 samples. STSC was quantified by introducing a synthetic, 
non-natural RNA sample (PPC) in each microplate and measuring its 
quantity in each of the other samples. The PPC sample was randomly 
positioned in each plate. STSC in Viomega mostly falls under 1 read 
per million reads (0.0001%) (Figure 3) on NovaSeq platform (S1 flow 
cell, 300 cycle kits), which is more than 1,000-fold lower than in data 
obtained using commercial library preparation kits [31-33]. 

Background contamination of samples
Since any metagenomic or metatranscriptomic analysis identifies 
all taxa in a sample, nucleic acid contamination of the reagents 
(especially purification kits and enzymes), instruments, and poor 
laboratory practices can lead to the inclusion of contaminating 
taxa into scientific results [34-36]. To minimize this, Viomega uses 
ultra-pure reagents, good laboratory practices, and fully automated 
liquid handling systems. Every plate of ninety-six samples contained a 
positive process control (PPC) sample, which is a synthetic RNA that 
was subjected to the same process as the rest of the samples (from 
kit manufacturing to bioinformatics). This sample was sequenced and 
analyzed like all other samples on the plate, allowing any microbial 
contamination to be detected. Over the course of twenty consecutive 
batches (1,880 stool samples, 20 PPC samples) the level of back-

ground contamination observed in PPC samples was extraordinarily 
low, with an average of 1.4 contaminating reads (std dev. 2.6; n=20) 
out of 5-15 million sequencing reads and 0.3 contaminating taxa (std. 
dev. 0.5; n = 20). Across twenty batches, the number of contaminating 
taxa was either zero or one, with a maximum of ten sequencing reads 
(out of an average of ~10 million) assigned to the taxon. These values 
were below the threshold for reporting any microorganism from the 
Viomega analysis and therefore do not cause any false positives to 
the results.

Depletion of ribosomal RNAs
The vast majority of RNA molecules in any biological sample are 
ribosomal RNAs (rRNA). Approximately 96% of all reads from stool 
samples align to microbial rRNAs (Table S1), leaving only ~4% of 
sequencing data aligning to microbial messenger RNAs. Since rRNA 
sequences are not very informative (housekeeping functions, poor 
taxonomic resolution), and a key goal of Viomega is to deeply probe 
the functional landscape of the gut microbiome (i.e. quantify the mes-
senger RNAs), a subtractive hybridization method for rRNA depletion 
has been implemented in the Viomega process. This fully automated 
method reduces rRNA to 60.4 +/- 14.9% (n = 90), thus providing an 
average enrichment of microbial messenger RNAs of ~10 fold by 
increasing sequencing data aligning to microbial messengers RNAs 
to ~40%.

Viomega: Accuracy of taxonomic classification
Given the large amounts of metatranscriptomic data obtained from 
each sample (over one giga-base pairs) and a very large database 
(more than 110,000 genomes), it is extremely challenging to have a 
high throughput, fully automated, cost-effective, cloud-based, and 
highly accurate bioinformatic pipeline. Viomega is a fully automated 
cloud application whose efficiency comes from using a pre-computed 
database of microbial signatures. This approach reduces the amount 
of searchable sequence space by roughly two orders of magnitude 
and largely eliminates false positive results. Viomega technology was 
used to analyze a commercially available mock community (10 Strain 
Even Mix Whole Cell Material, ATCC® MSA-2003™). For identification 
at the species level, Viomega shows 100% accuracy consistent with 
the mock community, with no false positive or false negative calls 
(Figure 4). The whole cell relative abundance of these microorgan-
isms was reported by the supplier as identical. However, the relative 
RNA amounts (measured as relative activity by Viomega) may not be 
the same due to potential differences in how each monoculture was 
grown, processed, and stored prior to the preparation of the mock 
community. It is also possible that Deinococcus radiodurans contains 
more RNA per cell than other bacteria, due to its diploid genome. The 
somewhat higher relative abundance cannot be explained with facile 
lysis (it is a Gram-positive organism) or low GC content (67%). 

Findings from the Viomega taxonomic classification
Using the Viomega taxonomy classification pipeline, a total of 2,723 
microbial strains, 1,946 microbial species, and 528 microbial genera 
have been identified in 10,000 human stool samples. The identified 
microorganisms include bacteria, archaea, viruses, bacteriophages, 
and eukaryotes (Table 1). 
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TOP 10 GENERA TOP 10 SPECIES TOP 10 STRAINS

Genus Prevalence, % Species Prevalence, % Strains Prevalence, %

Clostridium 99.7 Bacteroides vulgatus 97.1 Eggerthella lenta 1_1_60AFAA 97.1

Bacteroides 99.6 Acinetobacter 
baumannii

96.8 [Eubacterium] hallii DSM 3353 93.9

Blautia 97.6 Faecalibacterium 
prausnitzii

96.4 Veillonella dispar ATCC 17748 92.3

Acinetobacter 97.5 Bacteroides uniformis 95.4 Anaerotruncus colihominis 
DSM 17241

91.4

Eubacterium 97.2 Eggerthella lenta 91.8 Clostridium phoceensis strain 
GD3

90.8

Parabacteroides 96.9 [Eubacterium] hallii 91.5 Blautia obeum ATCC 29174 89.7

Lactococcus 96.9 Anaerotruncus 
colihominis

91.4 [Eubacterium] eligens strain 
2789STDY5834875

88.9

Faecalibacterium 96.4 Clostridium phoceensis 90.8 Faecalibacterium cf. prausnitzii 
KLE1255

88.3

Roseburia 95.7 Veillonella dispar 89.0 Faecalibacterium prausnitzii 
A2-165

86.0

Alistipes 95.1 Fusicatenibacter 
saccharivorans

87.3 Roseburia hominis A2-183 83.4

Table 1. Top ten strains, species, and genera identified in 10,000 human stool samples, based on their prevalence.  See supplementary materials 
for all taxa identified in 10,000 human stool samples (Table S2 for strain, S3 for species, S4 for genera).

Table 2. Top ten KEGG 
functions identified in 10,000 
human stool samples.  See 
supplementary material for top 
100 KEGG functions (Table S5).

KO ID Name 100.00

K00936 pdtaS 100.00

K01190 lacZ 99.99

K03046 rpoC 99.99

K02355 fusA, GFM, EFG 99.99

K00540 fqr 99.99

K03695 clpB 99.99

K03296 TC.HAE1 99.99

K01362 OVCH 99.98

K02358 tuf, TUFM 99.98

K06950 K06950 99.98
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Viomega: Quantification of microbial biochemical functions
Using Viomega’s functional analysis tools, the expression of >100,000 
microbial open reading frames (ORFs), which were grouped into 6,879 
KEGG functions, were identified and quantified from 10,000 human 
stool samples. Top ten KEGG functions are shown in Table 2.

Intra-sample variability of metatranscriptomic analyses
Because large scale studies would preferably analyze a single 
stool sample (instead of an average of multiples), it was important 
to understand the variability of microbial taxonomy and functions 
across individual stool samples. To understand this variability, three 
volunteers (P11, P12, and P13) collected samples from three parts of 
their stool samples: 1) one end, 2) the opposite end, and 3) the middle. 
Each biological sample was split into three technical replicates (a, b, 
and c). All samples were analyzed using Viomega, followed by unsu-
pervised clustering analysis (Kendall’s correlation). All biological and 
technical replicates from the same stool sample (in-group) clustered 
by participant with very high similarity, and were different from the 
outgroup samples, especially at the strain level taxonomy (Figure 
5). This mini-study shows high uniformity of metatranscriptomic 
data across stool samples. While there have been claims of large in-
tra-sample variability [37], these were likely based on biased methods, 
and not real differences in microbial taxonomy [38]. For large scale 
studies, it is cost-prohibitive to collect and analyze multiple samples 
per collection time; Viomega metatranscriptomic analysis provides 
reproducible results across stool samples.

Short term (minutes) stability of stool metatranscriptomes 
To identify any changes in the measured microbial taxonomy and 
functions in the first few minutes after a stool sample was produced, 
three participants (P12, P13, and P14) were asked to collect samples 
from the same stool (a) immediately, (b) three minutes later, and (c) 
ten minutes later. Unsupervised clustering analysis (Kendall’s correla-
tion) was performed on the nine samples, and all samples clustered 
with high similarity based on the sample, and not the time of collection 
(Figure 6).

Long-term (weeks) stability of stool metatranscriptomes
Because gene expression can change rapidly due to environmental 
changes, a mini-study was performed to look for metatranscriptome 
changes in stool microbiome over time. Seven volunteers were asked 
to maintain their normal diet and lifestyle for two weeks. During this 
period, three stool samples were collected from each participant: time 
zero, one week later, and two weeks later. The twenty-one samples 
were analyzed with Viomega and unsupervised clustering analysis 
(Kendall’s correlation) was performed based on taxonomy and KEGG 
functions (Figure 7). For both taxonomy (panel A) and KEGG functions 
(panel B), the samples clustered by the participant, confirming that 
both gut microbiome composition and biochemical functions were 
stable over the course of the study while maintaining a consistent diet. 
These data clearly demonstrate the utility of Viomega technology, as 
the microbial metatranscriptome was maintained with a consistent 
diet over a period of weeks.

CONCLUSIONS
In this report, Viomega, a sample-to-result, automated and robust 
stool metatranscriptomic analysis technology is described. Viomega 
includes at-home sample collection, stability at ambient temperatures 
during transport (for up to twenty-eight days), complete sample lysis, 
RNA extraction, physical removal of non-informative (ribosomal) 
RNAs, sequencing library preparation, Illumina sequencing, and a 
quantitative bioinformatic analysis platform that includes taxonomic 
classification and functional analysis. Almost all laboratory steps are 
performed in a 96-well format using automated liquid handlers. All 
bioinformatic analyses are automatically performed on cloud servers. 
Viomega includes several critically important quality control steps, 
both per-sample (number of base pairs generated for microbial 
messenger RNAs, % rRNA, and sample-to-sample cross-talk) and 
per-batch of ninety-six samples (background contamination, process 
control samples, RNA yields, etc.).

Using a commercial mock community, Viomega shows 100% ac-
curacy (no false positives or negatives) at the species level. Since the 
ground truth for RNA content of each member of the mock community 
cannot be obtained from the manufacturer, it is unclear whether the 
small differences in the relative abundance of the ten microorganisms 
provided are an artifact of the sample or the method of producing the 
mock community.

Viomega was applied to 10,000 human stool samples and iden-
tified several thousand taxa at the strain, species, and genus ranks. 
More than 100,000 open reading frames (ORFs) were identified, 
quantified, and grouped into thousands of KEGG functions. The large 
bioinformatic data outputs of Viomega are being used to learn how gut 
microbiome taxonomy and functions are affected by the diet, develop 
improved models of how to precisely control the gut microbiome using 
diet, and how the gut microbiome correlates with human health and 
diseases. These analyses will be described in upcoming publications. 
While Viomega was specifically designed for stool sample analysis, 
modifications may be made for alternative pipelines for other types of 
human clinical applications in the future.

Viomega was used to perform several small-scale studies to 
demonstrate the robustness of stool metatranscriptomic analysis 
when the methods introduce minimal biases. These studies show 
that it is possible to collect a single stool sample as representative 
of the entire colonic microbiome. The studies also establish that the 
gut metatranscriptome exhibits weeks-long stability without a diet 
change both compositionally and functionally. It should be noted that 
all participants involved in the above mini-studies were self-reported 
healthy individuals. In each study, clustering by taxonomy showed 
much lower out-group similarity than clustering by function. While 
taxonomy has been shown to vary from person to person among 
healthy individuals [39], the observed clustering patterns (Figures 
5, 6, 7) suggest similar functionality between healthy individuals; 
although different organisms are present, they are performing similar 
biochemical functions.  

Viomega is a robust technology that offers a rapid and compre-
hensive taxonomic and functional readout of the gut microbiome. In 
addition, the cost to process a human stool sample through the Vio-
mega pipeline ($199 for the Viome Gut Intelligence™ Test at the time 
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Figure 5. Intra-sample variability 
of microbial taxonomy and 
functions using Viomega 
analysis. Three participants (P11, 
P12, and P13) provided three 
stool samples each, from three 
different parts of the stool (1, 2, 
and 3). Each biological sample 
was analyzed as three technical 
replicates (a, b, and c). Following 
Viomega analysis, unsupervised 
clustering analysis (Kendall's 
correlation) was performed 
on microbial taxonomy (at the 
strain level) (A) and biochemical 
functions at KEGG level (B).

Figure 6. Stool samples collected 
immediately and at three and ten 
minutes (a, b, and c, respectively) 
after the stool was produced by 
three participants (P12, P13, and 
P14). Unsupervised clustering 
analysis (Kendall's correlation) of 
samples shows a high similarity 
of strain level taxonomy (A) and 
KEGG-based microbial functions 
(B) based on the donor, and not 
based on the time of collection.

Figure 7. Unsupervised 
clustering analysis (Kendall's 
correlation) of gut microbiome 
samples collected from seven 
participants (P15 - P21) at three 
time points two weeks apart 
(week 0, 1, and 2), while not 
changing the diet. Panel A shows 
a high degree of clustering of 
microbial taxonomy (at the strain 
level) by person, longitudinally, 
with high in-group similarity. 
Panel B shows a high degree of  
clustering of microbial functions 
(KEGG) by person, longitudinally, 
with high in-group similarity.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/659615doi: bioRxiv preprint 

https://doi.org/10.1101/659615
http://creativecommons.org/licenses/by-nc-nd/4.0/


A robust metatranscriptomic technology for population-scale studies of diet, gut microbiome, and human health 8

of submission) is inexpensive compared to similar services ($15,000 
for up to five samples through The Human Microbiome Project -“What 
are they actually doing” service) [40] largely due to batched process-
ing, removal of rRNAs, and the unique Viomega taxonomy database. 
This technology will increase overall understanding of the interplay 
among diet, gut microbiome, and human health, and is enabling gut 
microbiome-based personalized nutrition as an emerging field.  These 
advances may fuel mitigation and treatment for a variety of human 
health conditions, such as cardiovascular disease, obesity, autoim-
mune disease, ASD, and Parkinson’s disease.
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Supplementary Table S1 has data for the percent ribosomal RNA in 
stool samples that are processed through Viomega without the cus-
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References
[1] Nasca C, Bigio B, Lee FS, Young SP, Kautz MM, Albright A, Beasley J, Millington DS, 
Mathé AA, Kocsis JH, Murrough JW, McEwen BS, Rasgon N. 2018. Acetyl-l-carnitine 
deficiency in patients with major depressive disorder. Proceedings of the National 
Academy of Sciences 115:8627–8632. DOI: 10.1073/pnas.1801609115.  
 
[2] Flint HJ. 2016. Gut microbial metabolites in health and disease. Gut Microbes 
7:187–188. DOI: 10.1080/19490976.2016.1182295.
 
[3] Postler TS, Ghosh S. 2017. Understanding the Holobiont: How Microbial Metabolites 
Affect Human Health and Shape the Immune System. Cell Metabolism 26:110–130. 
DOI: 10.1016/j.cmet.2017.05.008.
 
[4] Clemente JC, Ursell LK, Parfrey LW, Knight R. 2012. The Impact of the Gut 
Microbiota on Human Health: An Integrative View. Cell 148:1258–1270. DOI: 10.1016/j.
cell.2012.01.035.
 
[5] Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, Zhang W, 
Weldon R, Auguste K, Yang L, Liu X, Chen L, Yang X, Zhu B, Cai J. 2017. Gut microbiota 
dysbiosis contributes to the development of hypertension. Microbiome 5. DOI: 10.1186/
s40168-016-0222-x.
 
[6] Parekh PJ, Balart LA, Johnson DA. 2015. The Influence of the Gut Microbiome on 
Obesity, Metabolic Syndrome and Gastrointestinal Disease: Clinical and Translational 
Gastroenterology 6:e91. DOI: 10.1038/ctg.2015.16.
 
[7] Zhang Y, Zhang H. 2013. Microbiota associated with type 2 diabetes and its 
related complications. Food Science and Human Wellness 2:167–172. DOI: 10.1016/j.
fshw.2013.09.002.
 
[8] Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed 
F, Nielsen J. 2012. Symptomatic atherosclerosis is associated with an altered gut 
metagenome. Nature Communications 3. DOI: 10.1038/ncomms2266.
 
[9] Chervonsky AV. 2013. Microbiota and Autoimmunity. Cold Spring Harbor 
Perspectives in Biology 5:a007294–a007294. DOI: 10.1101/cshperspect.a007294.
 
[10] Mayer EA, Tillisch K, Gupta A. 2015. Gut/brain axis and the microbiota. Journal of 

Clinical Investigation 125:926–938. DOI: 10.1172/JCI76304.
 
[11] Wong H, Hoeffer C. 2018. Maternal IL-17A in autism. Experimental Neurology 
299:228–240. DOI: 10.1016/j.expneurol.2017.04.010.
 
[12] Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, 
Mazmanian SK, Hsiao EY. 2015. Indigenous Bacteria from the Gut Microbiota Regulate 
Host Serotonin Biosynthesis. Cell 161:264–276. DOI: 10.1016/j.cell.2015.02.047.
 
[13] Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, Neher 
JJ, Fåk F, Jucker M, Lasser T, Bolmont T. 2017. Reduction of Abeta amyloid pathology 
in APPPS1 transgenic mice in the absence of gut microbiota. Scientific Reports 7. DOI: 
10.1038/srep41802.
 
[14] Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E, Haapaniemi 
E, Kaakkola S, Eerola‐Rautio J, Pohja M, Kinnunen E, Murros K, Auvinen P. 2015. Gut 
microbiota are related to Parkinson’s disease and clinical phenotype. Movement 
Disorders 30:350–358. DOI: 10.1002/mds.26069.
 
[15] Wang B, Yao M, Lv L, Ling Z, Li L. 2017. The Human Microbiota in Health and 
Disease. Engineering 3:71–82. DOI: 10.1016/J.ENG.2017.01.008.
 
[16] Lloyd-Price J, Abu-Ali G, Huttenhower C. 2016. The healthy human microbiome. 
Genome Medicine 8. DOI: 10.1186/s13073-016-0307-y.
 
[17] Woo PCY, Lau SKP, Teng JLL, Tse H, Yuen K-Y. 2008. Then and now: use of 16S 
rDNA gene sequencing for bacterial identification and discovery of novel bacteria 
in clinical microbiology laboratories. Clinical Microbiology and Infection 14:908–934. 
DOI: 10.1111/j.1469-0691.2008.02070.x.
 
[18] Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, 
Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C. 
2013. Predictive functional profiling of microbial communities using 16S rRNA marker 
gene sequences. Nature Biotechnology 31:814–821. DOI: 10.1038/nbt.2676.
 
[19] Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez 
A, Kosciolek T, McCall L-I, McDonald D, Melnik AV, Morton JT, Navas J, Quinn RA, 
Sanders JG, Swafford AD, Thompson LR, Tripathi A, Xu ZZ, Zaneveld JR, Zhu Q, 
Caporaso JG, Dorrestein PC. 2018. Best practices for analysing microbiomes. Nature 
Reviews Microbiology 16:410–422. DOI: 10.1038/s41579-018-0029-9.
 
[20] Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT. 2014. 
Strengths and Limitations of 16S rRNA Gene Amplicon Sequencing in Revealing 
Temporal Microbial Community Dynamics. PLoS ONE 9:e93827. DOI: 10.1371/journal.
pone.0093827.
 
[21] Raymann K, Moeller AH, Goodman AL, Ochman H. 2017. Unexplored Archaeal 
Diversity in the Great Ape Gut Microbiome. mSphere 2:e00026-17. DOI: 10.1128/
mSphere.00026-17.
 
[22] Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R, Poon TW, 
Ananthakrishnan AN, Andrews E, Barron G, Lake K, Prasad M, Sauk J, Stevens B, 
Wilson RG, Braun J, Denson LA, Kugathasan S, McGovern DPB, Vlamakis H, Xavier 
RJ, Huttenhower C. 2018. Dynamics of metatranscription in the inflammatory bowel 
disease gut microbiome. Nature Microbiology 3:337–346. DOI: 10.1038/s41564-017-
0089-z.
 
[23] Gosalbes MJ, Durbán A, Pignatelli M, Abellan JJ, Jiménez-Hernández N, 
Pérez-Cobas AE, Latorre A, Moya A. 2011. Metatranscriptomic Approach to Analyze 
the Functional Human Gut Microbiota. PLoS ONE 6:e17447. DOI: 10.1371/journal.
pone.0017447.
 
[24] Bashiardes S, Zilberman-Schapira G, Elinav E. 2016. Use of Metatranscriptomics 
in Microbiome Research. Bioinformatics and Biology Insights 10:BBI.S34610. DOI: 
10.4137/BBI.S34610.
 
[25] Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, Hugenholtz P, van 
der Lelie D, Meyer F, Stevens R, Bailey MJ, Gordon JI. Kowalchuk GA, Gilbert JA. 2012. 
Unlocking the potential of metagenomics through replicated experimental design. 
Nature Biotechnology 30:513–520. DOI: 10.1038/nbt.2235.
 
[26] He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG, Wang Z, Chen F, 
Lindquist EA, Sorek R, Hugenholtz P. 2010. Validation of two ribosomal RNA removal 
methods for microbial metatranscriptomics. Nature Methods 7:807–812. DOI: 10.1038/

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/659615doi: bioRxiv preprint 

https://doi.org/10.1101/659615
http://creativecommons.org/licenses/by-nc-nd/4.0/


A robust metatranscriptomic technology for population-scale studies of diet, gut microbiome, and human health 9

nmeth.1507.
 
[[27] Freitas TAK, Li P-E, Scholz MB, Chain PSG. 2015. Accurate read-based 
metagenome characterization using a hierarchical suite of unique signatures. Nucleic 
Acids Research 43:e69. DOI: 10.1093/nar/gkv180.
 
[28] MetaHIT Consortium, Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam 
M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W, Levenez 
F, Wang J, Xu X, Xiao L, Liang S, Zhang D, Zhang Z, Chen W, Zhao H, Al-Aama JY, Edris 
S, Yang H, Wang J, Hansen T, Nielsen HB, Brunak S, Kristiansen K, Guarner F, Pedersen 
O, Doré J, Ehrlich SD, Bork P, Wang J. 2014. An integrated catalog of reference genes 
in the human gut
microbiome. Nature Biotechnology 32:834–841. DOI: 10.1038/nbt.2942.
 
[29] Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a 
reference resource for gene and protein annotation. Nucleic Acids Research 44:D457–
D462. DOI: 10.1093/nar/gkv1070.
 
[30] Akoglu H. 2018. User’s guide to correlation coefficients. Turkish Journal of 
Emergency Medicine 18:91–93. DOI: 10.1016/j.tjem.2018.08.001.
 
[31] D’Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, Shakya M, Podar 
M, Quince C, Hall N. 2016. A comprehensive benchmarking study of protocols and 
sequencing platforms for 16S rRNA community profiling. BMC Genomics 17. DOI: 
10.1186/s12864-015-2194-9.
 
[32] Sinha R, Stanley G, Gulati GS, Ezran C, Travaglini KJ, Wei E, Chan CKF, Nabhan 
AN, Su T, Morganti RM, Conley SD, Chaib H, Red-Horse K, Longaker MT, Snyder MP, 
Krasnow MA, Weissman IL. 2017. Index Switching Causes “Spreading-Of-Signal” 
Among Multiplexed Samples In Illumina HiSeq 4000 DNA Sequencing. bioRxiv:125724. 
DOI: 10.1101/125724.
 
[33] Illumina. 2017. Effects of index misassignment on multiplexing and downstream 
analysis.
 
[34] Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, 
Parkhill J, Loman NJ, Walker AW. 2014. Reagent and laboratory contamination can 
critically impact sequence-based microbiome analyses. BMC Biology 12. DOI: 10.1186/
s12915-014-0087-z.
 
[35] Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. 2016. Inherent bacterial 
DNA contamination of extraction and sequencing reagents may affect interpretation 
of microbiota in low bacterial biomass samples. Gut Pathogens 8. DOI: 10.1186/s13099-
016-0103-7.
 
[36] Lusk RW. 2014. Diverse and Widespread Contamination Evident in the Unmapped 
Depths of High Throughput Sequencing Data. PLOS ONE 9:e110808. DOI: 10.1371/
journal.pone.0110808.
 
[37] Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill 
SR,  Nelson KE, Relman DA. 2005. Diversity of the Human Intestinal Microbial Flora. 
Science 308:1635–1638. DOI: 10.1126/science.1110591.
 
[38] Wu GD, Lewis JD, Hoffmann C, Chen Y-Y, Knight R, Bittinger K, Hwang J, Chen 
J, Berkowsky R, Nessel L, Li H, Bushman FD. 2010. Sampling and pyrosequencing 
methods for characterizing bacterial communities in the human gut using 16S 
sequence tags. BMC Microbiology 10:206. DOI: 10.1186/1471-2180-10-206.
 
[39] The Human Microbiome Project Consortium, Huttenhower C, Gevers D, Knight 
R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton 
RS, Giglio MG, Hallsworth-Pepin K, Lobos EA, Madupu R, Magrini V, Martin JC, Mitreva 
M, Muzny DM, Sodergren EJ, Versalovic J, Wollam AM, Worley KC, Wortman JR, Young 
SK, Zeng Q, Aagaard KM, Abolude OO, Allen-Vercoe E, Alm EJ, Alvarado L, Andersen 
GL, Anderson S, Appelbaum E, Arachchi HM, Armitage G, Arze CA, Ayvaz T, Baker CC, 
Begg L, Belachew T, Bhonagiri V, Bihan M, Blaser MJ, Bloom T, Bonazzi V, Paul Brooks 
J, Buck GA, Buhay CJ, Busam DA, Campbell JL, Canon SR, Cantarel BL, Chain PSG, 
Chen I-MA, Chen L, Chhibba S, Chu K, Ciulla DM, Clemente JC, Clifton SW, Conlan S, 
Crabtree J, Cutting MA, Davidovics NJ, Davis CC, DeSantis TZ, Deal C, Delehaunty KD, 
Dewhirst FE, Deych E, Ding Y, Dooling DJ, Dugan SP, Michael Dunne W, Scott Durkin 
A, Edgar RC, Erlich RL, Farmer CN, Farrell RM, Faust K, Feldgarden M, Felix VM, Fisher 
S, Fodor AA, Forney LJ, Foster L, Di Francesco V, Friedman J, Friedrich DC, Fronick 
CC, Fulton LL, Gao H, Garcia N, Giannoukos G, Giblin C, Giovanni MY, Goldberg JM, 
Goll J, Gonzalez A, Griggs A, Gujja S, Kinder Haake S, Haas BJ, Hamilton HA, Harris 
EL, Hepburn TA, Herter B, Hoffmann DE, Holder ME, Howarth C, Huang KH, Huse SM, 

Izard J, Jansson JK, Jiang H, Jordan C, Joshi V, Katancik JA, Keitel WA, Kelley ST, 
Kells C, King NB, Knights D, Kong HH, Koren O, Koren S, Kota KC, Kovar CL, Kyrpides 
NC, La Rosa PS, Lee SL, Lemon KP, Lennon N, Lewis CM, Lewis L, Ley RE, Li K, Liolios 
K, Liu B, Liu Y, Lo C-C, Lozupone CA, Dwayne Lunsford R, Madden T, Mahurkar AA, 
Mannon PJ, Mardis ER, Markowitz VM, Mavromatis K, McCorrison JM, McDonald D, 
McEwen J, McGuire AL, McInnes P, Mehta T, Mihindukulasuriya KA, Miller JR, Minx 
PJ, Newsham I, Nusbaum C, O’Laughlin M, Orvis J, Pagani I, Palaniappan K, Patel SM, 
Pearson M, Peterson J, Podar M, Pohl C, Pollard KS, Pop M, Priest ME, Proctor LM, Qin 
X, Raes J, Ravel J, Reid JG, Rho M, Rhodes R, Riehle KP, Rivera MC, Rodriguez-Mueller 
B, Rogers Y-H, Ross MC, Russ C, Sanka RK, Sankar P, Fah Sathirapongsasuti J, Schloss 
JA, Schloss PD, Schmidt TM, Scholz M, Schriml L, Schubert AM, Segata N, Segre JA, 
Shannon WD, Sharp RR, Sharpton TJ, Shenoy N, Sheth NU, Simone GA, Singh I, Smillie 
CS, Sobel JD, Sommer DD, Spicer P, Sutton GG, Sykes SM, Tabbaa DG, Thiagarajan 
M, Tomlinson CM, Torralba M, Treangen TJ, Truty RM, Vishnivetskaya TA, Walker J, 
Wang L, Wang Z, Ward DV, Warren W, Watson MA, Wellington C, Wetterstrand KA, 
White JR, Wilczek-Boney K, Wu Y, Wylie KM, Wylie T, Yandava C, Ye L, Ye Y, Yooseph 
S, Youmans BP, Zhang L, Zhou Y, Zhu Y, Zoloth L, Zucker JD, Birren BW, Gibbs RA, 
Highlander SK, Methé BA, Nelson KE, Petrosino JF, Weinstock GM, Wilson RK, White 
O. 2012. Structure, function and diversity of the healthy human microbiome. Nature 
486:207–214. DOI: 10.1038/nature11234.

[40] American Gut. Available at http://humanfoodproject.com/americangut/ 
(accessed May 29, 2019).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2019. ; https://doi.org/10.1101/659615doi: bioRxiv preprint 

https://doi.org/10.1101/659615
http://creativecommons.org/licenses/by-nc-nd/4.0/

