1	Classification :
+	Glabbilleactoin

- 2 Biophysics and computational biology; Evolution
- 3

6

4 **Title**:

5 **Biophysical principles of choanoflagellate self-organization**

7 Authors:

- 8 Ben T. Larson^{1,2}, Teresa Ruiz-Herrero³, Stacey Lee⁴, Sanjay Kumar^{4,5}, L.
- 9 Mahadevan^{3,6*}, Nicole King^{1*}
- 10

11 Affiliations:

- 12 ¹Howard Hughes Medical Institute and the Department of Molecular and Cell
- 13 Biology, University of California, Berkeley, CA, USA
- 14 ²Biophysics Graduate Group, University of California, Berkeley, CA, USA
- 15 ³Paulson School of Engineering and Applied Sciences, Harvard University,
- 16 Cambridge, MA, USA
- 17 ⁴UC Berkeley-UCSF Graduate Program in Bioengineering, Department of
- 18 Bioengineering, University of California, Berkeley, CA, USA
- ⁵Department of Chemical and Biomolecular Engineering, University of California,
- 20 Berkeley, CA, USA
- ⁶Departments of Physics and Organismic and Evolutionary Biology, and Kavli
- 22 Institute for NanoBio Science and Technology, Harvard University, Cambridge, MA,
- 23 USA
- 24 *Corresponding author. Email: <u>nking@berkeley.edu</u> and <u>lmahadev@g.harvard.edu</u>
- 25

26 Keywords:

- 27 morphogenesis, multicellularity, quantitative microscopy, physical constraints,
- 28 extracellular matrix, morphospace

29 Abstract

30	Inspired by the patterns of multicellularity in choanoflagellates, the closest living
31	relatives of animals, we quantify the biophysical processes underlying the
32	morphogenesis of rosette colonies in the choanoflagellate Salpingoeca rosetta. We
33	find that rosettes reproducibly transition from an early stage of 2D growth to a later
34	stage of 3D growth, despite the underlying stochasticity of the cell lineages. We
35	postulate that the extracellular matrix (ECM) exerts a physical constraint on the
36	packing of proliferating cells, thereby sculpting rosette morphogenesis. Our
37	perturbative experiments coupled with biophysical simulations demonstrates the
38	fundamental importance of a basally-secreted ECM for rosette morphogenesis. In
39	addition, this yields a morphospace for the shapes of these multicellular colonies,
40	consistent with observations of a range of choanoflagellates. Overall, our biophysical
41	perspective on rosette development complements previous genetic perspectives
42	and thus helps illuminate the interplay between cell biology and physics in
43	regulating morphogenesis.

44 Significance statement

- 45 Comparisons among animals and their closest living relatives, the choanoflagellates,
- 46 have begun to shed light on the origin of animal multicellularity and development.
- 47 Here we complement previous genetic perspectives on this process by focusing on
- 48 the biophysical principles underlying colony morphology and morphogenesis. Our
- 49 study reveals the crucial role of the extracellular matrix in shaping the colonies and
- 50 leads to a phase diagram that delineates the range of morphologies as a function of
- 51 the biophysical mechanisms at play.

52 Introduction

53	Nearly all animals start life as a single cell (the zygote) that, through cell
54	division, cell differentiation, and morphogenesis, gives rise to a complex
55	multicellular adult form (1, 2). These processes in animals require regulated
56	interplay between active cellular processes and physical constraints (3–9). A
57	particularly interesting system in which to study this interplay is the
58	choanoflagellates, the closest relatives of animals (10–12). Choanoflagellates are
59	aquatic microbial eukaryotes whose cells bear a diagnostic "collar complex"
60	composed of an apical flagellum surrounded by an actin-filled collar of microvilli
61	(13, 14) (Fig. 1). The life histories of many choanoflagellates involve transient
62	differentiation into diverse cell types and morphologies (15, 16). For example, in the
63	model choanoflagellate Salpingoeca rosetta, solitary cells develop into multicellular
64	colonies through serial rounds of cell division (17), akin to the process by which
65	animal embryos develop from a zygote (Fig. 1A). Therefore, choanoflagellate colony
66	morphogenesis presents a simple, phylogenetically-relevant system for
67	investigating multicellular morphogenesis from both a biological and a physical
68	perspective (14).
69	S. rosetta forms planktonic rosette-shaped colonies ("rosettes"), in which the

S. rosetta forms planktonic rosette-shaped colonies ("rosettes"), in which the
cells are tightly packed into a rough sphere that resembles a morula-stage animal
embryo (17). Because the cell division furrow forms along the apical-basal axis,
thereby dissecting the collar, all of the cells in rosettes are oriented with their
flagella and collars facing out into the environment and their basal poles facing into
the rosette interior (Fig. 1B). Interestingly, all three genes known to be required for

75	rosette development are regulators of the extracellular matrix (ECM): a C-type lectin
76	called rosetteless (18) and two predicted glycosyltransferases called jumble and
77	couscous (19). Nonetheless, little is known about either the mechanistic role of the
78	ECM or the extent to which rosette morphogenesis is shaped by physical
79	constraints.
80	A critical barrier to understanding the biological and physical mechanisms
81	underlying rosette morphogenesis has been the absence of a detailed
82	characterization of the morphogenetic process. For example, it is not known
83	whether rosettes form through the development of invariant cell lineages akin to
84	those seen in <i>C. elegans</i> (20) or through stochastic cell divisions, as occurs, for
85	example, in sponges and mice (21, 22). Moreover, it is not known whether there are
86	identifiable developmental stages in rosette development. To quantify the principles
87	of rosette morphogenesis, we used a combination of quantitative descriptions of
88	rosette development, experimental perturbations, and biophysical simulations that
89	together reveal the importance of the regulated secretion of basal ECM in physically
90	constraining proliferating cells and thereby sculpting choanoflagellate
91	multicellularity.
0.2	

93 **Results**

94 Rosette morphogenesis displays a stereotyped transition from 2D to 3D growth

95	To constrain our search for mechanistic principles, we first quantified the
96	range of sizes and spectrum of morphologies of <i>S. rosetta</i> rosettes by measuring the
97	population-wide distribution of rosette size in terms of cell number. S. rosetta
98	cultured solely in the presence of the rosette-inducing bacterium A.
99	machipongonensis (23), lead to a population with a stationary cell number
100	distribution. While some rosettes contained as many as 25 cells, the most common
101	rosette size was 8 cells/rosette, with 51% of rosettes containing between 6-8 cells
102	(Fig. 2A). While rosettes grow through cell division, their ultimate size is
103	determined by either colony fission (as previously reported; 16) or cell extrusion
104	(Fig S1). In each case, the rosettes contained 8 or more cells, suggesting that these
105	rosette size decreasing phenomena are more common in larger rosettes.
106	We next quantified defining features of the 3D morphology of rosettes
107	containing between four (following (24), we defined four cells as the smallest cell
108	number clearly identifiable as a rosette) to twelve cells (representing 90% of
109	rosettes at steady state, Methods; Fig. 2B, C). This analysis revealed that rosettes
110	increased in volume and diameter as cell number increased (Fig. 2D). Although the
111	average cell volume reduced between the four-cell and five-cell stages of rosette
112	development, average cell volume did not change substantially with increasing cell
113	number after the five-cell stage (Fig. S2), suggesting that cells in rosettes grow
114	between cell divisions. This contrasts with cleavage in the earliest stages of animal

embryogenesis, in which cell volume steadily decreases as cell divisions proceedwith no cell or overall tissue growth (2).

117	Our analyses revealed that rosette morphogenesis displays two distinct, but
118	previously undescribed phases: (1) a 2D phase of growth from four to seven cells,
119	during which the overall shape of rosettes changed substantially with increasing cell
120	number and (2) a 3D phase from eight to twelve cells, during which rosettes
121	expanded nearly isotropically (Fig. 2C-E). Interestingly, the most common rosette
122	size (8 cells) corresponded to the transition between the two phases of growth.
123	Transitions from 2D to 3D growth can be driven by the constrained growth
124	of cell layers leading to increasing mechanical stresses (25–29). We hypothesized
125	that the physical packing of cells in rosettes might constrain cell growth and
126	proliferation and help explain the growth transition during rosette morphogenesis.
127	Indeed, cell packing initially increased (as indicated by an increase in the number of
128	nearest neighbor cells, Fig. 2F, and suggested by the reduced average sphericity of
129	cells, Fig. S2). Following the growth transition at the 8-cell stage, cell packing
130	continued to increase with increasing cells/rosette, although the rate of increase
131	slowed as a function of the number of cells/rosette (Fig. 2F). Therefore, the
132	transition to isotropic 3D growth in eight-cell rosettes may occur in response to the
133	accumulation of stress caused by the increase in cell packing in growing rosettes.
134	
135	Rosette developmental dynamics are stochastic

136 The influence of cell packing on rosette morphogenesis did not preclude the137 possibility that the rosette developmental program might also involve specific

138 patterns of cell division that result in well-defined cell lineages. We therefore 139 documented cell lineages in live, developing rosettes (Fig. 3). Consistent with the 140 single previous published observation of live rosette development (17), the cells 141 maintained polarity throughout development, with their division planes oriented 142 along the apical-basal axis. Relative to the cell division times in linear chains (Fig. 143 1A), which form when rosette inducing bacteria are absent, we observed a slight but 144 statistically significant increase in division rate in rosettes (p=0.03 by Wilcoxon 145 rank sum test Fig. S3). In addition, we found that both the order and timing of cell 146 divisions differed among different rosettes (Fig. 3B, C), ruling out the possibility that 147 cell lineages are invariant. This process of apparently unpatterned cell divisions 148 resembles the dynamics of early embryogenesis in diverse animals, including 149 sponges and mice (21, 22). 150 Although division patterns were variable between rosettes, ruling out the

151 possibility of invariant cell lineages, in no rosette did cells from the first, second, or 152 third cell division give rise to more than 60% of cells (Fig. 3D). Moreover, cell 153 division remained balanced throughout rosette morphogenesis, with no cell lineage 154 coming to dominate. Importantly, the cell lineages of chains showed the same kind 155 of stochasticity and variability as rosettes (Fig. 3D). These observations suggest that 156 rosette morphogenesis does not require the strongest forms of cell cycle control or 157 coordination (i.e. the synchronous divisions or deterministic division timing or 158 order observed in the development of some animals such as C. elegans, Xenopus, 159 *Drosophila*, and zebrafish (30–33) and in the green alga *Volvox* (34–36)).

160

161 ECM constrains proliferating cells in rosettes

162 To reconcile the stereotyped 3D growth transition (Fig. 2) with the stochastic 163 developmental dynamics of rosette formation (Fig. 3), we set out to test the "ECM 164 constraint hypothesis (Fig 4A, B)." This hypothesis was motivated by the idea that 165 physical constraints imposed by the geometry and mechanics of cell packing play a 166 key role in morphogenesis and that the source of the physical constraint in growing 167 rosettes is the ECM, which is known to be required for rosette morphogenesis and 168 connects all cells in a rosette, filling the rosette center (16, 18, 19, 37). The 169 phenomenon of physically constrained morphogenesis suggests that the amount of 170 ECM secreted during rosette development is an important factor in sculpting rosette 171 morphogenesis (Fig. 4A, B). We visualized and quantified the volume of the ECM by 172 staining with fluorescein-conjugated Jacalin, a galactose-binding lectin (19, 38). 173 Importantly, Jacalin does not stain chains, so its target is likely specific to rosette 174 ECM (19). We found that the relative amount of space occupied by basal ECM (ECM 175 volume/total cell volume, denoted by ϕ) in developing rosettes was constant and 176 maintained at roughly 6% (Fig. 4C). Therefore, we infer that cells in rosettes 177 produce ECM at a constant rate relative to the growth of cells, either through 178 synthesis and secretion alone or through a balance of regulated synthesis, secretion, 179 and degradation. 180 A key prediction of the ECM constraint hypothesis (Fig. 4A, B) is that 181 compressive stress on cells, balanced by stress in the ECM, should increase with cell

182 number. Alternatively, cell-cell connections mediated by lateral cell-cell adhesion or

183 cytoplasmic bridges formed during incomplete cytokinesis (16, 37) (Fig. 1B) might

184 be primarily responsible for the structural integrity of rosettes. If cell-cell 185 connections dominate over ECM in holding together rosettes, we would expect cells 186 to be under tension such that measured stresses would be in the opposite direction 187 to those predicted by the ECM constraint hypothesis. 188 To probe the balance of forces in developing rosettes, we performed laser 189 ablation experiments, which provided a readout of the relative magnitude and 190 direction of stresses within rosettes (39–42). Upon ablation of a single cell in a 191 rosette, we found that the remaining cells immediately became more rounded and 192 moved closer together, reducing the size of the gap left by the ablated cell (Fig. 4E. 193 This result demonstrated that residual elastic stress (as measured by initial recoil 194 velocity after ablation, (39)) is maintained in rosettes, with cells under compressive 195 stress balanced by an additional component of residual stress. If rosettes were 196 primarily held together by strong cell-cell adhesion or constrained by cytoplasmic 197 bridges (Fig. 1B), the expected recoil would have been in the opposite direction, 198 causing a larger gap to open in rosettes, due to cells increasing contact area with 199 remaining neighbors in the former case and tension in bridges in the latter. 200 Moreover, as the number of cells in rosettes increased, the measured residual stress 201 increased (Fig. 4F), consistent with the ECM constraint hypothesis (Fig. 4A, B). 202 These results ruled out strong cell-cell adhesion or constraint by cytoplasmic 203 bridges as the dominant physical mechanisms underlying rosette integrity and 204 morphogenesis. 205 Additionally, residual stress (as measured by initial recoil velocity (7, 39,

43)) displayed a sharp increase, by nearly a factor of two, at the 8-cell stage (Fig.

207	4F), coinciding with the 3D growth transition (Fig. 2). In conjunction with the
208	observed increase in cell packing (Fig. 2F), this result suggested that the packing of
209	cells is mechanically constrained in developing rosettes such that cells are
210	increasingly compressed against one another with increasing cell number. We
211	reasoned that the shared ECM secreted from the basal end of cells, adhesion to
212	which is likely essential for rosette formation (18, 19), might be the source of this
213	constraint. While we have ruled out bridges as a dominant component of the
214	structural integrity of rosettes, they could play a role in stabilizing cell orientation to
215	hinder out of plane growth during the 2D phase of rosette morphogenesis.
216	
217	Material properties of ECM affect morphogenesis
218	We next sought to test the ECM constraint hypothesis through perturbative
219	experiments. While the hypothesis entails that changing geometrical properties
220	such as cell shape and relative amount of ECM should have a substantial effect on
221	rosette morphogenesis, these properties could not be experimentally tuned.
222	However, we could perturb the mechanical properties of the ECM. To do so, we
223	treated developing rosettes with strontium chloride (SrCl $_2$). Strontium is a divalent
224	cation that can stiffen hydrogels, including animal ECM, by increasing crosslinking
225	density (44–48). Importantly, we found that $SrCl_2$ has no detectable effect on cell
226	growth at up to twice the highest concentration used during this set of experiments
227	(Fig. S4). Under our ECM constraint hypothesis, we predicted that increased ECM
228	stiffness would alter morphogenesis by further constraining cell packing, thus
229	holding cells in a more compact arrangement along with a relative increase in

residual stress. Consistent with our hypothesis, we found that rosettes became more
compact with increasing SrCl₂ concentration (Fig. 5A, B), and the 3D transition
shifted to lower cell numbers, occurring at the five-cell stage for the highest SrCl₂
concentration (Fig. 5C). Additionally, the transition to isotropic growth at the 8-cell
stage was abolished (Fig. 5B). Together, these analyses reveal that morphogenesis is
altered.

236 Using laser ablation experiments, we found that relative residual stress as 237 determined by maximum initial recoil velocity (as in Fig. 4E, F) was significantly 238 increased for SrCl₂-treated 4-7 cell rosettes relative to untreated rosettes (Fig. 5D). 239 The increase in residual stress in conjunction with the 2D to 3D growth transition at 240 lower cell numbers, supported the hypothesis that ECM-constrained proliferation is 241 a key driver of the 3D transition in rosette morphogenesis. Interestingly, for the 8-242 cell-stage and higher, we did not find a significant increase in residual stress in 243 SrCl₂-treated rosettes compared to untreated rosettes. This is consistent with cells 244 exerting maximum growth pressure on their neighbors at the 8-cell stage and above. 245 Taken together, these results confirm important model predictions by 246 demonstrating that material properties of the ECM can affect morphogenesis, which 247 highlights the central role of the ECM in sculpting rosette morphology. 248 249 Amount of ECM, cell shape, and ECM stiffness as control parameters for 250 morphogenesis

To formalize and test our hypothesis of morphogenesis shaped by ECM
constraint (Fig. 4A, B), we next developed a cell-based computational model to

253 simulate rosette development. Because development involves few cells (ruling out 254 continuum modeling) in a low Reynolds number environment where inertial forces 255 play a negligible role (49, 50) we developed particle-based simulations akin to 256 Brownian dynamics, but neglected the role of thermal fluctuations given the large 257 size of the cells and aggregates (51). In the model, the ECM and cells were 258 represented by a system of interacting spherical particles (Fig. 6A). This particle 259 representation also allowed us to capture the discrete and stochastic nature of cell 260 division and the stochastic nature ECM secretion as well the polarity of cell division 261 and ECM secretion. Each cell in the model was composed of three linked spheres to 262 capture cell shape and for computational tractability, with a small sphere 263 representing the basal pole of the cell, a larger sphere representing the cell body, 264 and the largest representing the collar exclusion region. Cells interacted sterically 265 with one another. The ECM was modelled as a system of small spheres with 266 attractive interactions in order to capture the complex shapes the ECM can take on 267 (Fig 4C) as well as its deformability. ECM particles similarly shared attractive 268 interactions with the basal poles of cells. Cells in the model were allowed to divide 269 stochastically, with the division plane orientation around the apico-basal axis 270 determined by the previous division (consistent with observations of rosette 271 development from Fig. 3 and (17)), and ECM particles were secreted stochastically 272 at a constant rate from the basal pole of non-dividing cells (see Methods for a more 273 detailed description of the model and simulations). 274 In this simplified model of rosette morphogenesis, three main parameters 275 characterized the system: cell aspect ratio (length along apical/basal axis vs.

equatorial diameter), α , amount of ECM relative to total cell volume, ϕ , and relative
stiffness of the ECM (in terms of the strength of ECM-ECM adhesion bonds relative
to the force exerted by growing and dividing cells), σ . Simulations with parameter
values constrained by cell and ECM morphology data collected as part of this study
showed that this simple model was sufficient to recapitulate rosette morphogenesis,
including the expected 3D transition at the 8-cell stage (Fig. S5). Furthermore,
simulations showed that rosette morphogenesis was robust to a range of scaled
ECM stiffness values (Fig. 6B-E, S5) and to the stochasticity of cell divisions (Fig. S5).
We did find that simulations fail to recapitulate all aspects of rosette
morphogenesis, most saliently, the growth scaling (Fig. 2D) and the absolute
magnitudes of flatness and sphericity (Fig. 2E, S5). We expect, however, that a more
detailed treatment of the mechanics of cells and ECM may capture these aspects of
rosette morphogenesis more accurately, but such a detailed model is beyond the
scope of the present study.
Exploration of the effects of different parameter values revealed that the
model captures a range of different colonial morphologies (Fig. 6B, F). This space of
forms and associated model parameters constitutes a theoretical morphospace (51)
of ECM-based colonial choanoflagellate morphologies given this simplified model of
morphogenesis. Interestingly, some of the simulated forms resembled colonies, such
as tree-like structures (found in Codosiga cymosa (52) and an uncharacterized
Salpingoeca sp., Fig. $6Gt_2$, t_3) or cups (found in Codosiga umbellata (53) and another
uncharacterized <i>Salpingoeca sp.</i> , Fig. 6Gc4, c5), that have been previously reported in
other choanoflagellate species (Fig. 6F, G). We found that colony morphogenesis is

299	particularly sensitive to α and ϕ , changes in each of which can lead to dramatic
300	changes in predicted multicellular forms. For example, holding the other two
301	parameters fixed, increase in ϕ alone would be predicted to drive a change from
302	rosettes to disks or cups and from cones to trees (Fig. 6C, D). Colony morphogenesis
303	was also affected by changes in σ , but the effects tended to be subtler, such as
304	changes in cell packing over a relatively wide range of values (Fig. S5). In contrast
305	with changes in ϕ , increase in σ alone was either not predicted to lead to any
306	transitions in predicted colony morphology type or, at most, lead to single
307	transitions such as from rosettes to disks (Fig. 6D, E). These results demonstrate
308	that basal secretion of a shared ECM constitutes a robust yet flexible mechanism for
309	regulating multicellular morphogenesis. Furthermore, these results made specific
310	predictions about different colony morphologies corresponding to specific cell
311	morphologies and relative ECM volumes and stiffnesses.

313 Discussion

314 Our quantitative analyses, experimental perturbations, and simulations 315 allowed us to understand the process by which single cells of *S. rosetta* gives rise to 316 multicellular rosettes. We found that the earliest stages of rosette morphogenesis 317 proceed through 2D anisotropic growth, which is stereotypically followed by a 318 transition to 3D isotropic growth. In particular, we found that the basal ECM 319 secreted by cells during rosette development physically constrains proliferating 320 cells, and thereby drives a stereotyped morphogenetic progression in the absence of 321 strict cell lineage specification and division timing. Simulations showed that this 322 simple mechanism, the regulated basal secretion of ECM, is sufficient to not only 323 recapitulate rosette morphogenesis but yield a morphospace that can not only 324 explain the multicellular morphology of *S. rosetta* but also that of other species of 325 colonial choanoflagellates. These results emphasize the importance of the 326 choanoflagellate ECM for morphogenesis and should encourage future studies of its 327 composition, physical properties, and regulation. 328 The importance of the basal ECM revealed in this study may generalize to 329 other choanoflagellate species and colonial morphologies. Our simulations predict 330 that differences in ECM levels (resulting from differing rates of biosynthesis, 331 secretion, or degradation), cell shape, and in ECM stiffness relative to cells are 332 sufficient to explain the existence of radically different colony morphologies across 333 diverse choanoflagellates. Measurements and comparisons of ECM levels (ϕ), cell 334 shape (α), and ECM stiffness (σ), in diverse colonial choanoflagellates will be crucial

to validate the model, and deviations from the predictions of the model could pointto additional regulatory mechanisms.

337	From a broader perspective, rosette morphogenesis shows interesting
338	parallels to mechanisms underlying morphogenesis in diverse other taxa. In terms
339	of physical mechanisms, the constrained proliferation of cells that occurs during
340	rosette development generates crowding stresses like those that regulate
341	morphogenesis by animal epithelia (54, 55), snowflake yeast (56), and bacterial
342	biofilms (26). In epithelia, compaction of cells due to crowding has been proposed as
343	a general signal for cellular processes underlying tissue homeostasis such as
344	apoptosis and extrusion (57–60). Further, accumulation of stress due to crowding
345	of cells produces a jamming-like behavior that has been proposed as a generic
346	constraint on the development of multicellular systems with fixed cell geometry
347	(56). Due to the generality of physical constraints on cell packing, it is plausible that
348	such phenomena acted both as constraints and regulatory mechanisms in the
349	development and morphogenesis of early animals and their ancestors.
350	Cellular mechanisms of rosette morphogenesis are also shared with other
351	multicellular systems. Our results demonstrate that the regulation of basal ECM
352	sculpts the multicellular morphology of rosettes. Thus, our biophysical studies have
353	converged on results from genetic screens in <i>S. rosetta</i> that implicated animal ECM
354	gene homologs in the regulation of rosette development, including a C-type lectin
355	(18) and predicted glycosyltransferases (19). The basal ECM of rosettes is
356	reminiscent of the basal lamina, a basally secreted layer of ECM that underpins

animal epithelia and regulates tissue morphogenesis by constraining cell

- 358 proliferation (29) including in *Drosophila* wing and egg chamber development (54,
- 61, 62), branching growth during lung and salivary gland development (63, 64),
- 360 notochord expansion (65), lumen elongation (66), and in tumor growth in
- 361 mammary epithelia (45). The ECM also sculpts morphogenesis in *Volvox*, in which
- defects in ECM composition disrupt morphogenesis (67, 68), and in bacterial
- 363 biofilms, in which the ECM can constrain cells and thereby drive 3D morphogenesis
- 364 (26, 69). Remarkably, some bacteria form multicellular rosettes in a process that is
- 365 mediated by basal ECM secretion (70, 71).
- 366 Altogether, the principles that we can glean from the simplicity of
- 367 choanoflagellate morphogenesis holds the promise of revealing general principles
- 368 by which biological and physical mechanisms shape morphogenesis more broadly.

369 Methods

370 Choanoflagellate strains and culture

371 Two strains of *S. rosetta* were used for the experiments in this study: one 372 grown solely in the presence of the non-rosette inducing bacterium *Echinicola* 373 pacifica (72), a strain called SrEpac (73) and the other grown solely in the presence 374 of the rosette inducing bacterium *Algoriphagus machipongonensis* (74), a strain 375 called PX1 (23, 75). 376 SrEpac was grown in 5% Sea Water Complete (SWC) media at 22°C. Sea Water 377 Complete media consisted of 250 mg/L peptone, 150 mg/L yeast extract, 150µL/L 378 glycerol in artificial sea water and was diluted to 5% by volume in artificial sea 379 water to make 5% Sea Water Complete media. Artificial sea water (ASW) consisted 380 of 32.9 g Tropic Marin sea salts (Wartenberg, Germany) dissolved in 1L distilled 381 water for a final salinity of 32-27 parts per thousand. SrEpac was passaged either 382 1:10 into 9mL fresh 5% SWC once a day or 1:20 every other day into 9mL fresh 5% 383 SWC to stimulate rapid proliferation and maintain log-phase growth. Cells were 384 grown in 25cm² cell culture flask (Corning). 385 PX1 was grown in 25% Cereal Grass media (CGM3) at 22°C. Cereal Grass media 386 consisted of Cereal Grass (Basic Science Supplies) added to ASW at 5g/L, steeped for 387 3.5 hours and then filtered. This media was then diluted to 5% by volume in ASW in 388 order to make 25% CGM3. PX1 was passaged 1:5 into 9mL of fresh 25% CGM3 every 389 two to three days to stimulate rapid proliferation and maintain log-phase growth.

390 Cells were grown in 25cm² cell culture flask (Corning).

391

392 Rosette induction

393	Rosette development from single cells was stimulated by the addition of
394	outer membrane vesicles (OMVs) isolated from Algoriphagus bacteria (23) to
395	SrEpac cultures. To isolate OMVs, <i>Algoriphagus</i> was first grown in 200mL of SWC at
396	30°C for 48 hrs. on a shaker. Bacterial cells were then pelleted, and the cell free
397	supernatant was sterile filtered, then spun at 36,000 x g for three hours at 4° C (Type
398	45 Ti rotor, Beckman Coulter) to pellet OMVs. Finally, OMVs were resuspended in
399	1.5 mL ASW. To induce rosette development, OMVs were added to SrEpac at a
400	concentration of 1:2000 by volume. This concentration led to >90% of cells in
401	rosettes by 48 hrs. post-induction.
402	
403	Electron microscopy
404	Algoriphagus OMV induced SrEPac cultures (48 hours post-induction) were
405	concentrated by centrifugation (1200xg for 5 min). Colonies were resuspended in
406	5% BSA in ASW, high pressure frozen using a Leica EM PACT2, and fixed by freeze
407	substitution in 0.01% $OsO_4 + 0.2\%$ uranyl acetate in acetone (76). Samples were

resin embedded in Epon Araldite (Embed-812) (77), cut into 80 nm sections, and

409 then imaged using an FEI Tecnai 12 transmission electron microscope.

410

411 Rosette cell number quantification

Rosettes from rapidly growing PX1 cultures (*S. rosetta* co-cultured with *Algoriphagus*) were concentrated to 5x by centrifugation (1500xg for 10 min) and
resuspended by vigorous pipetting in fresh 25% CGM3 media. Rosettes were then

415	gently adhered to a poly-D-lysine coated coverslip (FluoroDish, World Precision
416	Instruments, Inc), which had been washed three times using 25% CGM3. Rosettes
417	were observed using a Leica DMIL microscope with a 20x objective (Leica, N Plan,
418	0.35 NA), and cells were manually counted. In general, rosettes were not
419	overlapping, and cells were deemed to belong to a rosette when oriented radially
420	outward about a central focus.

421

422 Quantitative morphology analysis pipeline

423 For morphological analysis of rosettes, SrEpac cultures were first induced to 424 form rosettes as described above. After 24 hours, developing rosettes were pelleted 425 by centrifugation (1500xg for 10 min) and resuspended in fresh ASW by vigorous 426 pipetting in order to minimize bacteria and to break apart any chains that might be 427 mistaken for rosettes. Rosettes were then deposited onto a poly-D-lysine coated 428 coverslip (FluoroDish, World Precision Instruments, Inc), which had been washed 429 three times using ASW. Rosettes were stained by overloading with LysoTracker Red 430 DND-99 (ThermoFisher Scientific) at 1:200 dilution, which reliably stains the entire 431 cell body. Next, z-stack images of stained rosettes were acquired on a Zeiss 880 laser 432 scanning confocal microscope using a 40x water immersion objective (Zeiss, C-433 Apochromat, 1.2 NA) and illumination with a 561 nm laser (Zeiss). Importantly, 434 pure water, and not water immersion oil, was used to minimize coverslip deflection 435 during imaging. 436 After image acquisition, z-stacks were registered using the Stackreg plugin in 437

21

FIII (78, 79). Aligned z-stacks were deconvolved using the Parallel Iterative

438 Deconvolution v1.12 plugin in FIJI (78, 79). For deconvolution, the Wiener Filter 439 Preconditioned Landweber method (WPL) with stock settings and a theoretical 440 pointspread function for the imaging system generated using the Diffraction PSF 3D 441 plugin in FIJI (78, 79) were used. Aligned, deconvolved z-stacks were then 442 segmented using Imaris v3.8 (Bitplane, Belfast). First, the images were median 443 filtered with a 3x3x1 kernel and smoothed using a Gaussian filter with a sigma of 444 0.24 microns. Intensity thresholds for local intensity segmentation and thresholds 445 for size and shape filters to exclude extraneous objects such as bacteria within the 446 analysis region were then chosen based on segmentation of a few rosettes from each 447 sample and then kept the same for all rosettes in the sample. Individual cells in 448 rosettes were segmented using the Split Touching Objects option. Segmentation of 449 each rosette was manually inspected, and any improperly segmented cells were 450 manually split and fused as necessary. Statistics of segmented rosettes, including 451 number of cells, cell positions, orientations, sizes, and shapes were exported to 452 MATLAB release 2016a (Mathworks, Natick) for additional morphological analysis. 453 Rosette volume was measured by determining the convex hull of cell 454 positions. Maximum rosette width was measured by the maximum distance 455 between cells in rosettes. To further evaluate rosette morphology, principle axes of 456 rosettes were determined by principle components analysis of cell positions. 457 Flatness (*F*) and Sphericity (*S*) of rosettes were computed from these principle components where F = 1 - C/B, and $S = \sqrt[3]{BC/A^2}$ where A, B, and C are the 458 459 principle axes in descending order of magnitude. The packing of cells was then 460 quantified by the average number of neighboring cells over all cells in rosettes as

determined by a Voronoi tessellation (80) of cell positions. Finally, rosettes werethen binned by cell number for the final analysis of morphological progression.

463

464 *Cell lineage analysis*

465 Rapidly growing SrEpac cultures were induced to form rosettes, and 9 hours 466 post induction, induced cells were concentrated to 5x by centrifugation and 467 resuspension in 5% SWC (1200xg for 5 min, initial volume 15mL resuspended in 468 3mL) and then deposited in a 200 μ L droplet on a poly-D-lysine coated coverslip 469 (FluoroDish, World Precision Instruments, Inc). Cells were imaged in phase contrast 470 or DIC on either a Zeiss Axio Observer Z1 with a 20x (Zeiss, Plan-Apochromat, 0.8 471 NA) objective or a Leica DMI6000B with a 20x (Leica, Plan-Apochromat, 0.7 NA) 472 objective at 1 frame/minute for 16 hours. Cell positions were tracked using the 473 Manual Tracking plugin in FIJI (78, 79), and division events were tracked and 474 recorded manually. For analysis of chain cell lineages, the cells were not induced to form rosettes, but otherwise all previous steps were followed. 475

476

477 ECM measurements

Rosettes were prepared as in the "Quantitative morphology analysis
pipeline" section (QMAP). Additionally, to label the ECM, fluorescein labeled Jacalin
(Vector Labs, FL-1151) at a 1:400 dilution was added to the concentrated rosettes.
Imaging also followed the QMAP with additional sequential illumination with a 488
nm laser to excite the fluorescein. Z-stack images were processed and analyzed

483 following QMAP with the exception of post-processing in MATLAB, as cell and ECM

484 volumes were exported directly from Imaris.

485

486 *Laser ablation*

487 For laser ablation, an upright Olympus BX51WI microscope (Olympus 488 Corporation) equipped with Swept Field Confocal Technology (Bruker) and a 489 Ti:Sapphire 2-photon Chameleon Ultra II laser (Coherent) were used. The 2-photon 490 laser was set to 770 nm and ablation was performed using three 20 ms pulses. A 60x 491 water dipping objective (Olympus, LUMPlanFL N, 1.0 NA) was used for imaging. 492 Images were captured using an EM-CCD camera (Photometrics). The following 493 emission filter was used: Quad FF-01-446/523/600/677-25 (Semrock). PrairieView 494 Software (v. 5.3 U3, Bruker) was used to acquire images. 495 Rosettes were gently adhered to a coverslip using poly-D-lysine and stained 496 with lysotracker (as described above). Individual cells in rosettes were ablated, and 497 the subsequent recoil, which is proportional to the elastic stress (7, 39, 43), was 498 recorded at a frame rate of 1/0.48 s. Images were registered using the StackReg 499 plugin in FIII (78, 79) to correct for small movements of the rosette colony due to 500 flagellar motion during acquisition of images. Recoil velocities were measured in the 501 frames following ablation by particle image velocimetry (PIV) using PIVlab software 502 in MATLAB (81). Settings for PIV included four direct Fourier transform correlation 503 passes with window sizes of 64, 32, 16 and 8 pixels and corresponding step sizes of 504 32, 16, 8, and 4 pixels. To reject noise and erroneous velocities, filters of 7 standard 505 deviations about the mean and local median filters with a threshold of 5 and epsilon

506 of 0.1 were applied. Finally, any remaining velocity measurements not 507 corresponding to displacements of cells in rosettes were manually rejected. Recoil 508 velocities were measured in the subsequent 3 frames following ablation by radial 509 scans about the circumference of the rosette, and the maximum measured velocity 510 was selected. 511 512 Strontium treatment 513 For strontium treatment of rosettes, SrEpac cultures were centrifuged at 514 1500g for 10 to pellet all cells and resuspended in 5% SWC media containing added 515 SrCl₂ to a final concentration of either 0, 2.5, or 5 mM. These cells were then induced 516 to form rosettes as described above. Morphological analysis and laser ablation were 517 also conducted as described above. 518 For cell growth assays (Fig. S4), SrEpac cultures were prepared as described 519 in the preceding paragraph but were not induced to form rosettes. Cells were then 520 plated into 12-well plates (Falcon) at an initial density of 20000 cells/mL. To 521 determine cell density, cells were counted using a hemocytometer (Hausser 522 Scientific) viewed in phase contrast on a Leica DMIL microscope with a 20x (Leica, N 523 Plan, 0.35 NA) objective. Cells were counted at 4, 24, and 28 hours. Growth rates 524 were then determined by exponential fits to the log-phase of growth obtained using 525 the Curve Fitting application in MATLAB.

526

527 Simulations

528 Cells and ECM were modelled as spherical particles (Fig. 6) with interactions529 that allowed us to tune the various morphological and material properties we

530 wished to investigate. The particle representation allowed us to capture both the

relevant geometric aspects of colony formation including polarized cell divisions

and ECM secretion as well as the discrete and stochastic nature of these processes.

533 **Cells**

Each cell was composed of three linked particles with diameters d_1 , d_2 , and

535 d_3 representing the basal pole, cell body, and collar and in ascending order of

536 magnitude, to capture cell geometry. Cell particles interacted sterically with one

another via the hard-sphere Weeks-Chandler-Andersen (WCA) potential (82):

538
$$V_{WCA}(R) = 4\varepsilon_{WCA} \left[\left(\frac{d_i}{R}\right)^{12} - \left(\frac{d_i}{R}\right)^6 \right] + \Delta V(R) \text{ for } R < R_{cut}, \text{ and}$$

539
$$V_{WCA}(R) = 0 \text{ for } R > R_{cut}$$

540 where *R* is the interparticle distance; d_i with i = 1, 2, 3 is the cell particle diameter; 541 ε_{WCA} sets the force of repulsion upon overlap; $\Delta V(R) = V_{LJ}(R_{cut})$ where V_{LJ} is the 542 Lennard-Jones potential (82):

543
$$V_{LJ}(R) = 4\varepsilon \left[\left(\frac{d_i}{R}\right)^{12} - \left(\frac{d_i}{R}\right)^6 \right]$$

with $\varepsilon = \varepsilon_{WCA}$; and $R_{cut} = 2^{\frac{1}{6}}d_i$ is the cutoff distance for the potential set to the diameter of the cell particle. For a given cell, cohesion of particles was maintained using a finitely extensible nonlinear elastic (FENE) potential:

547
$$V_{FENE}(R) = \frac{1}{2} k_{FENE} R_0^2 \left(1 - \left(\frac{R - \Delta}{R_0}\right)^2 \right) + V_{WCAS}(R)$$

548 where k_{FENE} sets the strength of the potential; $R_0 = d_1$ (set to maintain cohesion); R

549 is the interparticle distance;
$$\Delta = \frac{d_i + d_j}{2} - d_1$$
 where d_k is the diameter of the k^{th}

550 particle; and

551
$$V_{WCAS}(R) = 4\varepsilon_{WCA} \left[\left(\frac{d_i}{R - \Delta} \right)^{12} - \left(\frac{d_i}{R - \Delta} \right)^6 \right] \text{ for } R - \Delta < 2^{\frac{1}{6}} \Delta, \text{ and}$$

552
$$V_{WCAS}(R) = 0 \text{ for } R - \Delta \ge 2^{\frac{1}{6}} \Delta.$$

Additionally, a harmonic potential acting between the basal and apical cell particlewas used to keep cells straight and elongated:

555
$$V_h(R) = \frac{1}{2}k(R - R_E)^2$$

where the spring constant $k = k_h$ sets the strength of the potential, and rest length $R_E = 2(d_1/2 + d_2 + d_3/2)$ was chosen to be large enough to ensure cell elongation. For simplicity, the mass of all cell particles was the same, and the friction coefficient was otherwise determined by viscosity, η and the particle diameter, $d: \gamma = 6\pi\eta d$.

560 **ECM**

ECM was composed of small particles with diameter $d_{ECM} \ll d_1$. To maintain ECM cohesion (while preventing divergence in energy) and volume, allow for ECM deformations and shape transformation, and for computational tractability, ECM-ECM particle interactions were also modeled by a modified Lennard-Jones potential (83), which reduces interparticle repulsion and better describes a condensed state, such as ECM:

567
$$V_{MLJ}(R) = 4\varepsilon \left[\left(\frac{d_{ECM}}{R} \right)^4 - \left(\frac{d_{ECM}}{R} \right)^2 \right] \text{ for } R < R_{cut}, \text{ and}$$

568
$$V_{MLI}(R) = 0 \text{ for } R > R_{cut}$$

569 where *R* is the interparticle distance, $\varepsilon = \varepsilon_{ECM}$ sets the strength of ECM adhesion,

570 and $R_{cut} = 2^{\frac{1}{6}} d_{ECM}$ is the cutoff distance for the potential.

571 Cell-ECM interactions

572 To capture adhesive interactions while preventing particle overlap and for

573 computational tractability, cell-ECM adhesion was modeled with a modified

574 Lennard-Jones potential between basal cell particles and ECM particles:

575
$$V_{SLJ}(R) = 4\varepsilon_{ECM} \left[\left(\frac{d_{ECM}}{R - \Delta} \right)^{12} - \left(\frac{d_{ECM}}{R - \Delta} \right)^{6} \right] \text{ for } R < R_{cut} + \Delta, \text{ and}$$

576
$$V_{SLJ}(R) = 0$$
 for $R \ge R_{cut} + \Delta$

577 where
$$R_{cut} = 2^{\frac{1}{6}} d_{ECM}$$
, and $\Delta = \frac{d_{ECM} + d_1}{2} - d_1$.

578 Cell division

Cells were allowed to divide stochastically, with probability $p_{Div}(t) =$ 579 $\frac{1}{1-e^{-\mu(t-\tau_{Div})}}$ where τ_{Div} is the cell cycle time, and $\mu = \frac{\tau_{Div}}{10}$ sets the variability in 580 581 division timing. The division plane orientation around the apico-basal axis was set 582 by the previous division. During division, cell particles are replicated and shifted 583 slightly (starting with a separation $0.25d_i$ for particle *i*) in the direction 584 perpendicular to the division plane by an offset D_{Div} . Dividing cell particles then 585 push one another apart under the influence of a harmonic potential with increasing rest length: $V_h(R) = \frac{1}{2}k(R - R_P)^2$ where the spring constant $k = k_{Div}$ sets the 586 587 strength of the potential, and hence, how much force the cells can exert during growth and division; and rest length R_P increases with each timestep in the 588 simulation by an amount $\delta R = \frac{(d_i + 2^{\frac{1}{6}} - 1)}{g_{Div}}$ where g_{DIV} is the number of timesteps over 589

590 which division occurs for particle *i*. Cell division is complete once $R_P \ge d_i$ for all

- 591 particles. With this implementation of cell division, we approximated both cell
- 592 growth (while particles are still overlapping) and division.
- 593 **ECM secretion**
- 594 ECM particles were secreted stochastically from non-dividing cells at a
- 595 constant rate with a probability $1 p_{Div}(t)$ from the basal pole of non-dividing cells.
- 596 Secretion always occurred in the direction of the apico-basal axis of cells. Similarly
- to division, ECM particles were extended from the basal pole according to a
- harmonic potential with $k = k_{ECM}$ setting the force with which ECM particles were

599 secreted; the rest length
$$R_P$$
 increased with every time step by $\delta R = \frac{(d_{ECM} + 2^{\frac{1}{6}} - 1)}{g_{SEC}}$

600 where g_{SEC} is the number of timesteps over which secretion occurs. Secretion is

601 complete once
$$R_P = \frac{d_1 + d_{ECM}}{2}$$
.

602 Running simulations

603 Simulations were carried out using Fortran and followed Brownian dynamics604 (84):

 $\dot{X} = \frac{\sqrt{\gamma k_B T} D(t) - \nabla U(X)}{\gamma},$

606 where *X* and \dot{X} are position and velocity; U(X) is the sum of all interaction

607 potentials acting on a given element of the system (particle), so $-\nabla U(X)$ with ∇ as

608 the gradient operator, is the force resulting from the total interaction potential on a

- 609 given element of the system (particle); γ is the friction coefficient, k_B is Boltzmann's
- 610 constant, *T* is temperature, and D(t) is a delta correlated, stationary Gaussian
- 611 process with 0 mean. For simplicity, the mass of all particles was the same, and the

- 612 friction coefficient was otherwise determined by viscosity, η and the particle
- 613 diameter, $d: \gamma = 6\pi\eta d$. A Verlet integration algorithm was used to update the
- 614 positions of the spheres at each timestep in the simulation (85).
- 615 Code for running simulations is available on GitHub:
- 616 https://github.com/truizherrero/choanoflagellate_colonies.
- 617 Simulation analysis
- 618 In the model, three main parameters corresponding to physical aspects of
- 619 choanoflagellate cells and rosettes describe the system: 1) cell aspect ratio, defined
- 620 to be the length to width ratio of the three particle system: $\frac{d_1+d_2+d_3}{d_3}$; 2) scaled ECM
- 621 stiffness relative to the force exerted during cell growth and division: $\frac{\varepsilon_{ECM}}{k_{Div}d_1^2}$; and 3)
- 622 The ECM volume relative to cell volume secreted by a cell between divisions:

623
$$\frac{nd_{ECM}^3}{2(d_1^3 + d_2^3 + d_3^3)}$$
 where $n = \frac{\tau_{Div}}{\tau_{Sec}}$ with $\tau_{Sec} = \frac{R_P}{\delta R}$ is the average number of ECM particles

624 secreted between divisions.

625 Natural units for the system are the length d_1 , time τ_{Div} , and energy $k_B T$. For all simulations, the following values in system units were held fixed: $k_{FENE} =$ 626 500 $\frac{k_BT}{d_1^2}$, $\eta = 50 \frac{k_BT\tau_{Div}}{d_1^3}$, $k_h = 200 \frac{k_BT}{d_1^2}$, $g_{Div} = 5000 \frac{d_1^3}{\tau_{Div}}$, and $g_{Sec} = 5000 \frac{d_1^3}{\tau_{Div}}$. All 627 628 other parameters not already fixed in the previous paragraphs were varied to 629 explore the morphospace (Fig. 6B), with axes corresponding to the three main 630 parameters detailed in the previous section. The timestep for simulations was 631 $0.001\tau_{Div}$. Simulation snapshots for Fig. 6 were rendered for the visual inspection of morphologies using Python. Rosettes were defined as structures with cells 632 633 completely surrounding a central region of ECM; disks were defined as structures

- that maintained a closed ring of cells pointing radially outward along the colony
- 635 circumference with an open central region of ECM; cups and cones were defined as
- 636 structures with cells clustered together, oriented in roughly the same direction,
- 637 opposed to an open ECM emanating away from the basal pole of all cells; and trees
- 638 were defined as structures with cells oriented in a similar fashion to those in cones
- 639 but with the ECM displaying a dichotomous branching structure. Quantitative
- 640 analyses of simulation results (Fig. S5) were carried out in MATLAB.

641 Acknowledgements:

- 642 We thank Kent McDonald and Reena Zalpuri of the Electron Microscopy Laboratory
- 643 at UC Berkeley for assistance with TEM sample preparation and imaging. We would
- also like to thank Mary West of the CIRM/QB3 Shared Stem Cell Facility at UC
- 645 Berkeley. Additionally, we thank George Oster and Danny Wells for helpful
- 646 discussions concerning conceptual development of this project. Finally, we thank
- 647 the members of the King Lab for critical feedback and stimulating discussions. This
- 648 work was performed in part in the SSCF, which provided the Olympus BX51WI
- 649 microscope with Swept Field Confocal technology. This material is based upon work
- 650 supported by the National Science Foundation Graduate Research Fellowship under
- 651 Grant No. DGE 1106400 (to B.T.L.), the Simons Foundation (T.R.H.) the Howard
- Hughes Medical Institute (N.K.), and the National Institutes of Health (NIH) under
- 653 award numbers F31GM119329 (to S.L.), R01GM122375 (to S.K.), and R21EB016359
- 654 (to S.K.).

655	1.	Harvey W (1651) Exercitationes de generatione animalium. Quibus accedunt
656		quaedam de partu: de membranis ac humoribus uteri: & de conceptione (Typis
657		Du-Gardianis, London) doi:https://doi.org/10.5962/bhl.title.44364.
658	2.	Gilbert SF (2000) Developmental biology (Sinauer Associates, Sunderland).
659	3.	Golling G, et al. (2002) Insertional mutagenesis in zebrafish rapidly identifies
660		genes essential for early vertebrate development. <i>Nat Genet</i> 31(2):135–140.
661	4.	Xue Z, et al. (2013) Genetic programs in human and mouse early embryos
662		revealed by single-cell RNA sequencing. <i>Nature</i> 500(7464):593–597.
663	5.	Chen B-C, et al. (2014) Lattice light-sheet microscopy: imaging molecules to
664		embryos at high spatiotemporal resolution. <i>Science</i> 346(6208):1257998.
665	6.	Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of
666		zebrafish early embryonic development by scanned light sheet microscopy.
667		Science 322(5904):1065–9.
668	7.	Behrndt M, et al. (2012) Forces Driving Epithelial Spreading in Zebrafish
669		Gastrulation. <i>Science (80-)</i> 338(6104):257–260.
670	8.	Mayer M, Depken M, Bois JS, Jülicher F, Grill SW (2010) Anisotropies in
671		cortical tension reveal the physical basis of polarizing cortical flows. <i>Nature</i>
672		467(7315):617–621.
673	9.	Bailles A, et al. (2018) Transcriptional initiation and mechanically driven self-
674		propagation of a tissue contractile wave during axis elongation.
675		bioRxiv:430512.
676	10.	Carr M, Leadbeater BSC, Hassan R, Nelson M, Baldauf SL (2008) Molecular
677		phylogeny of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci

- 678 105(43). doi:10.1073/pnas.0801667105.
- 679 11. King N, et al. (2008) The genome of the choanoflagellate Monosiga brevicollis
- 680 and the origin of metazoans. *Nature* 451(7180):783–788.
- 681 12. Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF (2008) A Phylogenomic
- 682 Investigation into the Origin of Metazoa. *Mol Biol Evol* 25(4):664–672.
- 683 13. Leadbeater BSC (2015) The Choanoflagellates (Cambridge University Press,
- 684 Cambridge) doi:10.1017/CB09781139051125.
- 685 14. Brunet T, King N (2017) The Origin of Animal Multicellularity and Cell
- 686 Differentiation. *Dev Cell* 43(2):124–140.
- 687 15. Leadbeater BSC (1983) Life-history and ultrastructure of a new marine
- species of Proterospongia (Choanoflagellida). *J Mar Biol Assoc United Kingdom*63(01):135.
- 690 16. Dayel MJ, et al. (2011) Cell differentiation and morphogenesis in the colony-
- 691 forming choanoflagellate Salpingoeca rosetta. *Dev Biol* 357(1):73–82.
- 692 17. Fairclough SR, Dayel MJ, King N (2010) Multicellular development in a
- 693 choanoflagellate. *Curr Biol* 20(20):R875–R876.
- 694 18. Levin TC, Greaney AJ, Wetzel L, King N (2014) The rosetteless gene controls
- 695 development in the choanoflagellate S. rosetta. *Elife* 3.
- 696 doi:10.7554/eLife.04070.
- 697 19. Wetzel LA, et al. (2018) Predicted glycosyltransferases promote development
- and prevent spurious cell clumping in the choanoflagellate S. rosetta. *Elife* 7.
 doi:10.7554/eLife.41482.
- 20. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell

701		lineage of the nematode Caenorhabditis elegans. <i>Dev Biol</i> 100(1):64–119.
702	21.	Leys SP, Ereskovsky A V (2006) Embryogenesis and larval differentiation in
703		sponges. <i>Can J Zool</i> 84(2):262–287.
704	22.	Lewis WH, Wright ES (1935) On the early development of the mouse egg
705		(Carnegie Institution of Washington, Washington).
706	23.	Alegado RA, et al. (2012) A bacterial sulfonolipid triggers multicellular
707		development in the closest living relatives of animals. <i>Elife</i> 1:e00013.
708	24.	Woznica A, et al. (2016) Bacterial lipids activate, synergize, and inhibit a
709		developmental switch in choanoflagellates. Proc Natl Acad Sci USA
710		113(28):7894–9.
711	25.	Hannezo E, Prost J, Joanny J-F Theory of epithelial sheet morphology in three
712		dimensions. Proc Natl Acad Sci USA. doi:10.1073/pnas.1312076111.
713	26.	Yan J, Sharo AG, Stone HA, Wingreen NS, Bassler BL (2016) Vibrio cholerae
714		biofilm growth program and architecture revealed by single-cell live imaging.
715		Proc Natl Acad Sci U S A 113(36):E5337-43.
716	27.	Savin T, et al. (2011) On the growth and form of the gut. <i>Nature</i>
717		476(7358):57–62.
718	28.	Forgács G, Newman SA (2005) Biological physics of the developing embryo
719		(Cambridge University Press, Cambridge).
720	29.	Ingber DE (2006) Mechanical control of tissue morphogenesis during
721		embryological development. Int J Dev Biol 50(2–3):255–266.
722	30.	Deppe U, et al. (1978) Cell lineages of the embryo of the nematode
723		Caenorhabditis elegans. Proc Natl Acad Sci 75(1):376–380.

- 724 31. Newport J, Kirschner M (1982) A major developmental transition in early
- 725 Xenopus embryos: I. characterization and timing of cellular changes at the
- 726 midblastula stage. *Cell* 30(3):675–86.
- 727 32. Kane DA, Kimmel CB (1993) The zebrafish midblastula transition.
- 728 *Development* 119(2):447–56.
- 72933.Edgar BA, O'Farrell PH (1989) Genetic control of cell division patterns in the
- 730 Drosophila embryo. *Cell* 57(1):177–87.
- 731 34. Bišová K, Zachleder V (2014) Cell-cycle regulation in green algae dividing by
- 732 multiple fission. *J Exp Bot* 65(10):2585–2602.
- 733 35. Umen JG, Olson BJSC (2012) Genomics of Volvocine Algae. *Adv Bot Res*64:185-243.
- 735 36. Matt G, Umen J (2016) Volvox: A simple algal model for embryogenesis,

morphogenesis and cellular differentiation. *Dev Biol* 419(1):99–113.

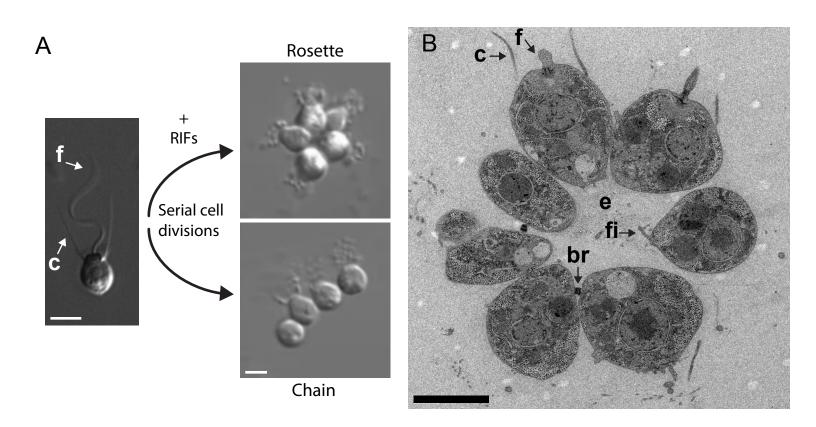
- 737 37. Laundon D, Larson B, McDonald K, King N, Burkhardt P (2018) The
- architecture of cell differentiation in choanoflagellates and sponge
- choanocytes. *bioRxiv*:452185.
- 740 38. Roque-Barreira MC, Praz F, Halbwachs-Mecarelli L, Greene LJ, Campos-Neto A
- 741 (1986) IgA-affinity purification and characterization of the lectin jacalin. *Rev*
- 742 Bras Pesqui Med Biol 19(2):149–57.
- Ma X, Lynch HE, Scully PC, Hutson MS (2009) Probing embryonic tissue
 mechanics with laser hole drilling. *Phys Biol* 6(3):036004.
- 745 40. Hutson MS, et al. (2009) Combining Laser Microsurgery and Finite Element
- 746 Modeling to Assess Cell-Level Epithelial Mechanics. *Biophys J* 97(12):3075–

747		3085.
748	41.	Rauzi M, Lenne P-F (2011) Cortical Forces in Cell Shape Changes and Tissue
749		Morphogenesis. Curr Top Dev Biol 95:93–144.
750	42.	Bonnet I, et al. (2012) Mechanical state, material properties and continuous
751		description of an epithelial tissue. <i>J R Soc Interface</i> 9(75):2614–23.
752	43.	Hutson MS, et al. (2003) Forces for morphogenesis investigated with laser
753		microsurgery and quantitative modeling. <i>Science</i> 300(5616):145–9.
754	44.	Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for
755		tissue engineering: Part 1. Structure, gelation rate and mechanical properties.
756		<i>Biomaterials</i> 22(6):511–521.
757	45.	Chaudhuri O, et al. (2014) Extracellular matrix stiffness and composition
758		jointly regulate the induction of malignant phenotypes in mammary
759		epithelium. <i>Nat Mater</i> 13(10):970–978.
760	46.	Ryan EA, Mockros LF, Weisel JW, Lorand L (1999) Structural Origins of Fibrin
761		Clot Rheology. <i>Biophys J</i> 77(5):2813–2826.
762	47.	Wilkie IC, et al. (2006) Mechanical adaptability of a sponge extracellular
763		matrix: evidence for cellular control of mesohyl stiffness in Chondrosia
764		reniformis Nardo. J Exp Biol 209(22):4436–4443.
765	48.	Mo J, et al. (2016) Interfibrillar stiffening of echinoderm mutable collagenous
766		tissue demonstrated at the nanoscale. Proc Natl Acad Sci USA
767		113(42):E6362–E6371.
768	49.	Purcell EM (1977) Life at low Reynolds number. <i>Am J Phys</i> 45(1):3–11.
769	50.	Higdon JJL (1979) The generation of feeding currents by flagellar motions. J

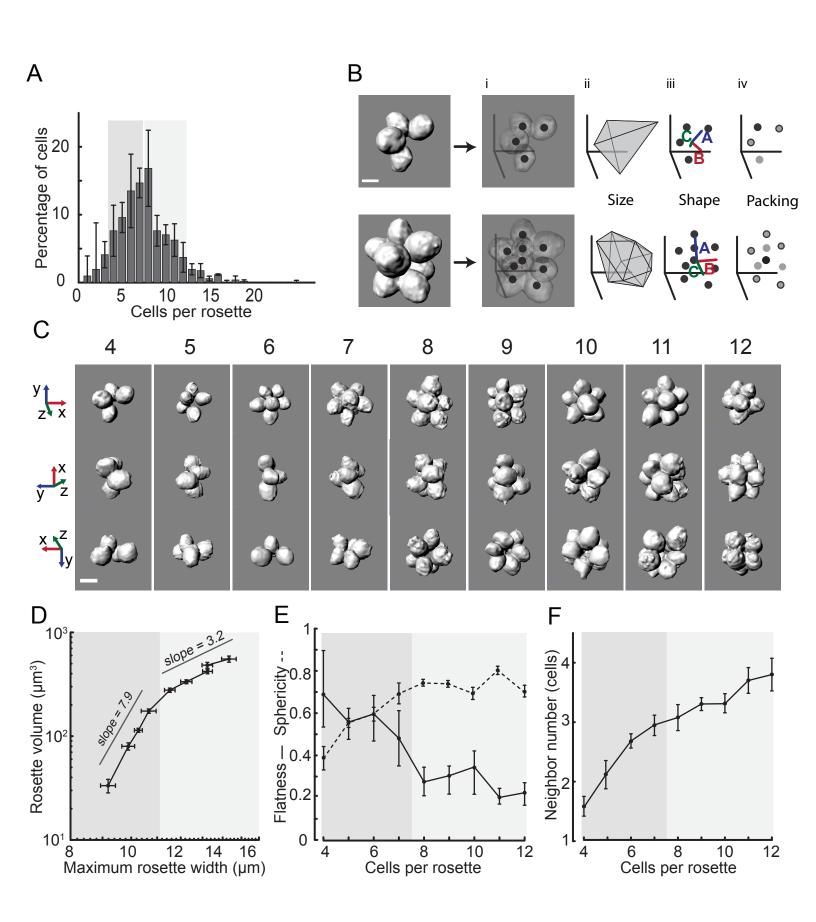
770		Fluid Mech 94(02):305.
771	51.	Raup DM (1967) Geometric Analysis of Shell Coiling: Coiling in Ammonoids.
772		JPaleo 41(1):43–65.
773	52.	Calkins GN (1914) <i>Biology</i> (Henry Holt and Company, New York)
774		doi:https://doi.org/10.5962/bhl.title.24281.
775	53.	Saville-Kent W (1881) A manual of the Infusoria : including a description of all
776		known flagellate, ciliate, and tentaculiferous protozoa, British and foreign, and
777		an account of the organization and the affinities of the sponges (David Bogue,
778		London) doi:https://doi.org/10.5962/bhl.title.1243.
779	54.	Hufnagel L, Teleman AA, Rouault H, Cohen SM, Shraiman BI (2007) On the
780		mechanism of wing size determination in fly development. Proc Natl Acad Sci
781		104(10):3835–3840.
782	55.	Shyer AE, et al. (2013) Villification: How the gut gets its villi. <i>Science (80-)</i>
783		342(6155):212–218.
784	56.	Jacobeen S, et al. (2018) Cellular packing, mechanical stress and the evolution
785		of multicellularity. Nat Phys 14(3):286–290.
786	57.	Petridou NI, Spiró Z, Heisenberg C-P (2017) Multiscale force sensing in
787		development. Nat Cell Biol 19(6):581–588.
788	58.	Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue
789		growth. <i>Proc Natl Acad Sci U S A</i> 102(9):3318–23.
790	59.	Guillot C, Lecuit T (2013) Mechanics of epithelial tissue homeostasis and
791		morphogenesis. Science 340(6137):1185–9.
792	60.	Moreno E, Valon L, Levillayer F, Levayer R (2018) Competition for Space

793		Induces Cell Elimination through Compaction-Driven ERK Downregulation.
794		<i>Curr Biol</i> 29(1):23-34.e8.
795	61.	Pastor-Pareja JC, Xu T (2011) Shaping cells and organs in Drosophila by
796		opposing roles of fat body-secreted Collagen IV and perlecan. Dev Cell
797		21(2):245–56.
798	62.	Crest J, Diz-Muñoz A, Chen D-Y, Fletcher DA, Bilder D (2017) Organ sculpting
799		by patterned extracellular matrix stiffness. <i>Elife</i> 6. doi:10.7554/eLife.24958.
800	63.	Moore KA, et al. (2005) Control of basement membrane remodeling and
801		epithelial branching morphogenesis in embryonic lung by Rho and
802		cytoskeletal tension. <i>Dev Dyn</i> 232(2):268–281.
803	64.	Harunaga JS, Doyle AD, Yamada KM (2014) Local and global dynamics of the
804		basement membrane during branching morphogenesis require protease
805		activity and actomyosin contractility. <i>Dev Biol</i> 394(2):197–205.
806	65.	Adams DS, Keller R, Koehl MA (1990) The mechanics of notochord elongation,
807		straightening and stiffening in the embryo of Xenopus laevis. Development
808		110(1).
809	66.	Li Q, et al. (2016) Extracellular matrix scaffolding guides lumen elongation by
810		inducing anisotropic intercellular mechanical tension. Nat Cell Biol
811		18(3):311–318.
812	67.	Hallmann A, Kirk DL (2000) The developmentally regulated ECM glycoprotein
813		ISG plays an essential role in organizing the ECM and orienting the cells of
814		Volvox. <i>J Cell Sci</i> 113(24).
815	68.	Ueki N, Nishii I Controlled Enlargement of the Glycoprotein Vesicle

816		Surrounding a Volvox Embryo Requires the InvB Nucleotide-Sugar
817		Transporter and Is Required for Normal Morphogenesis W. Plant Cell.
818		doi:10.1105/tpc.109.066159.
819	69.	Drescher K, et al. (2016) Architectural transitions in Vibrio cholerae biofilms
820		at single-cell resolution. Proc Natl Acad Sci USA 113(14):E2066-72.
821	70.	Moore RL, Marshall KC (1981) Attachment and rosette formation by
822		hyphomicrobia. Appl Environ Microbiol 42(5):751–7.
823	71.	Frank O, et al. (2015) Plasmid curing and the loss of grip – The 65-kb replicon
824		of Phaeobacter inhibens DSM 17395 is required for biofilm formation,
825		motility and the colonization of marine algae. Syst Appl Microbiol 38(2):120–
826		127.
827	72.	Nedashkovskaya OI, et al. (2006) Echinicola pacifica gen. nov., sp. nov., a novel
828		flexibacterium isolated from the sea urchin Strongylocentrotus intermedius.
829		Int J Syst Evol Microbiol 56(5):953–958.
830	73.	Levin TC, King N (2013) Evidence for Sex and Recombination in the
831		Choanoflagellate Salpingoeca rosetta. Curr Biol 23(21):2176–2180.
832	74.	Alegado RA, et al. (2013) Algoriphagus machipongonensis sp. nov., co-isolated
833		with a colonial choanoflagellate. <i>Int J Syst Evol Microbiol</i> 63(Pt 1):163–8.
834	75.	Fairclough SR, et al. (2013) Premetazoan genome evolution and the regulation
835		of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol
836		14(2):R15.
837	76.	McDonald KL, Webb RI (2011) Freeze substitution in 3 hours or less. J Microsc
838		243(3):227-233.


839 77. McDonald KL (2014) Rapid Embedding Methods into Epoxy and LR V
--

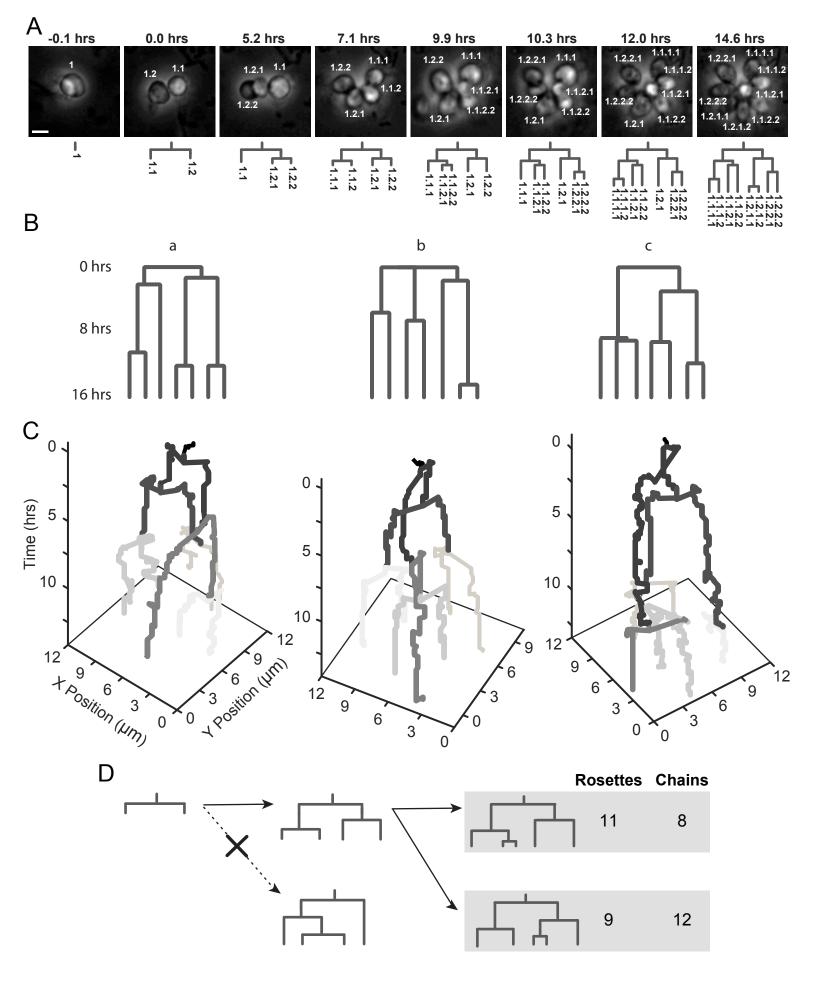
- 840 Resins for Morphological and Immunological Analysis of Cryofixed Biological
- 841 Specimens. *Microsc Microanal* 20(01):152–163.
- 842 78. Schindelin J, et al. (2012) Fiji: an open-source platform for biological-image
 843 analysis. *Nat Methods* 9(7):676–682.
- 844 79. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years
 845 of image analysis. *Nat Methods* 9(7):671–675.
- 846 80. Voronoi G (1908) Nouvelles applications des paramètres continus à la théorie
- 847 des formes quadratiques. Premier mémoire. Sur quelques propriétés des
- 848 formes quadratiques positives parfaites. *J für die reine und Angew Math*


849 133:97–178.

- 850 81. Ryerson WG, Schwenk K (2012) A simple, inexpensive system for digital
- 851 particle image velocimetry (DPIV) in biomechanics. *J Exp Zool Part A Ecol*852 *Genet Physiol* 317(2):127–140.
- 853 82. Weeks JD, Chandler D, Andersen HC (1971) Role of Repulsive Forces in
- 854Determining the Equilibrium Structure of Simple Liquids. J Chem Phys
- 855 54(12):5237-5247.
- 856 83. Jones JE (1924) On the Determination of Molecular Fields. I. From the
- 857 Variation of the Viscosity of a Gas with Temperature. *Proc R Soc A Math Phys*858 *Eng Sci* 106(738):441–462.
- 859 84. Doyle PS, Underhill PT (2005) Brownian Dynamics Simulations of Polymers
- and Soft Matter. *Handbook of Materials Modeling* (Springer Netherlands,
- 861 Dordrecht), pp 2619–2630.

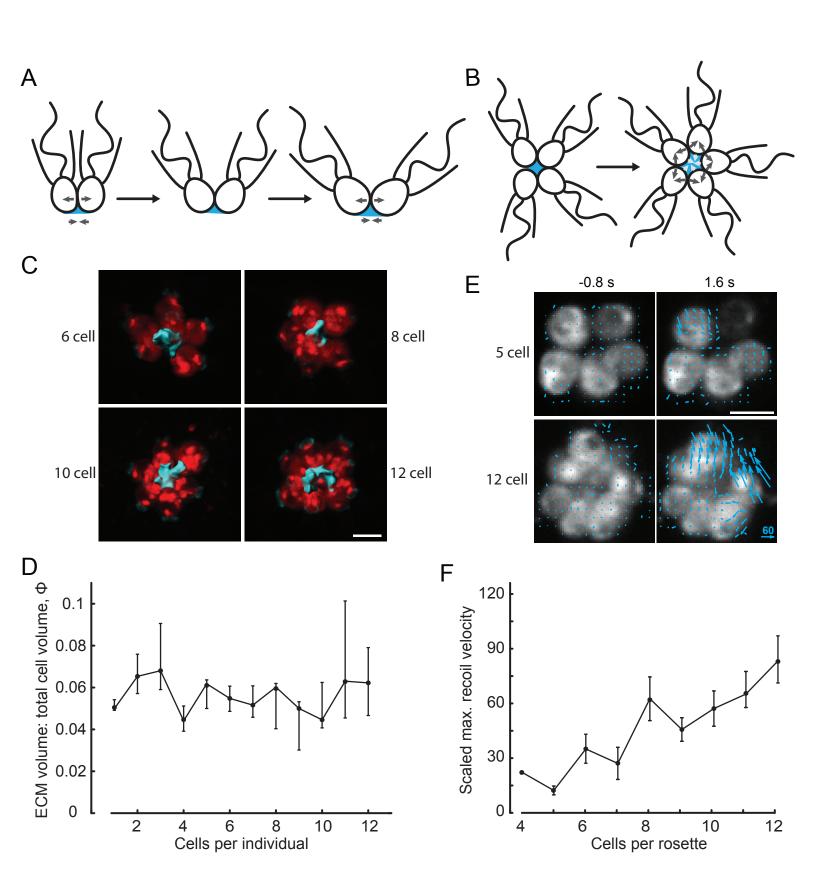
862	85.	Verlet L (1967) Computer " Experiments " on Classical Fluids. I.
863		Thermodynamical Properties of Lennard-Jones Molecules. Phys Rev
864		159(1):98–103.
865	86.	Haeckel E (1904) Kunstformen der Natur (Verlag des Bibliographischen
866		Instituts, Leipzig, Wien).
867	87.	Richter DJ, Fozouni P, Eisen MB, King N (2018) Gene family innovation,
868		conservation and loss on the animal stem lineage. <i>Elife</i> 7.
869		doi:10.7554/eLife.34226.
870	88.	Ertl M (1981) Zur taxonomie der Gattung ProterospongiaKent. Arch für
871		Protistenkd 124(3):259–266.
872	89.	Wadell H Volume, Shape, and Roundness of Quartz Particles. Source J Geol
873		43(3):250–280.
874		

875	Figure 1. The choanoflagellate <i>Salpingoeca rosetta</i> develops from a single cell
876	into multicellular colonies through serial rounds of cell divisions (17). (A) All
877	choanoflagellate cells bear a diagnostic "collar complex" composed of an apical
878	flagellum (f) surrounded by an actin-filled collar of microvilli (c) (13, 14). <i>S. rosetta</i>
879	produces two different colonial forms depending on environmental conditions:
880	compact, mechanically robust, roughly spherical rosette colonies (Rosette) that
881	form in the presence of specific bacterially produced Rosette Inducing Factors (RIFs;
882	(16, 17, 23, 24)), and fragile, linear chain colonies (Chain) that form during rapid cell
883	growth in the absence of RIFs (16). Both types of colonies form developmentally by
884	serial cell divisions. Single cell image adapted from (16), and rosette and chain
885	images adapted from (19). (B) A thin section through the equator of a rosette,
886	imaged by transmission electron microscopy, reveals the subcellular architecture of
887	a rosette. Cells in rosettes are packed close to one another around a central focus
888	with the collar complex of each cell facing outward into the environment (c=collar
889	and f=flagellum). Most cells are connected to one another by thin cytoplasmic
890	bridges (br, only two of which are visible in this section) (37), which are also
891	present in chains (16). The center of rosettes is devoid of cells but is filled with a
892	secreted extracellular matrix (e, faintly visible here as granular material), into which
893	cells extend filopodia (fi) (16, 18). All scale bars = 3 μm.

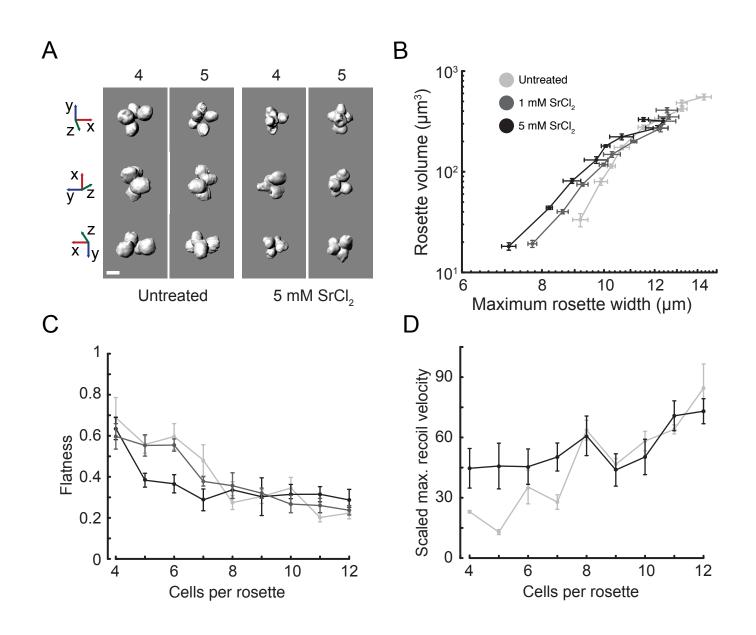


894	Figure 2. Quantitative analysis of rosette morphology reveals that rosettes
895	undergo a reproducible 2D-3D growth transition. (A) In cultures grown under
896	conditions of constant rosette induction, <i>S. rosetta</i> existed as unicells, doublets,
897	triplets, and rosettes containing between 4 - 25 cells (an "individual" refers to any
898	unicell or group of cells in each of these categories), with the most common rosette
899	size being 8 cells/individual. Shown is the mean percentage of total cells in a
900	population (y-axis) found in single cells, cell doublets, cell triplets, and rosettes of
901	increasing size, plotted by number of cells/rosette (x-axis). Error bars indicate
902	standard deviations from measurements obtained on three different days. N = 511.
903	(B) Our image analysis pipeline allowed us to quantify and compare rosette
904	morphology and is illustrated here for two representative rosettes. From left to
905	right, for each rosette, (i) cell positions were extracted from segmented images and
906	then used to determine aspects of rosette morphology including (ii) rosette size,
907	including volume (measured by generating a convex hull), (iii) shape, including
908	flatness and sphericity (the former quantified by $1 - C/B$ and the latter by $\sqrt[3]{BC/A^2}$
909	where <i>A</i> , <i>B</i> , and <i>C</i> are the principle axes in descending order by magnitude of a
910	principle components analysis-based ellipsoid fit of cell positions), (iv) and cell
911	packing (neighbor number determined by Voronoi tessellation(80)). (C)
912	Representative rosettes are shown in three roughly orthogonal views for size
913	classes ranging from four to 12 cells/rosette, with the numbers above each image
914	column indicating the number of cells/rosette. Following previous work (24), we
915	defined four cells as the smallest number of cells clearly identifiable as a rosette. (D)
916	Rosettes transition from an early phase of major shape change (dark grey; scaling

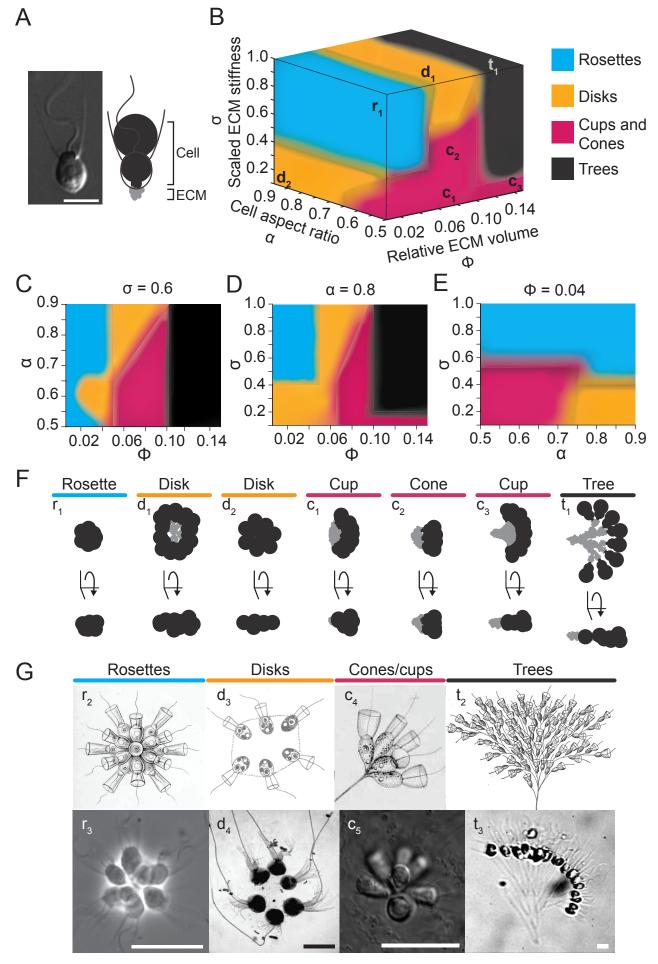
917	exponent \sim 8) to a later phase of approximately isotropic growth (light grey; scaling
918	exponent \sim 3), as shown by a log-log plot of rosette volume (y-axis) vs. maximum
919	rosette width (x-axis). (E) Rosettes transition from a relatively flat morphology
920	during the 4-6 cell stage (dark grey; mean flatness \cong 0.5 – 0.7 and mean sphericity \cong
921	0.4 - 0.6, with flatness = 1.0 perfectly flat and sphericity = 1.0 perfectly spherical) to
922	a more spheroidal morphology during the 8-12 cell stage (light grey; mean flatness
923	\cong 0.2 – 0.3 and mean sphericity \cong 0.7-0.8). (F) Packing increases with number of
924	cells at a decreasing rate. Points on plots D-F represent mean values; error bars
925	indicate standard error of the mean. N = 100 rosettes, with at least 8 rosettes from


926 each cell-number class, pooled from three different samples. All scale bars = $3 \mu m$.

bioRxiv preprint doi: https://doi.org/10.1101/659698; this version posted June 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


927 Figure 3. Stochasticity of developmental dynamics revealed by lineage

928 **analysis.** (A) Lineage analysis for a representative rosette, imaged live by time lapse 929 microscopy. Individual daughter cells were marked to record their relationship to 930 their parent lineage (e.g. 1.1 and 1.2 are daughters of cell 1). Scale bar is $3 \mu m$. (B) 931 Representative cell lineages during rosette development illustrating differences in 932 both the order and timing of cell divisions, with the first two on the left having the 933 same division order but with large differences in division times, and the lineage on 934 the right showing differences in both division order and timing. Branch lengths scale 935 with time and are set to zero based on the first division. (C) Lineages a-c from (B) 936 displayed as space-time plots illustrate cell division variability between rosettes in 937 both space and time. Plots also demonstrate that cells remain in place after 938 divisions, with no large rearrangements, moving apart only slightly as they grow. 939 Colors from dark to light gray indicate the order of cell divisions. (**D**) Cell lineages 940 that form during rosette and chain development are balanced, although the specific 941 times of cell divisions in different lineages and different rosettes or chains can differ. 942 In rosettes and chains, imbalanced lineage structures (i.e. with significantly different 943 numbers of cells) were not observed at any stage. Shown here are results for four 944 and five-cell rosettes and chains. The dashed line with an "x" indicates that this 945 division pattern was never observed. Furthermore, this uneven branching pattern 946 was never observed in sub-lineages of any developing chain or rosette. Data were pooled from three different rosette induction experiments (for rosettes) and three 947 948 different experiments with uninduced cells (for chains).


949	Figure 4. Extracellular matrix constrains proliferating cells during rosette
950	morphogenesis. (A-B) Cartoons depicting ECM constraint hypothesis. (A) As cells
951	grow, compressive forces exerted on neighboring cells (top set of arrows) may be
952	balanced by stress in the basally-secreted ECM (blue), which resists deformation
953	(bottom set of arrows). (B) If ECM is limiting, rosettes may undergo a jamming-like
954	transition and accumulate residual stress as cells continue to grow and divide. (C)
955	Representative images of 4 different rosettes of various sizes (of 6, 7, 8, and 10
956	cells/rosette ordered from left to right, top to bottom) with ECM tagged using
957	Jacalin. (D) Ratio of total ECM volume to total cell volume as a function of
958	cells/individual is maintained at a constant level over the course of rosette
959	development. Points represent mean values, and error bars are bootstrap 95%
960	confidence intervals. Data were collected from 93 rosettes pooled from two
961	experiments, with at least 5 rosettes from each size class. Image processing and
962	analysis proceeded similarly to that described in Fig. 1. (E) Laser ablation revealed
963	increasing stress as a function of cells/rosette. Single cells in rosettes were ablated,
964	and recoil velocities were measured by particle image velocimetry (PIV). Arrows in
965	the images indicate the direction and magnitude of the velocity of the recoil as
966	determined by PIV. Rosettes were found to always close when recoil was observed
967	(in all cases beyond the 5-cell stage). (F) Recoil velocities (rescaled by the length
968	scale of the average cell diameter of 5 μm and the time scale of the average division
969	time of 6 hrs.) increased with increasing cells/rosette, indicating increasing stress as
970	a function of cells/rosette (7, 39, 43). These results are consistent with the ECM
971	constraint hypothesis and inconsistent with cytoplasmic bridges or cell-cell

- 972 adhesion as the dominant factors stabilizing rosette structure. Points indicate mean
- 973 values; error bars indicate standard error of the mean. Data were collected from 47
- 974 rosettes pooled from 3 different rosette inductions, with at least 4 rosettes from
- 975 each size class. Scale bars = $5 \mu m$.

976 Figure 5. Material properties of the ECM affect morphogenesis, consistent with 977 predictions of the ECM constraint hypothesis. Treatment of rosettes with SrCl₂, 978 which stiffens hydrogels by increasing crosslinking density (44-48), alters rosette 979 morphogenesis. (A) Representative images of untreated and SrCl₂-treated rosettes 980 illustrate the change in rosette morphology. Cells were packed more tightly in SrCl₂ 981 treated rosettes, leading to differences in rosette size and shape. Scale bar = $4 \mu m$. 982 (B) The scaling relationship between maximum rosette width and volume revealed 983 that $SrCl_2$ abolished the transition to approximately isotropic growth observed in untreated rosettes. As in Fig. 2D, this is a log-log plot of rosette volume vs. maximum 984 985 rosette width, with each point representing average values for a rosette cell-number 986 class from 4-12 cells/rosette. Error bars are standard error of the mean. This 987 analysis also revealed that rosettes became increasingly compact with increasing 988 SrCl₂ concentration. (**C**) Quantification of rosette flatness (as in Fig. 1), showed that 989 SrCl₂ shifts the 3D growth transition to lower cell numbers. In the case of the highest 990 $SrCl_2$ concentration, the transition occurred by the 5-cell stage. For both (B) and (C), 991 results were from a total of 100 rosettes pooled from 3 experiments, with at least 8 992 rosettes for each size class for both SrCl₂ concentrations. (**D**) Relative residual 993 stress, as measured by maximum initial recoil velocity (rescaled, as in 4E, F, by the 994 length scale of the average cell diameter of 5 μ m and the time scale of the average 995 division time of 6 hrs.) after laser ablation of single cells (as in figure 4E. F). 996 increased in rosettes of 4-7 cells under 5mM SrCl₂ treatment compared to untreated 997 rosettes. These data demonstrate that increased residual stress is correlated with 998 altered cell packing and hence, altered rosette morphology. Points represent means

- and error bars represent standard error of the mean from 41 total measurements
- 1000 pooled from two experiments, with at least 4 rosettes from each size class.

1001 Figure 6. A simple model shows that amount of ECM, cell shape (aspect ratio), 1002 and ECM stiffness tune multicellular morphogenesis. The model incorporates 1003 simple cellular and physical interactions, including ECM secretion and cell division, 1004 cell-cell steric interactions, and ECM adhesion. Three main parameters describe the 1005 system: cell aspect ratio, α , scaled ECM stiffness, σ , and relative ECM volume, ϕ . (A) 1006 An image of a choanoflagellate (adapted from (16)) next to a simulation snapshot to 1007 illustrate how cell geometry is modeled by three linked spheres (black) and ECM is 1008 modeled by small spheres (grey) secreted at the basal pole of cells. In the model, 1009 cells interact sterically with one another, and ECM spheres have adhesive 1010 interactions with one another and with basal cell particles. Scale bar = $5 \mu m$. (B) The 1011 morphospace of ECM-based colonial morphologies generated by simulations can be 1012 broken into four regions: rosettes, disks, cones/cups, and trees as denoted by colors 1013 as indicated in the legend. The lower-case letters indicate approximately the point in 1014 the morphospace occupied by the corresponding simulated colony in panel F. (C-E) 1015 Orthogonal planes through the displayed morphospace, with the parameter of fixed 1016 value noted above each plot, illustrate how changing two parameters while keeping the third fixed affects morphology. Colors indicate morphological classification as in 1017 1018 panel B. (C) Scaled ECM stiffness is constant (σ =0.6). (D) Cell aspect ratio is constant 1019 $(\alpha=0.8)$. (E) Relative ECM volume is constant ($\phi=0.04$). (F) Representative simulated 1020 colonies for each of the regions are displayed in two orthogonal views (\mathbf{r}_1 =rosette 1021 with α =0.7, σ =0.8, and ϕ =0.04; **d**₁=disk with α =0.75 σ =0.85, and ϕ =0.075; **d**₂=disk 1022 with α =0.8, σ =0.15, and ϕ =0.02; **c**₁=cone with α =0.55, σ =0.5, and relative ECM 1023 volume=0.08; c_2 =cup with α =0.6, σ =0.2, and ϕ =0.09; c_3 =cup with α =0.9, σ =0.12, and

1024	ϕ =0.13; and t_1 =tree with α =0.65, σ =0.9, and ϕ =0.12). Note that d_2 and c_3 represent
1025	extreme ends of the morphospace to better illustrate, along with the other
1026	representative simulation snapshots, how changing the model parameters affects
1027	the simulated morphologies. (G) Simulated colonial morphologies are reminiscent
1028	of morphologies of colonial choanoflagellates found in nature. (\mathbf{r}_2) Codonosiga
1029	botrytis (86). (\mathbf{r}_3) Salpingoeca rosetta (87). (\mathbf{d}_3) Proterospongia haeckelii (88) (Ertl
1030	after Lackey). (d ₄) Salpingoeca amphoridium (10). (c ₄) Codosiga umbellata (53). (c ₅)
1031	Uncharacterized environmental isolate collected from Mono Lake by Daniel Richter,
1032	Salpingoeca sp. (t_2) Codosiga cymosa (52) (Calkins after Kent). (t_3) Uncharacterized
1033	environmental isolate from a tide pool in Curaçao, <i>Salpingoeca sp</i> . Scale bars = 10

1034 μm.