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Organoids are powerful biomimetic tissue models. Despite
their widespread adoption, methods to analyse cell-type spe-
cific post-translational modification (PTM) signalling networks
in organoids are absent. Here we report multivariate single-cell
analysis of cell-type specific signalling networks in organoids
and organoid co-cultures. Simultaneous measurement of 28
PTMs in >1 million single small intestinal organoid cells by
mass cytometry reveals cell-type and cell-state specific sig-
nalling networks in stem, Paneth, enteroendocrine, tuft, gob-
let cells, and enterocytes. Integrating single-cell PTM analysis
with Thiol-reactive Organoid Barcoding in situ (TOBis) enables
high-throughput comparison of signalling networks between
organoid cultures. Multivariate cell-type specific PTM analy-
sis of colorectal cancer tumour microenvironment organoids re-
veals that shApc, Kras

G12D, and Trp53
R172H cell-autonomously

mimic signalling states normally induced by stromal fibroblasts
and macrophages. These results demonstrate how standard
mass cytometry workflows can be modified to perform high-
throughput multivariate cell-type specific signalling analysis of
healthy and cancerous organoids.

Correspondence: c.tape@ucl.ac.uk

INTRODUCTION
Organoids are self-organising 3D tissue models comprising
stem and differentiated cells (1). Organoid monocultures typ-
ically contain one major cell class (e.g. epithelial) and can
be co-cultured with heterotypic cell-types (e.g. mesenchy-
mal (2) or immune cells (3)) to model cell-cell interactions
in vitro. When compared with traditional 2D cell culture,
organoids more accurately represent their parental tissue and
are emerging as powerful models for studying multicellular
diseases such as cancer (4).
Post-translational modification (PTM) signalling networks
underpin fundamental biological phenotypes and are fre-
quently dysregulated in disease (5). As different cell-types
have different signalling networks (6, 7), organoids likely
contain several cell-type specific PTM networks that are es-
sential to their biology. In order to fully utilise biomimetic
models of healthy and diseased tissue, we must be able
to study PTM signalling networks within organoids. Un-
fortunately, no technology currently exists to analyse cell-
type specific PTM networks in organoids and organoid co-
cultures.
Organoids present several technical challenges over tradi-

tional 2D cultures for PTM analysis. Firstly, organoids
are embedded in a protein-rich extracellular matrix (ECM)
that confounds the application of phosphoproteomic anal-
ysis by liquid chromatography tandem mass spectrometry
(LC-MS/MS). Organoids can be removed from ECM prior
to LC-MS/MS, but as dissociation of live cells alters cell
signalling (8), PTM measurements from dissociated live
organoids do not truly represent in situ cellular states. Ideally,
organoids should be fixed in situ to preserve PTM signalling,
but LC-MS/MS analysis of heavily cross-linked phospho-
proteomes is extremely challenging. Secondly, as organoids
comprise multiple cell-types (e.g. stem and differentiated)
and cell-states (e.g. proliferating, quiescent, and apoptotic),
bulk phosphoproteomics cannot capture the biological het-
erogeneity present in organoids and organoid co-cultures (9).
Although single-cell RNA-sequencing (scRNA-seq) can de-
scribe organoid cell-types (10), it cannot measure intracellu-
lar PTM signalling at the protein level. Finally, as signalling
networks comprise multiple PTM nodes, low-dimensional
methods (e.g. fluorescent imaging) cannot capture the com-
plexity of PTM signalling networks (9). Collectively, to study
PTM networks in organoids, we require signalling data that
is: 1) cell-type specific, 2) derived from cells fixed in situ,
and 3) measures multiple PTMs simultaneously.

Mass cytometry (MC, also known as cytometry time-of-flight
(CyTOF)) uses heavy metal-conjugated antibodies to mea-
sure >35 proteins in single cells (11). Although MC is tradi-
tionally used for high-dimensional immunophenotyping, MC
can also measure PTMs in heterocellular systems (e.g. pe-
ripheral blood mononuclear cells (PBMCs) (12) and tissue
(8)). Given MC’s capacity to measure PTMs in mixtures of
fixed cells, we theorised that MC workflows typically applied
to immunophenotyping could be modified to study cell-type
specific signalling networks in organoids.

Here we report the development of a custom multivariate-
barcoded MC method to measure single-cell signalling in ep-
ithelial organoids and organoids co-cultured with stromal and
immune cells. This method reveals that intestinal organoids
display cell-type specific signalling networks that are inti-
mately linked with cell-state. When applied to colorectal
cancer (CRC) tumour microenvironment (TME) organoid
co-cultures, we discovered that epithelial oncogenic muta-
tions mimic signalling networks normally induced by stromal
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cells. These results demonstrate how a modified MC method
can enable powerful multivariate single-cell analysis of cell-
type specific signalling in heterocellular organoids.

RESULTS
Single-Cell Analysis of Organoids by Mass Cytometry.
No technology currently exists to study cell-type specific pro-
tein signalling networks in organoids. Given its capacity to
measure multiple PTMs in single cells, we hypothesised MC
could be modified to study cell-type and cell-state specific
signalling in organoids. To test this, we first developed a
MC platform to measure single-cell signalling in the classical
small intestinal organoid (13).
In this method, we first pulse live organoids with 1275-Iodo-
2’-deoxyuridine (127IdU) to identify S-phase cells (14), fix
organoids in Matrigel to preserve cell signalling, and stain
organoids with 194/8Cisplatin to label dead epithelia (15). Us-
ing a custom workflow, we then physically and enzymati-
cally dissociate the fixed organoids into single cells prior to
extra- and intracellular heavy-metal antibody staining (Fig.
1a). We next performed a comprehensive screen for in-
testinal epithelial cell-type identification antibodies includ-
ing stem (LGR5, LRIG1, OLFM4), Paneth (Lysozyme), gob-
let (MUC2, CLCA1), enteroendocrine (CHGA, Synapto-
physin), tuft cells (DCAMKL1), and enterocytes (FABP1,
Na/K-ATPase) that bind fixed antigens and are compatible
with rare-earth metal conjugation for MC. Cell-type identi-
fication antibodies were validated by organoid directed dif-
ferentiation (16) (Supplementary Fig. 1) and integrated into
a panel of 28 anti-PTM rare-earth metal antibodies spanning
multiple core signalling nodes (Supplementary Table 1, 45
parameters (40 antibodies) / cell). When analysed by MC,
this method enables the measurement of 28 signalling PTMs
across 6 cell-types in >1 million single cells from fixed in-
testinal organoids (Figs. 1b, c, 2a, and Supplementary Fig.
2a).
Combining 194/8Cisplatin and 127IdU with canonical cell-
cycle markers (e.g. pRB [S807/S811], Cyclin B1, and pHi-
stone H3 [S28] (14)) allows clear identification of live /
dead cells and classification of single organoid cells into
cell-cycle stages including G0, G1, S, G2, and M-phase
(17) (Supplementary Fig. 2b). Integrated cell-type and
cell-state data from small intestinal organoids confirmed that
stem and Paneth cells are largely proliferative (pRB+, cCas-
pase3 [D175]-), whereas differentiated epithelia are often
post-mitotic (pRB-, IdU- / pHH3-) or apoptotic (cCaspase3+)
(Fig. 1c). Consistent with the finding that intestinal progen-
itor cells have permissive chromatin in vivo (18), proliferat-
ing intestinal organoid cells also present H3K4me2 whereas
post-mitotic cells do not (Fig. 2a). These results confirmed
that a modified MC workflow can provide cell-type and cell-
state specific information from millions of single organoid
cells.

Cell-Type and Cell-State Specific Signalling Networks
in Intestinal Organoids. Following cell-type and cell-state
identification, we next sought to construct cell-type specific

PTM signalling networks in small intestinal organoids. To in-
vestigate whether stem, Paneth, enteroendocrine, tuft, goblet
cells, and enterocytes employ different PTM signalling net-
works, we combined Earth Mover’s Distance (EMD) (19, 20)
and Density Resampled Estimation of Mutual Information
(DREMI) (21) to build quantitative cell-type specific sig-
nalling networks from single-cell organoid PTM data (Fig.
2b and Supplementary Fig. 2). In these networks, EMD
quantifies PTM intensity (node score) for each organoid cell-
type relative to the total organoid population and DREMI
quantifies PTM-PTM connectivity (edge score) within the
network.

EMD-DREMI analysis revealed cell-type specific PTM sig-
nalling networks in small intestinal organoids. As canonical
WNT signalling is mainly driven by protein interactions, lo-
calisation, and degradation (22) – not a classical PTM cas-
cade – MC is not well suited to studying the WNT path-
way. Despite this limitation, evidence of WNT flux via in-
hibited pGSK-3— [S9] and non-phosphorylated —-Catenin
is observed in all organoid cell-types (Fig. 2a). In con-
trast, MAPK and PI3K pathways display unexpected cell-
type specificity. For example, stem cells channel MAPK sig-
nalling through pERK1/2 [T202/Y204], pP90RSK [T359],
and pCREB [S133], but fail to connect with pBAD [S112]
(Fig. 2a, b). On the contrary, differentiated epithelia di-
rect MAPK signalling away from pCREB and towards pBAD
when proliferating, and lose all MAPK activity in G0 and
apoptosis (Fig. 2a). Despite their strong mitogenic signalling
profile, stem cells are unique among proliferating cells in
their failure to phosphorylate BAD. This suggests that in-
testinal stem cells avoid apoptosis independent of the classi-
cal BAD-BCL-BAX/BAK axis and may compensate via high
MAPK and P38 flux to CREB. Consistent with the observa-
tion that PI3K signalling is important for intestinal crypt cells
(23), stem and Paneth cells are enriched for pSRC [Y418] and
downstream PI3K effectors such as pPDPK1 [S241], pPKC–
[T497], pAKT [T308] / [S473], and p4E-BP1 [T37/T46]
(Fig. 2a, b). Despite the presence of the BMP inhibitor Nog-
gin in organoid culture media, Paneth cells display unexpect-
edly high BMP signalling (via pSMAD1/5 [S463/S465] and
SMAD9 [S465/S467]) (Fig. 2a, b). This observation sug-
gests that Paneth cells are either hypersensitive to BMP lig-
ands or can cell-intrinsically activate SMAD1/5/9 (possibly
via inhibition of SMAD phosphatases).

Several PTM signalling events correlate with cell-state in
intestinal organoids. For example, irrespective of cell-type
or location, pP38 MAPK [T180/Y182] and pP120-Catenin
[T310] are active in all proliferating cells, and both pAKT
[T308] and pMKK4 [S257] are hyperactivated in M-phase
(Figs. 1c and 2a). In contrast, TGF-— signalling (via pS-
MAD2 [S465/S467] and SMAD3 [S423/S425]) is exclu-
sively active in post-mitotic epithelia (Fig. 2a), consistent
with TGF-—’s role in epithelial growth-arrest (24). To in-
vestigate the relationship between cell-type and cell-state
in PTM signalling networks, we performed principal com-
ponent analysis (PCA) of PTM-EMDs for each organoid
cell-type, either proliferating or in G0 (pRB+/–), located in
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Fig. 1. Cell-Type and Cell-State Identification of Single Organoid Cells by Mass Cytometry. a) Experimental workflow. Live organoids are pulsed with 127IdU to label
S-phase cells, treated with protease / phosphatase inhibitors, fixed with PFA to preserve post translational modification (PTM) signals, and stained with 194/8Cisplatin to label
dead cells. Fixed organoids are then dissociated into single cells, stained with rare-earth metal-conjugated antibodies, and analysed by single-cell mass cytometry (MC).
The resulting dataset contains integrated cell-type, cell-state, and PTM signalling information. b) Confocal immunofluorescence (IF) of small intestinal organoids stained
with rare-earth metal-conjugated MC antibodies highlighting individual cell-type and cell-state markers (red), F-Actin (white), and DAPI (blue), scale bars = 50 µm. (See
Supplementary Fig. 1 for antibody validation via directed differentiation.) c) UMAP (Uniform Manifold Approximation and Projection) distribution of 1 million single organoid
cells analysed by MC resolves six major intestinal cell-types across proliferating, S-phase, M-phase, and apoptotic cell-states. Colours represent normalised local parameter
intensity. (See Supplementary Fig. 2 for cell-type and cell-state classification.)

lower-crypts or villi (CD44+/–). PCA revealed that both cell-
state (PC1, 68% variance) and, to a lesser extent, cell-type
(PC2, 23% variance) dictate cell-signalling in small intestinal
organoids (Fig. 2c and Supplementary Fig. 3). This analysis
demonstrates that both cell-type and cell-state are intimately
linked with cell-signalling and warns against bulk PTM anal-
ysis of organoids where cell-type and cell-state resolution is
lost. Collectively, these results confirmed that MC can iden-
tify novel cell-type and cell-state specific signalling networks
in small intestinal organoids and underscore the importance
of single-cell data when studying heterogenous systems such
as organoids.

Single-Cell Organoid Multiplexing using Thiol-reactive
Organoid Barcoding in situ (TOBis). We have demon-
strated how a modified MC platform can be applied to
cell-type and cell-state specific signalling measurement in
organoids. However, in order to study differential signal
transduction in organoid models of healthy and diseased tis-
sue, we must also be able to directly compare PTM networks
between different organoid cultures. In addition to high di-
mensional single-cell PTM measurements, a major advantage
of MC is its ability to perform multiplexed barcoding of ex-
perimental variables (25, 26). Unfortunately, commercially
available Palladium-based barcodes cannot bind organoids

in situ (Supplementary Fig. 4a) as they react with Matrigel
proteins (Supplementary Fig. 4b), meaning that organoids
must be removed from Matrigel and dissociated separately
before barcoding. Individually removing fixed organoids
from Matrigel is a very low-throughput process that limits the
scalability of organoid MC multiplexing. We theorised that
if organoids could be barcoded in situ, barcoded organoids
could be pooled, dissociated, and processed as a single high-
throughput MC sample. To explore this idea, we developed a
new strategy to isotopically barcode organoids while still in
Matrigel.

MC barcoding strategies can use amine- (26) or thiol-reactive
(25) chemistries. We first used fluorescent probes to investi-
gate how each of these chemistries react with ECM proteins
and organoids. Amine-reactive probes (Alexa Fluor 647 NHS
ester) bind ECM proteins (via lysines and N-terminal amines)
and thus fail to label organoids in Matrigel. In contrast,
thiol-reactive probes (Alexa Fluor 647 C2 maleimide) by-
pass ECM proteins and bind exclusively to reduced-cysteines
on organoids in situ (Fig. 3a, Supplementary Fig. 4c).
We subsequently confirmed that thiol-reactive monoisotopic
mass-tagged probes (C2 maleimide-DOTA-157Gd) also bind
organoids in situ, whereas amine-reactive probes (NHS ester-
DOTA-157Gd) only react ex situ (Fig. 3b). This data con-
firmed that thiol-reactive chemistries can be used to barcode
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Fig. 2. Cell-Type and Cell-State Specific Signalling Analysis of Intestinal Organoids. a) UMAP distributions of PTMs across 1 million single organoid cells analysed
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Fig. 3. Thiol-Reactive Organoid Barcoding in situ (TOBis) for Single-Cell Organoid Multiplexing. a) Confocal IF of fixed GFP+ small intestinal organoids stained with
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single sample. (See Supplementary Fig. 5 for additional details.)

organoids while still in Matrigel (Fig. 3c). Using this knowl-
edge, we developed a 20-plex (6-choose-3, doublet-filtering
(25, 26)) thiol-reactive barcoding strategy based on monoiso-
topic tellurium maleimide (TeMal) (27) (124Te, 126Te, 128Te,
130Te) and Cisplatin (28) (196Pt, 198Pt) that can bypass Ma-
trigel proteins and bind directly to fixed organoids in situ

(Fig. 3d and Supplementary Fig. 4d). This Thiol-reactive
Organoid Barcoding in situ (TOBis) approach enables high-
throughput multivariate single-cell organoid signalling anal-
ysis in a single tube (Fig. 3e).

It is worth noting that as Te and Pt metals are not typically
conjugated to antibodies in MC, TOBis multiplexing does not
compromise the number of antigens being measured. More-
over, unlike commercially available Pd barcodes (occupy-
ing 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd channels),
TOBis barcodes do not clash with the recently developed
Cadmium antibody labelling metals (106Cd, 110Cd, 111Cd,
112Cd, 113Cd, 114Cd, and 116Cd). Furthermore, as barcod-
ing is performed on fixed organoids embedded within Ma-
trigel, TOBis does not require the numerous centrifugation
or cell membrane permeabilisation steps used in traditional
solution-phase barcoding. This greatly increases organoid
sample-throughput (Supplementary Fig. 5a–d) and single-
cell recovery (Supplementary Fig. 5e–g), thereby facilitating

high-throughput organoid MC applications.

Multivariate Cell-Type Specific Signalling Analysis of
Intestinal Organoid Development. Traditional mass-tag
barcoding allows direct comparison of solution-phase cells
(e.g. immune cells) between experimental conditions (26).
When combined with cell-type, cell-state, and PTM probes,
TOBis multiplexing now enables PTM signalling networks
to be directly compared between organoid cultures in a high-
throughput manner. To demonstrate this, we applied TOBis

to study cell-type specific epithelial signalling during 7 days
of small intestinal organoid development (Fig. 4 and Supple-
mentary Table 1, 50 parameters (40 antibodies) / cell).
Analysis of 28 PTMs from 2 million single organoid cells
revealed that after 1 day of culture, organoids seeded as sin-
gle crypts exist in a ‘recovery’ phase where 70% cells have
entered the cell-cycle (pRB+), but <5% reach S-phase (IdU+)
(compared to 20% in developed organoids) (Fig. 4a). Days
2 and 3 mark a rapid ‘expansion and differentiation’ phase
of organoid development where stem, Paneth, goblet cells,
and enterocytes activate MAPK, P38, and PI3K pathways –
although stem cells again fail to inhibit BAD (Fig. 4c). By
Day 4, intestinal organoids reach a critical ‘divergence’ phase
where crypt and villus signalling digress dramatically. While
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Fig. 4. Cell-Type Specific Signalling During Intestinal Organoid Development. a) Time-course confocal IF of intestinal organoid development illustrating S-phase (EdU+,
magenta) and apoptotic (cCaspase 3 [D175]+, green) cells, scale bars = 50 µm. Each time point was barcoded by TOBis, pooled into a single sample, and analysed by
MC. Cell-density UMAP distributions of 2 million single organoid cells reveal changes in cell-type and cell-state during organoid development. b) Cell-type composition of
small intestinal organoids during development. Stem cells accumulate at the expense of enterocytes during organoid culture. c) Cell-type specific PTMs and cell-states of
stem, Paneth, enteroendocrine, tuft, goblet cells, and enterocytes during intestinal organoid development. Cell-state analysis shows the proportions of apoptotic, G0-, G1-,
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post-mitotic. Stem, Paneth, enteroendocrine, and tuft cells display stable signalling over time, whereas goblet cell- and enterocyte-signalling diverge from Day 4.

stem and Paneth cells maintain active MAPK, P38, and PI3K
pathways, enterocytes lose major PI3K (pPDPK1, p4E-BP1,
pS6 [S235/S236], pAMPK– [T172], pSRC, and pPKC–) and
P38 (pP38 MAPK, pMAPKAPK2 [T334], and pCREB) ac-
tivity (Fig. 4c). As a result, by Days 5 to 7, enterocytes are
largely post-mitotic or apoptotic (pRB- / cCaspase3+), with
high TGF-— signalling, whereas stem cells retain mitogenic
flux and cell-cycle activity (Fig. 4c). Consequently, stem cell
number increases while enterocytes become exhausted at the
end of intestinal organoid development (Fig. 4a, b). Notably,
both stem and Paneth cells continue to display high MAPK,
P38, and PI3K activity even at this late stage of organoid cul-
ture (Fig. 4c). This suggests that maintaining a stable sig-
nalling flux is a core feature of intestinal crypt cells. In con-
trast, tuft cells display high TGF-— signalling, low MAPK
/ P38 / PI3K activity, and low cell-cycle activity throughout
organoid development (Fig. 4c). This implies that irrespec-
tive of organoid age, tuft cells shut down mitotic signalling
pathways and terminally exit the cell cycle once differenti-
ated. Such variations in organoid cell-state (Fig. 4a), cell-
type (Fig. 4b), and PTM activity (Fig. 4c) suggest develop-

mental stage should be carefully considered when perform-
ing organoid experiments. Collectively, this analysis revealed
cell-type specific PTM signalling during intestinal organoid
development and confirmed that TOBis can be used to per-
form multivariate single-cell signalling analysis of heteroge-
nous organoid cultures.

Single-Cell Signalling Analysis of CRC TME
Organoids. We have demonstrated how a modified
MC workflow enables high-throughput comparison of
cell-type specific signalling networks in epithelial organoids.
Given that MC can theoretically resolve any cell-type, we
next expanded this platform to study PTM signalling in
heterocellular organoid co-culture models of CRC.
CRC develops through successive oncogenic mutations – fre-
quently resulting in loss of APC activity, activation of KRAS,
and perturbation of TP53 (29). In addition to oncogenic mu-
tations, stromal fibroblasts (30, 31) and macrophages (32) in
the TME have also emerged as major drivers of CRC (33).
While the underlying driver mutations of CRC have been
well studied, how they dysregulate epithelial signalling rel-
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Fig. 5. Single-Cell Signalling Analysis of Colorectal Cancer (CRC) Tumour Microenvironment Organoids. a) Experimental design. CRC organoid genotypes (wild-type
(WT), shApc (A), shApc and KrasG12D/+ (AK), shApc, KrasG12D/+, and Trp53R172H/- (AKP)) were cultured in the presence or absence of colonic fibroblasts and/or macrophages
(without exogenous growth factors). Each condition was TOBis-barcoded, pooled into a single sample, and analysed by MC (28 PTMs / cell). b) Confocal IF of a WT
colonic organoid (Pan-CK, green) co-cultured with colonic fibroblasts (RFP, red), and macrophages (CD45, grey) (TOBis 4), scale bar = 50 µm. c) UMAP distribution of the
colonic microenvironment model resolves single epithelial cells (green), fibroblasts (red), and macrophages (grey) (TOBis 4). d) PTMs, progenitor cell-types, and cell-states
of colonic epithelial organoids across all genotype / microenvironment combinations. The grey and red shades in the microenvironmental conditions represent macrophages
and fibroblasts respectively. (See Supplementary Figs. 7 and 8 for complete EMD-DREMI signalling maps of organoids, macrophages, and colonic fibroblasts.) e) PCA of 28
PTM-EMDs for colonic epithelial organoids across all genotype / microenvironment combinations. CRC organoids with AK / AKP mutations mimic the signalling flux driven by
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across all genotype / microenvironment combinations. Epithelial signalling connectivity is regulated by genotype rather than microenvironment. (See Supplementary Fig. 8e,
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ative to microenvironmental cues from stromal and immune
cells is unclear.
To investigate this, we cultured wild-type (WT), shApc (A),
shApc and Kras

G12D/+ (AK), or shApc, Kras
G12D/+, and

Trp53
R172H/- (AKP) (34, 35) colonic epithelial organoids

either alone, with colonic fibroblasts, and/or macrophages
(Fig. 5a, b, and Supplementary Fig. 6). Each CRC
genotype-microenvironment organoid culture was fixed,
TOBis-barcoded, and single-cell signalling analysis was per-
formed in one multivariate MC run (Fig. 5a and Sup-
plementary Table 2, 50 parameters (40 antibodies) / cell).
Addition of myeloid (CD68 and F4/80) and mesenchymal
(Podoplanin) heavy-metal antibodies enabled clear resolu-
tion of epithelial organoids, macrophages, and fibroblasts
from each barcoded condition (Fig. 5c). This experimen-
tal design allowed us to directly compare mutation- and
microenvironment-driven cell-type specific signalling net-
works in CRC organoid mono- and co-cultures.
As expected, oncogenic mutations have a large cell-
autonomous effect on epithelial signalling. Although APC

mutations are well known to upregulate WNT signalling
(22), we found that the loss of APC also activates the P38
pathway (pP38 MAPK and pMAPKAPK2), downregulates
TGF-— / BMP signalling (pSMAD2/3 and pSMAD1/5/9),
and activates p120-Catenin in colonic organoids (Fig. 5d).
Subsequent oncogenic Kras

G12D/+ and Trp53
R172H/- muta-

tions further cell-autonomously upregulate not only the clas-
sical MAPK pathway, but also major PI3K nodes (pPDPK1,
pAKT, pS6, and p4E-BP1) (Fig. 5d). As a result, AK
and AKP organoids display increased stem / progenitor cell-
type markers LRIG1 and CD44, decreased apoptosis, and in-
creased mitogenic cell-state relative to WT and A organoids
(Fig. 5d).
Both oncogenes and stromal cells can dysregulate cancer
cell signalling (7). However, to what extent this is driven
by oncogenic mutations (cell-intrinsic) or the TME (cell-
extrinsic) is less clear. To investigate this, we directly com-
pared mutation- and microenvironment-driven signalling in
CRC organoids. To our surprise, we found that microenvi-
ronmental cues have a comparable impact on PTM regula-
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tion to oncogenic mutations (Fig. 5e). In contrast, while mu-
tations and stromal cells can both drive epithelial PTM ac-
tivity, PTM-PTM connectivity is regulated largely by geno-
type, not microenvironment (Fig. 5f). This observation sug-
gests that oncogenic mutations fundamentally re-wire sig-
nalling networks, whereas stromal cells regulate acute sig-
nalling flux. We also found that stromal cells further upreg-
ulate the PI3K pathway (pS6, p4E-BP1, and pAKT) in CRC
organoids that already contain Kras

G12D and Trp53
R172H mu-

tations (Fig. 5d and Supplementary Fig. 7). Microenviron-
mental hyper-activation of the epithelial PI3K pathway may
contribute towards the poor prognosis of CRC patients with
highly stromal tumours (30, 31).
In addition to mutation- and microenvironment-driven ep-
ithelial signalling, we discovered previously unreported po-
larity in fibroblast and macrophage cell-cell communica-
tion. For example, macrophage signalling pathways (MAPK,
PI3K, and NF-ŸB) are heavily upregulated by fibroblasts
(Supplementary Fig. 8a, c, e), whereas fibroblast signalling
is scarcely altered by macrophages (Supplementary Fig. 8b,
d, f). In contrast, epithelial cells upregulate MAPK and P38
signalling in fibroblasts, which in turn, reciprocally activate
MAPK and P38 signalling in epithelial cells (Supplementary
Fig. 7 and 8b). These results suggest that colonic fibrob-
lasts are major regulators of intercellular signalling in the
colonic microenvironment and should be further investigated
as drivers of CRC.

Oncogenic Mutations Mimic Stromal Signalling Net-
works. Cell-type specific PCA of EMD-PTMs suggested
that mutation- and microenvironment-driven signalling in
colonic organoids are related (Fig. 5e). To further inves-
tigate the parity between genotypic and microenvironmental
regulation of epithelial signalling, we overlaid single-cell MC
data from WT, A, AK, and AKP organoids onto a fixed-node
microenvironmental Scaffold map (36) constructed from WT
colonic organoids alone or co-cultured with colonic fibrob-
lasts and/or macrophages (Fig. 6a and Supplementary Fig.
9a). This unsupervised analysis confirmed that Apc, Kras,
and Trp53 oncogenic mutations mimic the signalling profile
of WT organoids in the presence of stromal cells. Inverted
organoid genotype Scaffold maps also expose a striking sim-
ilarity between mutation- and microenvironment-driven sig-
nalling (Supplementary Fig. 9b). Direct comparison of
organoid PTMs revealed that both PI3K / PKC (pPDPK1,
pPKC–, pAKT, p4E-BP1, pS6, pSRC, pP120-Catenin, and
pAMPK–) and P38 / MAPK (pP38 MAPK, pMAPKAPK2,
pP90RSK, pCREB, and pBAD) nodes are analogously up-
regulated by oncogenic mutations and microenvironmental
cues (Figs. 5d and 6b). Activation of these pathways by
either oncogenic mutations or stromal cells correlates with
decreased apoptosis and increased mitogenic cell-state in
colonic organoids (Fig. 5d).
Taken together, multivariate cell-type specific PTM analy-
sis of organoid co-cultures elucidated several fundamental
processes in CRC: 1) oncogenic mutations re-structure sig-
nalling networks in cancer cells, whereas microenvironmen-
tal cues drive acute signalling flux, 2) stromal cells hyper-

activate PI3K signalling in colonic epithelial cells that al-
ready carry Kras and Trp53 mutations, and 3) oncogenic mu-
tations cell-autonomously mimic an epithelial signalling state
normally induced by stromal cells. These results collectively
confirmed that TOBis-multiplexed MC enables discoveries of
novel cell-type specific signalling relationships between dif-
ferent cell-types in organoid models of the tumour microen-
vironment.

DISCUSSION
Organoids are heterocellular systems that comprise multiple
cell-types and cell-states. Cell-type specific PTM signalling
networks regulate major biological processes and are fre-
quently dysregulated in disease. As a result, understanding
cell-type specific signalling networks is fundamental to the
utility of organoids and organoid co-cultures. Existing bulk
PTM technologies (e.g. LC-MS/MS and anti-phospho an-
tibody arrays) cannot describe cell-type or cell-state specific
signalling relationships and therefore limit our understanding
of organoid biology (9). While scRNA-seq can characterise
cell-type specific transcription, it cannot measure protein-
level signal transduction which ultimately drives biological
phenotypes. To overcome these challenges, we demonstrated
how a modified MC workflow that combines monoisotopic
cell-type, cell-state, and PTM probes can be used to study
cell-type specific signalling networks in organoids. This
method uncovered novel cell-type specific signalling in in-
testinal epithelia and revealed an intimate relationship be-
tween cell-signalling and cell-state in organoids. We showed
how Thiol-reactive Organoid Barcoding in situ (TOBis) en-
ables high-throughput comparison of signalling networks
across different organoid mono- and co-cultures. Applica-
tion of this technology to CRC TME organoid co-cultures
revealed that oncogenic mutations mimic stromal signalling
cues and demonstrated how highly mutated CRC cells can be
further dysregulated by fibroblasts and macrophages.
While this study has focused on intestinal organoids, we ex-
pect this method to be fully compatible with organoids de-
rived from other tissues (e.g. brain, liver, pancreas, kidney
etc.). Cell-type identification probes for each tissue should
be carefully validated, but otherwise the TOBis multiplex-
ing and PTM analysis framework we report should be com-
patible with all organoid models (including those grown in
defined hydrogels (37)). Moreover, our extension of MC
to study colonic fibroblasts and macrophages implies that
PTM signalling can be measured in any cell-type co-cultured
with organoids (e.g. PBMCs co-cultured with organoids (3)
and air-liquid interface tumour microenvironment organoids
(38)).
In addition to standard single-cell organoid signalling exper-
iments, the new barcoding technology reported here holds
substantial promise for organoid screening. While drug
screens of patient-derived organoid (PDO) monocultures
have shown great potential (39, 40), their reliance on bulk vi-
ability measurements (e.g. CellTiter-Blue) implies that they
cannot be used to evaluate drugs targeting stromal and/or
immune cells or provide any mechanistic understanding of
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Fig. 6. Oncogenic Mutations Mimic Stromal Signalling Networks. a) Scaffold maps constructed from WT organoids either alone or co-cultured with colonic fibroblasts
and/or macrophages. Unsupervised distribution of A, AK, and AKP colonic organoids revealed that oncogenic mutations mimic signalling profiles driven by stromal fibroblasts
and macrophages. (See Supplementary Fig. 9a for all genotype / microenvironment combinations and Supplementary Fig. 9b for mutation-driven Scaffold maps.) b)
PTM-EMDs for PI3K / PKC and P38 / MAPK signalling nodes in colonic organoids following genotypic and microenvironmental regulation. Cell-type specific PTM analysis
demonstrates oncogenic mutations and microenvironmental cues upregulate analogous signalling nodes in epithelial colonic organoids.

drug performance and/or resistance. In contrast, a TOBis-
multiplexed MC drug / CRISPR screen will characterise cell-
type specific signalling networks, cell-cycle states, and apop-
totic readouts at single-cell resolution across all cell-types in
PDO and PDO co-cultures. Given its ability to resolve multi-
ple cell-types, TOBis MC would be particularly powerful for
evaluating biological therapies against solid tumours where
cell-type specificity is essential for resolving drug (e.g. CAR
T-cell) and target (organoid) phenotypes. Future develop-
ment of TOBis barcodes using additional TeMal (×7 possi-
ble) and Cisplatin (×4 possible) isotopologs will greatly ex-
pand organoid multiplexing capacity and advance this tech-
nology to high-throughput organoid screening applications.
In summary, this study demonstrates how a modified MC
platform can reveal cell-type specific signalling networks in
organoid monocultures and uncover novel cell-cell signalling
relationships in organoid co-cultures. Given the widespread
adoption of organoids as biomimetic models of healthy and

diseased tissue, we propose cell-type specific PTM analysis
as a powerful technology for multivariate organoid phenotyp-
ing.

METHODS
Methods, including statements of data availability and any
associated accession codes and references, are available as
supplementary information on bioRxiv.
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