1	Three-dimensional analysis of β -cell proliferation by a novel mouse model
2	
3	Shinsuke Tokumoto ^a , Daisuke Yabe ^{a,b} , Hisato Tatsuoka ^a , Ryota Usui ^a , Muhammad Fauzi ^a ,
4	Ainur Botagarova ^a , Hisanori Goto ^a , Pedro Luis Herrera ^c , Masahito Ogura ^a , Nobuya Inagaki ^{a,} *
5	
6	^a Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto
7	University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
8	
9	^b Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine,
10	Gifu, Japan
11	
12	^c Department of Genetic Medicine and Development, University of Geneva Medical School,
13	Geneva, Switzerland.
14	
15	*Corresponding author (Nobuya Inagaki). Tel.: +81-75-751-3560, fax: +81-75-771-6601,
16	email: inagaki@kuhp.kyoto-u.ac.jp
17	
18	
19	
20	
21	
22	
23	
24	

25 Summary

26	Inducing β -cell proliferation could inhibit diabetes progression. Many factors have been
27	suggested as potential β -cell mitogens, but their impact on β -cell replication has not been
28	confirmed due to the lack of a standardized β -cell proliferation assay. In this study, we
29	developed a novel method that specifically labels replicating β cells and yields more
30	reproducible results than current immunohistochemical assays. We established a mouse line
31	expressing the fluorescent ubiquitination-based cell cycle indicator (Fucci2a) reporter only in
32	β cells through Cre-mediated recombination under the control of the rat insulin promoter
33	(RIP-Cre;Fucci2aR). Three-dimensional imaging of optically cleared pancreas tissue from
34	these mice enabled the quantification of replicating β cells in islets and morphometric
35	analysis of islets following mitogen treatment. Intravital imaging of RIP-Cre;Fucci2aR mice
36	revealed cell cycle progression of β cells. Thus, this novel mouse line is a powerful tool for
37	spatiotemporal analysis of β -cell proliferation in response to mitogen stimulation.

38

39 Introduction

40 Diabetes is caused by β -cell dysfunction and deficiency. Stimulating β -cell 41 proliferation is a promising treatment for diabetes, as β cells replicate very infrequently even 42 in pathophysiological states. Many factors have been reported as potential β -cell mitogens, 43 although the β -cell mitogenic effect by one of them has not been reproducible (Gusarova et 44 al., 2014). The inconsistent results can be explained by the lack of a standardized method for 45 quantifying replicating β cells (Cox et al., 2016). Thus far, determination of the β -cell 46 proliferation rate has relied on immunohistochemical detection of cell cycle markers such as 47 nucleotide analogs (5-bromo-2'-deoxyuridine [BrdU] and 5-ethynyl-2'-deoxyuridine [EdU]) 48 or replication proteins (proliferating cell nuclear antigen and Ki-67). However, results 49 obtained by the immunohistochemical assays show inter-laboratory variability (Cox et al.,

2016) caused by methodological differences—e.g., in immunolabeling and image acquisition
techniques. Replicating non-β cells within islets may also confound immunohistochemical
analyses. Furthermore, there are presently no alternative methods that can be used to resolve
these discrepant findings. Thus, new methods for quantifying replicating β cells are required
in order to validate the effects of potential β-cell mitogens.
The fluorescent ubiquitination-based cell cycle indicator (Fucci) reporter is a well-

56 known probe for monitoring cell cycle status (Sakaue-Sawano et al., 2008). The Fucci system 57 relies on the expression of a pair of fluorescent proteins: mCherry-hCdt1(30/120) (a degron 58 of chromatin licensing and DNA replication factor [Cdt]1 fused to a fluorescent protein in the 59 red spectrum) and mVenus-hGem (1/110) (a degron of Geminin fused to a fluorescent protein 60 in the green spectrum). Reciprocal expression of these paired proteins labels cells in G_1 phase 61 and those in $S/G_2/M$ phase with red and green fluorescence, respectively. Thus, the Fucci 62 system can be used to visualize the G_1/S transition and quantify replicating cells. 63 In this study, we generated a mouse line in which only β cells expressing the Fucci 64 probe are labeled according to cell cycle phase. Using this model, we specifically evaluated β-cell proliferation induced by administration of the insulin receptor antagonist S961 (a 65 66 reported β -cell mitogen [Jiao et al., 2014]). In addition, we performed three-dimensional (3D) 67 analyses of whole islets by observing optically cleared pancreas of these mice and found a strong and significant correlation between islet size and the number of replicating β cells per 68 69 islet. These results demonstrate the utility of this mouse model for the study of β -cell

70 proliferation.

71

```
72 Results
```

73 Generation of β cell-specific Fucci-expressing mice

74

3

To distinguish β cells in the G₀/G₁ phase from those in S/G₂/M phase, we used Fucci

75	technology, which is a proven tool for detecting actively proliferating cells. The R26-
76	Fucci2aR transgenic mouse line harboring an upgraded Fucci2a reporter was recently
77	generated in which Cre/loxP-mediated conditional expression of the Fucci2a transgene at the
78	Rosa26 locus is driven by the cytomegalovirus early enhancer/chicken β actin promoter
79	(Mort et al., 2014). By crossing rat insulin promoter (RIP)-Cre (Herrera et al., 1998) and
80	R26-Fucci2aR mice, we generated the RIP-Cre;Fucci2aR line in which the Fucci2a probe is
81	specifically expressed in β cells (Fig. 1A). RIP-Cre;Fucci2aR mice showed similar body
82	weight and arbitrary blood glucose levels compared to Fucci2aR littermates (Fig. 1B and 1C),
83	and there was no significant difference in blood glucose and insulin levels during in the oral
84	glucose tolerance test (2 g/kg) between them (Fig. 1D and 1E), indicating that RIP-Cre;
85	Fucci2aR mice have a normal metabolic profile.
86	
87	β cell-specific Fucci expression in RIP-Cre;Fucci2aR mice
87 88	β cell-specific Fucci expression in RIP-Cre;Fucci2aR mice As proof of principle, we investigated the expression pattern of the Fucci2a probe in
88	As proof of principle, we investigated the expression pattern of the Fucci2a probe in
88 89	As proof of principle, we investigated the expression pattern of the Fucci2a probe in RIP-Cre;Fucci2aR mice. In order to characterize not only mCherry ⁺ but also mVenus ⁺ cells,
88 89 90	As proof of principle, we investigated the expression pattern of the Fucci2a probe in RIP-Cre;Fucci2aR mice. In order to characterize not only mCherry ⁺ but also mVenus ⁺ cells, we induced β -cell proliferation in RIP-Cre;Fucci2aR mice by continuous infusion of the
88 89 90 91	As proof of principle, we investigated the expression pattern of the Fucci2a probe in RIP-Cre;Fucci2aR mice. In order to characterize not only mCherry ⁺ but also mVenus ⁺ cells, we induced β -cell proliferation in RIP-Cre;Fucci2aR mice by continuous infusion of the vehicle phosphate-buffered saline (PBS) or insulin receptor antagonist S961 over 7 days with
88 89 90 91 92	As proof of principle, we investigated the expression pattern of the Fucci2a probe in RIP-Cre;Fucci2aR mice. In order to characterize not only mCherry ⁺ but also mVenus ⁺ cells, we induced β -cell proliferation in RIP-Cre;Fucci2aR mice by continuous infusion of the vehicle phosphate-buffered saline (PBS) or insulin receptor antagonist S961 over 7 days with an osmotic pump. At the end of the treatment, frozen sections were prepared from the
88 89 90 91 92 93	As proof of principle, we investigated the expression pattern of the Fucci2a probe in RIP-Cre;Fucci2aR mice. In order to characterize not only mCherry ⁺ but also mVenus ⁺ cells, we induced β -cell proliferation in RIP-Cre;Fucci2aR mice by continuous infusion of the vehicle phosphate-buffered saline (PBS) or insulin receptor antagonist S961 over 7 days with an osmotic pump. At the end of the treatment, frozen sections were prepared from the dissected pancreas and immunostained for insulin, glucagon, somatostatin, and Nkx-6.1, and
 88 89 90 91 92 93 94 	As proof of principle, we investigated the expression pattern of the Fucci2a probe in RIP-Cre;Fucci2aR mice. In order to characterize not only mCherry ⁺ but also mVenus ⁺ cells, we induced β -cell proliferation in RIP-Cre;Fucci2aR mice by continuous infusion of the vehicle phosphate-buffered saline (PBS) or insulin receptor antagonist S961 over 7 days with an osmotic pump. At the end of the treatment, frozen sections were prepared from the dissected pancreas and immunostained for insulin, glucagon, somatostatin, and Nkx-6.1, and the fluorescent signals of the Fucci2a probe were directly observed. In S961-treated RIP-
 88 89 90 91 92 93 94 95 	As proof of principle, we investigated the expression pattern of the Fucci2a probe in RIP-Cre;Fucci2aR mice. In order to characterize not only mCherry ⁺ but also mVenus ⁺ cells, we induced β -cell proliferation in RIP-Cre;Fucci2aR mice by continuous infusion of the vehicle phosphate-buffered saline (PBS) or insulin receptor antagonist S961 over 7 days with an osmotic pump. At the end of the treatment, frozen sections were prepared from the dissected pancreas and immunostained for insulin, glucagon, somatostatin, and Nkx-6.1, and the fluorescent signals of the Fucci2a probe were directly observed. In S961-treated RIP-Cre;Fucci2aR mice, mCherry and mVenus were expressed specifically in insulin ⁺ and Nkx
 88 89 90 91 92 93 94 95 96 	As proof of principle, we investigated the expression pattern of the Fucci2a probe in RIP-Cre;Fucci2aR mice. In order to characterize not only mCherry ⁺ but also mVenus ⁺ cells, we induced β -cell proliferation in RIP-Cre;Fucci2aR mice by continuous infusion of the vehicle phosphate-buffered saline (PBS) or insulin receptor antagonist S961 over 7 days with an osmotic pump. At the end of the treatment, frozen sections were prepared from the dissected pancreas and immunostained for insulin, glucagon, somatostatin, and Nkx-6.1, and the fluorescent signals of the Fucci2a probe were directly observed. In S961-treated RIP-Cre;Fucci2aR mice, mCherry and mVenus were expressed specifically in insulin ⁺ and Nkx 6.1 ⁺ cells (Figure 2A and 2D), but not in glucagon ⁺ or somatostatin ⁺ cells (Figure 2B and

99 Vehicle- and S961-treated mice were administered EdU 6 h before sacrifice, and mVenus⁺

100	cells (Figure 2E) or EdU^+ insulin ⁺ DAPI ⁺ cells (Figure 2F) were counted in frozen sections.
101	We found that the value of mVenus ⁺ cells per β cells tended to be higher than that of EdU ⁺
102	insulin ⁺ cells per β cells.

103

104 3D Imaging of islets in RIP-Cre; Fucci2aR mice

105 Since each islet is densely packed with various cell types, replicating β cells can be 106 misidentified in histological sections labeled for insulin and replication markers. In order to 107 detect and quantify replicating β cells in 3D in whole islets of RIP-Cre; Fucci2aR mice, 108 CUBIC clearing reagent (Kubota et al., 2017) was applied to pancreatic tissue samples from 109 vehicle- or S961-treated RIP-Cre;Fucci2aR mice, and 3D images of the optically cleared 110 tissue were obtained with a light sheet microscope equipped with a $5 \times$ objective lens. The 111 spatial distributions of mVenus⁺ and mCherry⁺ cells were simultaneously visualized (Figure 112 3A–3F; Movie S1). Islets contained more mVenus⁺ cells following S961 treatment (Figure 3C and 3D). Spot objects corresponding to each mVenus⁺ or mCherry⁺ cells were 113 114 reconstructed using Imaris Spot Detection and quantified by an automated process to 115 determine the number of replicating β cells in each islet (Figure 3G and 3H). The diameter of 116 β-cell cluster in each islet were measured using Imaris Surface tool. Thus, RIP-Cre;Fucci2aR 117 mice are amenable to cross-sectional analyses of the number and spatial distribution of 118 proliferating β cells. 119 Given the utility of the Fucci2a probe for real-time monitoring of the cell cycle, we 120 performed real-time in vivo imaging in S961-treated RIP-Cre;Fucci2aR mice using a two-121 photon microscope equipped with a $25 \times$ water objective lens. This intravital imaging of an 122 islet in a RIP-Cre;Fucci2aR mouse initiated 40 h after S961 treatment revealed the G₁-S 123 transitions of β cells (Supplemental Information Movies S2).

124

125 The number of replicating β cells per islet is positively correlated with islet size

126	The relationship between the number of replicating β cells per islet and the
127	morphological characteristics of islets is unclear. We address this issue by analyzing 3D
128	images obtained from RIP-Cre;Fucci2aR mice. Blood glucose and insulin levels were higher
129	in mice treated with S961 (N = 4) than in those treated with vehicle (N = 4) (Figure 4A, 4B).
130	When we examined all islets whose β -cell cluster diameter was over 100 μ m, the β -cell
131	cluster diameter and β -cell number per islet were greater in S961-treated RIP-Cre; Fucci2aR
132	mice (Figure 4C, 4D, 4E). In addition, the proportion of mVenus ⁺ cells per islet were higher
133	in S961-treated as compared to control mice (Figure 4F). Moreover, the mVenus ⁺ cell
134	number per islet was positively correlated with β -cell number per islet in both vehicle-treated
135	(Figure 4G; $r = 0.87$, $P < 0.0001$) and S961-treated (Figure 4G; $r = 0.84$, $P < 0.0001$) mice.
136	Next, we investigated whether this positive correlation could be also found under a
137	physiological condition such as diet-induced obesity. The RIP-Cre;Fucci2aR mice were
138	divided into two groups: one fed with high-fat diets (HFD) and the other fed with control
139	diets for 13 weeks. HFD group ($N = 7$) gained significantly more body weight than control
140	diet group ($N = 7$) at the end of 13-week feedings (Figure 5A). Compared to control diet
141	group, HFD group revealed greater β -cell cluster diameter (Figure 5B, 5C), more β -cell
142	number per islet (Figure 5D) and higher proportion of mVenus ⁺ cells per islet (Figure 5E).
143	Finally, the positive correlation between $mVenus^+$ cell number per islet and β -cell number per
144	islet was also found in both HFD group (Figure 5F; $r = 0.81$, $P < 0.0001$) and control diet
145	group (Figure 5F; r = 0.60, P < 0.0001). These data indicate that the number of replicating β
146	cells per islet depends on the size of the islet.
147	

148 β -cell proliferation induced by S961 is not due to hyperglycemia

149 Hyperglycemia has been shown to induce β -cell proliferation (Alonso et al., 2007;

150	Porat et al., 2011). Since S961 administration causes hyperglycemia, we investigated whether
151	this mediates β -cell proliferation during S961 treatment. To exclude the effects of
152	hyperglycemia, we normalized blood glucose levels in S961-treated RIP-Cre;Fucci2aR mice
153	by co-administration of sodium-glucose cotransporter 2 inhibitor (SGLT2i). The mice were
154	divided into four groups: vehicle treatment with control diet (vehicle + control), vehicle
155	treatment with control diet containing 0.02% empagliflozin (vehicle + 0.02% empagliflozin),
156	S961 treatment with control diet (S961 + control), and S961 treatment with control diet
157	containing 0.02% empagliflozin (S961 + 0.02% empagliflozin). Although blood glucose level
158	was higher in the S961 + control than in the S961 + 0.02% empagliflozin group, the level in
159	the latter was similar to that in the vehicle + control group (Figure 6A). The S961 + 0.02%
160	empagliflozin group had a lower insulin level than the S961 + control group but nonetheless
161	showed hyperinsulinemia (Figure 6B), reflecting the continuous pharmacological action of
162	S961 irrespective of empagliflozin co-administration.
163	We next investigated the morphological characteristics of islets in all four groups and
164	found that islets were larger in mice treated with S961 as compared to vehicle (Figure 6C,
165	6D, 6E). β -cell cluster diameter was larger in the vehicle + control as compared to the vehicle
166	+ 0.02% empagliflozin group, while no difference was observed between S961 $+$ control and
167	S961 + 0.02% empagliflozin groups (Figure 6C, 6D). On the other hand, while the number of
168	β cells per islet was greater in S961 + 0.02% empagliflozin group as compared to S961 +
169	control group (Figure 6E), there was no difference in the proportion of mVenus ⁺ cells number
170	per islet between the two groups (Figure 6F). In all four groups, there were positive
171	correlations between mVenus ⁺ cell number and β -cell number per islet (vehicle + control: r =
172	0.78, P < 0.0001; vehicle + 0.02% empagliflozin diet: r = 0.74, P < 0.0001; S961 + control
173	diet: $r = 0.92$, $P < 0.0001$; and S961 + 0.02% empagliflozin diet: $r = 0.90$, $P < 0.0001$; Figure
174	6G). These results indicate that hyperglycemia does not mediate S961-induced β -cell 7

175 replication.

176

177 Discussion

178	Identifying potential β -cell mitogens could lead to a novel diabetes therapy. Although
179	many factors that control β -cell replication have been identified to date, their mitogenic
180	effects on β cells have not been precisely evaluated since immunohistochemical assays are
181	unreliable for accurately identifying β cells. A recent study reported inter-laboratory
182	variability in the immunohistochemical detection of Ki-67 for the identification of β cells and
183	quantification of their replication; the authors concluded that the discrepancy among
184	laboratories was due to the misidentification of replicating non- β cells within islets as β cells
185	(Cox et al., 2016). Since many different cell types are densely packed in sphere-like islets, the
186	analysis of 2D immunohistochemical data could account for inaccuracies in the detection of β
187	cells. Furthermore, the nucleotide analog BrdU, which is often used as a cell cycle marker in
188	traditional immunohistochemical assays, has unfavorable effects on the cell cycle of β cells
189	(de Casteele et al., 2013). Thus, immunohistochemistry using cell cycle markers such as Ki-
190	67 and BrdU are not appropriate for evaluating β -cell proliferation. In order to overcome
191	these limitations, we developed a novel assay that can precisely detect and be used to
192	quantify replicating β cells.
193	Fucci2a, a single fluorescence marker for monitoring cell cycle transition,
194	differentiates cells in G_0/G_1 from those in $S/G_2/M$ phase based on mCherry-hCdt1 (30/120)
195	and mVenus-hGem (1/110) expression (Sakaue-Sawano et al., 2008). Using RIP-
196	Cre;Fucci2aR mice in which Fucci2a is expressed specifically in β cells, we established an
197	assay for detecting the proliferative β -cell pool that is uncontaminated by replicating non- β
198	cells. Our results also suggest that the Fucci2a assay is more sensitive than the short-term
199	EdU labeling assay, which cannot detect β cells in G ₂ /M phase.

200	3D Analysis of RIP-Cre/Fucci2aR mice allows more precise evaluation of replicating
201	β cells, and increases the sample size compared to 2D immunohistochemical assays. We
202	optically cleared pancreas tissue samples from RIP-Cre/Fucci2aR mice for 3D fluorescence
203	imaging, which provided spatial information on replicating β cells within each islet. This 3D
204	analysis allowed us to examine the correlation between β -cell proliferative capacity and the
205	morphological characteristics of each islet. Furthermore, intravital imaging demonstrated that
206	longitudinal spatiotemporal data on β -cell proliferation can be obtained from RIP-
207	Cre/Fucci2aR mice. The 3D analysis of the pancreas of RIP-Cre/Fucci2aR mice revealed a
208	higher β -cell proliferation rate within each islet in mice treated with S961 than in those
209	treated with vehicle. When we counted all mCherry ⁺ and mVenus ⁺ cells as β cells, we found
210	that the total number of β cells per islet was increased by S961 treatment. This is consistent
211	with previous reports on S961-induced β cell proliferation and mass expansion (Jiao et al.,
212	2014). In addition, the strong positive correlation between mVenus ⁺ cell and total β -cell
213	number per islet suggested that larger islets contain more replicating β cells.
214	The signals that regulate β -cell proliferation upon S961 treatment are not known.
215	Hyperglycemia has been reported to directly induce β -cell proliferation, while a recent study
216	showed that S961-induced hyperinsulinemia and β cell mass expansion occurred even when
217	blood glucose levels were normalized by co-administration of a monoclonal glucagon
218	receptor antibody (Okamoto et al., 2017). Our results showed that S961 stimulated β -cell
219	proliferation and increased β -cell number per islet even when hyperglycemia was normalized
220	by SGLT2i treatment. These results provide new evidence for the existence of mitogenic
221	factors mediating S961-induced β -cell proliferation, except under hyperglycemic conditions.
222	Our study had several limitations. Firstly, since only β cells were labeled by the
223	Fucci2a probe, other endocrine cells within islets could not be detected in RIP-Cre;Fucci2aR
224	mice. Therefore, mitogenic effects on non- β cells must be investigated using other methods.

225	Secondly, the attenuation of fluorescence by light scattering limited the observation depth
226	from the pancreas surface. Such signal attenuation is unavoidable despite the optical clearing
227	process. Under the light sheet microscope, only islets near (~2.0 mm from) the surface were
228	clearly detected for quantification of fluorescent cells. Although this restricts the size of the
229	islet population, the sample size is still larger using our method as compared to a
230	conventional immunohistochemical assay because it is based on 3D analysis of the whole
231	pancreas.
232	In summary, the transgenic mouse line expressing the Fucci2a probe in β cells
233	developed in this study provides a new tool for analyzing β -cell proliferation in a more
234	reliable and reproducible manner than conventional immunohistochemistry. The high spatial
235	resolution of the 3D images obtained with a light-sheet microscope allows accurate detection
236	of replicating β -cells. This system can be useful for validating the efficacy and therapeutic
237	potential of β -cell mitogens for inhibition of diabetes progression.
238	
239	Acknowledgments

240 The authors thank Asako Sakaue-Sawano and Atsushi Miyawaki for their scientific

241 discussion; Saki Kanda and Sara Yasui for technical assistance; and Yukiko Inokuchi,

242 Yukiko Tanaka, and Fumiko Uwamori for secretarial assistance. This work was supported by

243 Kyoto University Live Imaging Center and in part by Grants-in-Aid KAKENHI 16H06280

244 "ABiS".

245

246 Author Contributions

The study was designed by S.T., D.Y., and N.I. Experiments were performed by S.T. and
A.B., and data were analyzed by S.T. The manuscript was written by S.T., D.Y., and N.I.

249 with input from all authors.

250

251 Declaration of Interests

252	S. Tokumoto reports no conflict of interests relevant to this study. D. Yabe received
253	consulting or speaking fees from MSD K.K., Nippon Boehringer Ingelheim Co. Ltd., and
254	Novo Nordisk Pharma Ltd. D. Yabe also received clinically commissioned/joint research
255	grants from Taisho Toyama Pharmaceutical Co. Ltd., MSD K.K., Ono Pharmaceutical Co.
256	Ltd., Novo Nordisk Pharma Ltd., Arklay Co. Ltd., Terumo Co. Ltd., and Takeda
257	Pharmaceutical Co. Ltd. N. Inagaki received clinical commissioned/joint research grants from
258	Mitsubishi Tanabe, AstraZeneca, Astellas, and Novartis Pharma and scholarship grants
259	from Takeda, MSD, Ono, Sanofi, Japan Tobacco Inc., Mitsubishi Tanabe, Novartis,
260	Boehringer Ingelheim, Kyowa Kirin, Astellas, and Daiichi-Sankyo.
261	
262	
202	
263	Figure legends
	Figure legends Figure 1. Genotype and metabolic phenotype of RIP-Cre;Fucci2aR mice. (A) Breeding
263	
263 264	Figure 1. Genotype and metabolic phenotype of RIP-Cre;Fucci2aR mice. (A) Breeding
263 264 265	Figure 1. Genotype and metabolic phenotype of RIP-Cre;Fucci2aR mice. (A) Breeding scheme for the generation of RIP-Cre;Fucci2aR mice. RIP-Cre and Fucci2aR mouse lines
263 264 265 266	Figure 1. Genotype and metabolic phenotype of RIP-Cre;Fucci2aR mice. (A) Breeding scheme for the generation of RIP-Cre;Fucci2aR mice. RIP-Cre and Fucci2aR mouse lines were crossed to obtain RIP-Cre;Fucci2aR mice. After Cre-mediated recombination, the
263 264 265 266 267	Figure 1. Genotype and metabolic phenotype of RIP-Cre;Fucci2aR mice. (A) Breeding scheme for the generation of RIP-Cre;Fucci2aR mice. RIP-Cre and Fucci2aR mouse lines were crossed to obtain RIP-Cre;Fucci2aR mice. After Cre-mediated recombination, the Fucci2a transgene was expressed specifically in β cells. (B) Body weight and (C) arbitrary
263 264 265 266 267 268	Figure 1. Genotype and metabolic phenotype of RIP-Cre;Fucci2aR mice. (A) Breeding scheme for the generation of RIP-Cre;Fucci2aR mice. RIP-Cre and Fucci2aR mouse lines were crossed to obtain RIP-Cre;Fucci2aR mice. After Cre-mediated recombination, the Fucci2a transgene was expressed specifically in β cells. (B) Body weight and (C) arbitrary blood glucose levels of RIP-Cre;Fucci2aR (N = 7) and Fucci2aR control (N = 7) mice during
263 264 265 266 267 268 269	Figure 1. Genotype and metabolic phenotype of RIP-Cre;Fucci2aR mice. (A) Breeding scheme for the generation of RIP-Cre;Fucci2aR mice. RIP-Cre and Fucci2aR mouse lines were crossed to obtain RIP-Cre;Fucci2aR mice. After Cre-mediated recombination, the Fucci2a transgene was expressed specifically in β cells. (B) Body weight and (C) arbitrary blood glucose levels of RIP-Cre;Fucci2aR (N = 7) and Fucci2aR control (N = 7) mice during postnatal growth. (D, E) Oral glucose tolerance test (2 g/kg body weight) was performed on

273 Figure 2. β Cell-specific expression of Fucci2a in RIP-Cre;Fucci2aR mice. (A–D) Frozen

274	sections of pancreas tissue from RIP-Cre;Fucci2aR mice treated with S961 at 8 weeks of age
275	immunostained for islet hormones and Nkx 6.1. Representative fluorescence images of
276	mCherry ⁺ (red) and mVenus ⁺ (yellow) cells and immunofluorescence for islet hormones
277	(green): insulin (A), glucagon (B), and somatostatin (C). (D) All mCherry ⁺ (red) and
278	mVenus ⁺ (green) cells were Nkx 6.1-positive (yellow). Nuclei were stained with DAPI
279	(blue). Scale bar, 100 μ m. (E) Quantification of mVenus ⁺ cells in the islets of RIP-
280	Cre;Fucci2aR mice treated with vehicle (PBS; N = 4) or S961 (10 nM/week; N = 4). $*P < 10^{-1}$
281	0.05. (F) Quantification of $EdU^{+}\beta$ cells in islets of RIP-Cre;Fucci2aR mice treated with
282	vehicle (PBS; N = 4) or S961 (10 nM/week; N = 4). *P < 0.05. Data are expressed as mean \pm
283	SEM.
284	
285	Figure 3. 3D Imaging of islets in vehicle- and S961-treated RIP-Cre;Fucci2aR mice.
286	Representative 3D images of islets following treatment for 1 week with vehicle or S961. (A,
287	B) Representative fluorescence images of mCherry $^{+}$ (red) and (C, D) mVenus $^{+}$ (green) cells.
288	(G, H) Morphological 3D reconstruction of mCherry $^+$ (red) and mVenus $^+$ (green) cells for
289	automated cell counting. Images were obtained with a light-sheet microscope. Scale bar, 50
290	μm.
291	
292	Figure 4. Quantification of replicating β cells in RIP-Cre;Fucci2aR mice following S961
293	treatment.
294	(A, B) RIP-Cre;Fucci2aR mice were treated with S961 (10 nM/week; N = 4) or vehicle (PBS;
295	N = 4) for 7 days. (A) Arbitrary blood glucose and (B) serum insulin levels at the end of the
296	7-day treatment. (C) Histogram of β -cell cluster diameter in S961- and vehicle-treated RIP-
297	Cre;Fucci2aR mice. Morphometric analysis was performed on islets harboring β -cell clusters
298	with a diameter > 100 μ m (S961, n = 454 islets, N = 4 mice; vehicle, n = 348 islets, N = 4

299 mice). (D) β -cell cluster diameter in S961- and vehicle-treated mice. ****P < 0.0001 (N = 4). (E) Number of β cells per islet in S961- or vehicle-treated mice. *P < 0.05 (N = 4). (F) 300 Percentage of mVenus⁺ cells per islet in S961- and vehicle-treated mice. ****P < 0.0001 (N 301 302 = 4). (G) Correlation between number of mVenus⁺ cells and number of β cells per islet. mVenus⁺ cell number and β cell number per islet was strongly correlated in both groups 303 304 (S961, r = 0.87, P < 0.0001; vehicle, r = 0.77, P < 0.0001). Data are presented as mean ± 305 SEM. 306 307 Figure 5. Quantification of replicating β cells in RIP-Cre;Fucci2aR mice following 308 high-fat diet feeding. 309 (A) Body weight of RIP-Cre;Fucci2aR mice fed with high-fat diets (HFD; N = 7) or control 310 diets (Control; N = 7) for 13 weeks. (B) Histogram of β -cell cluster diameter in RIP-311 Cre:Fucci2aR mice under HFD or control diet feeding. Morphometric analysis was 312 performed on islets harboring β -cell clusters with a diameter > 100 μ m (HFD, n = 407 islets, 313 N = 4 mice; Control, n = 432 islets, N = 4 mice). (C) β -cell cluster diameter. ****P < 0.0001 (N = 4). (D) Number of β cells per islet. ****P < 0.0001 (N = 4). (E) Percentage of mVenus⁺ 314 cells per islet. ****P < 0.0001 (N = 4). (F) Correlation between number of mVenus⁺ cells and 315 316 number of β cells per islet. mVenus⁺ cell number and β cell number per islet was strongly 317 correlated in both groups (HFD, r = 0.81, P < 0.0001; Control, r = 0.60, P < 0.0001). Data are 318 presented as mean \pm SEM. 319 320 Figure 6. S961-induced β cell proliferation is not mediated by hyperglycemia.

321 (A, B) RIP-Cre;Fucci2aR mice were divided into four groups: 1) vehicle + control, treated

322 with vehicle and fed a control diet (N = 6); 2) vehicle + 0.02% empagliflozin, treated with

323	vehicle and fed a diet supplemented with 0.02% empagliflozin (N = 6); 3) S961 + control,
324	treated with S961 (10 nM/week) and fed a control diet (N = 6); and 4) S961 + 0.02%
325	empagliflozin, treated with S961 (10 nM/week) and fed a diet supplemented with 0.02%
326	empagliflozin (N = 6). (A) Arbitrary blood glucose levels. $*P < 0.05$, S961 + control diet
327	group vs. S961 + 0.02% empagliflozin group. $^\dagger P < 0.05,$ S961 + 0.02% empagliflozin group
328	vs. Vehicle + control group. ${}^{\ddagger}P < 0.05$, vehicle + control group vs. vehicle + 0.02%
329	empagliflozin group. (B) Serum insulin levels at the end of the 7-day treatment. $*P < 0.05$,
330	S961 + control group vs. S961 + 0.02% empagliflozin group. (C) Histogram of β -cell cluster
331	diameter. Morphometric analysis was performed on islets harboring β -cell clusters with a
332	diameter > 100 μ m (vehicle + control, N = 4 mice, n = 496 islets; vehicle + 0.02%
333	empagliflozin, N = 4 mice, n = 440 islets; S961 + control, N = 4 mice, n = 544 islets; S961 +
334	0.02% empagliflozin, N = 4 mice, n = 391 islets). (D) β -cell cluster diameter, (E) number of β
335	cells per islet, and (F) percentage of mVenus ⁺ cells per islet. ** $P < 0.01$ (N = 4), *** P < 0.01 (N = 4), *** $P < 0.01$ (N = 4), *** P < 0.01 (N = 4), *** $P < 0.01$ (N = 4), *** P < 0.01 (N = 4), **
336	0.001 (N = 4), **** $P < 0.0001 (N = 4)$; ns, not significant. (G) Correlation between number
337	of mVenus ⁺ cells and number of β cells per islet. mVenus ⁺ cell and β -cell number per islet
338	were strongly correlated in all groups (vehicle + control, $r = 0.70$, $P < 0.0001$; vehicle +
339	0.02% empagliflozin diet, r = 0.61, P < 0.0001; S961 + control diet, r = 0.93, P < 0.0001; and
340	S961 + 0.02% empagliflozin diet, r = 0.88, P < 0.0001). V + C, vehicle + control; V + E,
341	vehicle + 0.02% empagliflozin diet; S + C, S961 + control diet; S + E, S961 + 0.02%
342	empagliflozin diet. Data are presented as mean \pm SEM.

344 STAR Methods

345 CONTACT FOR REAGENT AND RESOURCE SHARING

- 346 Further information and requests for resources and reagents should be directed to and will be
- 347 fulfilled by the Lead Contact, Nobuya Inagaki (inagaki@kuhp.kyoto-u.ac.jp). RIP-Cre mice
- 348 were obtained under Material Transfer Agreements from Prof. Pedro L. Herrera. Fucci2aR
- 349 mouse strain (RBRC06511) was provided by RIKEN BRC through the National BioResource
- 350 Project of the MEXT/AMED, Japan.
- 351

352 EXPERIMENTAL MODEL AND SUBJECT DETAILS

353 *Generation of the transgenic mouse line*

354 To establish the mouse model for studying β -cell proliferation, we used mice harboring R26-

355 Fucci2aR (RIKEN BRC through Kyoto University Medical Science and Business Liaison

356 Organization). This newer Fucci2a reporter is a bicistronic Cre-inducible probe consisting of

two fluorescent proteins: truncated Cdt1 (30/120) fused to mCherry, and truncated Geminin

358 (1/110) fused to mVenus. The two fusion proteins are always alternately expressed according

to cell cycle phase in the same ratio, making it possible to detect and quantify the number of

360 labeled cells. By crossing Rip-Cre and Fucci2aR mice, we generated RIP-Cre;Fucci2aR mice

361 expressing the Fucci2a reporter in a β cell-specific manner. In these RIP-Cre;Fucci2aR mice,

362 mCherry-hCdt1 (30/120) (red fluorescence) and mVenus-hGem (1/110) (green fluorescence)

are expressed in β cell nuclei during G0/G1 and S/G2/M phases, respectively. Only

364 hemizygous males on the C57BL/6 background were used in this study. Mice had free access

365 to standard rodent chow and water and were housed in a temperature-controlled environment

under a 14:10-h light/dark cycle. Animal care and protocols were reviewed and approved by

the Animal Care and Use Committee of Kyoto University Graduate School of Medicine

368 (MedKyo15298).

369

370 METHOD DETAILS

- 371 In vivo mouse studies
- 372 S961 was obtained from Novo Nordisk (Bagsværd, Denmark). Vehicle (PBS) or 10 nmol
- 373 S961 was loaded into an osmotic pump (Alzet 2001; DURECT Corp., Cupertino, CA, USA)
- 374 subcutaneously implanted into the back of RIP-Cre;Fucci2aR mice at 8 weeks of age. Mice
- 375 were euthanized and the pancreas was harvested 7 days after S961 or vehicle treatment.
- Blood glucose levels were measured daily. Plasma was collected on days 0 and 7 to measure
- 377 insulin level. For a model of diet-induced obesity, six-week old RIP-Cre;Fucci2aR mice were
- fed with high-fat diets (Research Diet, cat. no. D12492) or control diets (Research Diet, cat.
- no. D12450J) for 13 weeks, and body weight were measured weekly. For the EdU labeling
- assay, mice were intraperitoneally injected with EdU (50 mg/kg) 6 h before sacrifice.

381

382 Oral glucose tolerance test

383 Mice were fasted for 16 h and then orally administered a 20% glucose solution (2 g/kg body

weight). Blood samples were collected from the tail vein of mice 0, 15, and 30 min after

- 385 glucose loading using heparinized calibrated glass capillary tubes (cat. no. 2-000-044-H;
- 386 Drummond Scientific Co., Broomall, PA, USA). Blood glucose level was measured using the
- 387 Glutest Neo Sensor (Sanwa Kagaku Kenkyusho, Nagoya, Japan). Plasma samples were
- prepared by centrifuging the blood samples at $9000 \times g$ for 10 min, and insulin level was
- measured using the Ultra Sensitive PLUS Mouse Insulin ELISA kit (cat. no. 49170-53;
- 390 Morinaga, Tokyo, Japan).

- 392 Immunohistochemical observation of tissue sections
- 393 Mice were anesthetized by intraperitoneal injection of pentobarbital sodium (10 mg/kg); a 26-

394	gauge needle was inserted into the left ventricle through the apex, and the mice were
395	transcardially perfused with cold PBS followed by cold 4% paraformaldehyde (PFA, Wako
396	Pure Chemical Industries, Osaka, Japan). The harvested pancreas was immediately immersed
397	in PFA at 4°C with gentle shaking for less than 24 h, and then embedded in Optimal Cutting
398	Temperature compound. Frozen samples were cut into 8-µm sections. After air drying, the
399	frozen sections were incubated with blocking buffer composed of PBS with 10% (v/v) goat
400	serum and 0.2% (v/v) Triton-X100) for 30 min at room temperature, and then incubated
401	overnight at room temperature in blocking buffer supplemented with rabbit anti-insulin (200-
402	fold dilution; cat. no. ab181547), mouse anti-glucagon (2000-fold dilution; cat. no. ab10988),
403	rat anti-somatostatin (100-fold dilution; cat. no. ab30788), or rabbit anti-Nkx 6.1 (100-fold
404	dilution; cat. no. ab221549) antibody (all from Abcam, Cambridge, MA, USA), followed by
405	Alexa Fluor 647-conjugated goat anti-rabbit IgG (H+L) (200-fold dilution; cat. no. A-21245;
406	Thermo Fisher Scientific, Waltham, MA, USA), Alexa Fluor 647-conjugated goat anti-mouse
407	IgG (H+L) (200-fold dilution; cat. no. ab150115; Abcam), or Alexa Fluor 647-conjugated
408	goat anti-rat IgG (H+L) (200-fold dilution; cat. no. ab150159; Abcam) for 1 h at room
409	temperature. The sections were incubated in PBS containing DAPI (final concentration: 0.01
410	mg/ml) for 15 min at room temperature and mounted with Vectashield (Vector Laboratories,
411	Burlingame, CA, USA) on 24×40 -mm coverslips (cat. no. C024401; Matsunami Glass,
412	Osaka, Japan). Immunolabeled tissue sections were observed with an inverted fluorescence
413	microscope (BZ-X710; Keyence, Osaka, Japan). EdU was detected using the Click-iT EdU
414	Alexa Fluor 647 kit (Thermo Fisher Scientific) according to the manufacturer's protocol.
415	
110	

416 Tissue clearing

417 Pancreas tissue samples were collected and fixed as described above, washed three times for

418 more than 2 h each time in PBS at room temperature with gentle shaking. For delipidation

419	and permeabilization, the samples were immersed in 50% (v/v) CUBIC-L clearing reagent
420	for at least 6 h followed by CUBIC-L at 37°C with gentle shaking for 3 days. The CUBIC-L
421	reagent was refreshed daily during this period. After clearing, samples were immersed in
422	50% (v/v) CUBIC-R for at least 6 h and in CUBIC-R at room temperature with gentle
423	shaking for at least 2 days.
424	
425	3D Imaging
426	3D Images of optically cleared pancreas tissue were acquired with a light-sheet microscope
427	(Lightsheet Z.1; Carl Zeiss, Oberkochen, Germany) equipped with a 5×/0.16 NA objective
428	lens. For mCherry-hCdt1 (30/120) imaging, we used 22% laser power (561-nm laser) and a
429	28-ms exposure time. For mVenus-hGem (1/110) imaging, we used 90% laser power (488-
430	nm laser) and a 70-ms exposure time. The z-stack images (1920×1920 pixel, 16-bit) were
431	acquired at 4.63 µm intervals.

432

433 Intravital imaging

434 Following S961 treatment for 40 h, RIP-Cre;Fucci2aR mice were anesthetized by 1.5%–2% 435 isoflurane (Wako Pure Chemical Industries) inhalation. The hair on the abdominal area was 436 removed and skin disinfected with 70% ethanol. A small oblique incision running parallel to 437 the last left rib was made to expose the pancreas on the left side of the abdominal wall. The 438 mice then were placed in the supine position on an electric heating pad maintained at 37°C. 439 The pancreas was immobilized using a suction imaging device (Figure S1), and time-lapse 440 imaging was performed with a two-photon excitation microscope (FV1200MPE-BX61WI; 441 Olympus, Tokyo, Japan) equipped with a 25×1.05 NA water-immersion objective lens 442 (XLPLN 25XWMP; Olympus) and an In-Sight DeepSee Ultrafast laser (Spectra Physics, 443 Santa Clara, CA, USA). Images were acquired every 5 min for ~10 h in 5-µm steps at a scan 444 speed of 20 μ s/pixel. Mice were euthanized after imaging.

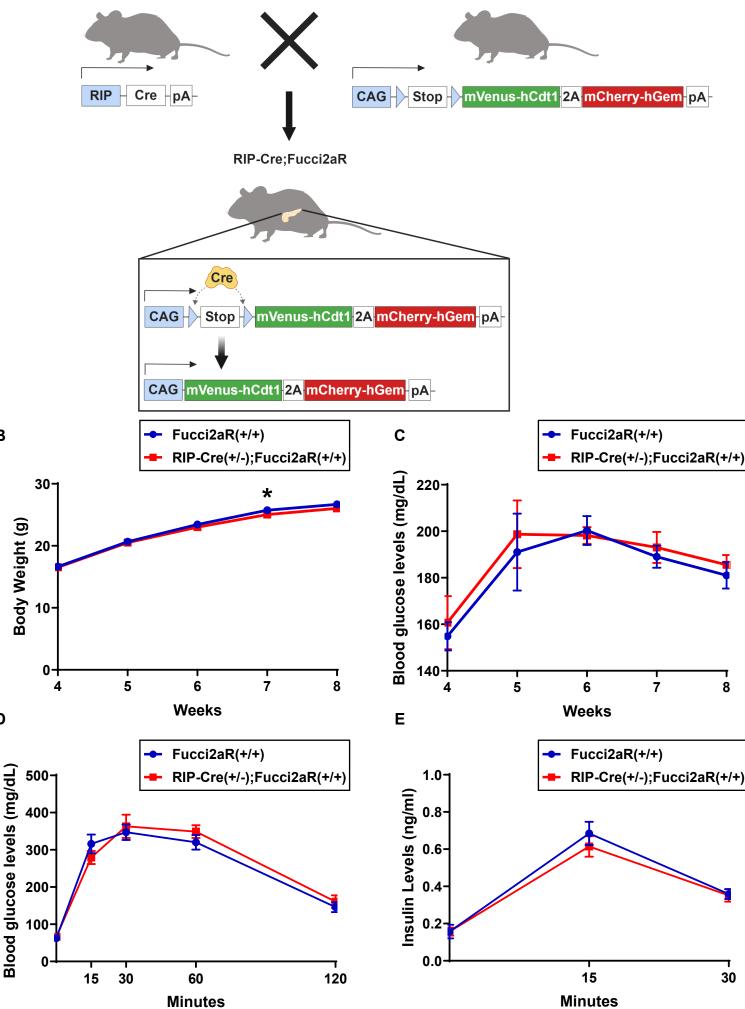
445

- 446 *Image processing*
- 447 Acquired images were analyzed with the 3D reconstruction software Imaris (Bitplane AG,
- 448 Zurich, Switzerland). A whole series of consecutive 2D cross-sectional images was
- 449 reconstructed into a 3D structure using the "Volume rendering" function. Each islet was then
- 450 isolated using the "Crop 3D function", and a Gaussian filter was applied for background
- 451 noise reduction. A spot detection algorithm was used for automated cell identification and
- 452 cell counts. Morphometric measurements of maximum diameter of β cells within each islet
- 453 were obtained using the Imaris surface creation tool.
- 454
- 455 *Quantification and statistical analysis*
- 456 The Mann–Whitney U test was performed to evaluate the difference between two sets of data.
- 457 P values < 0.05 were considered statistically significant. No statistical method was used to
- 458 predetermine sample size. Statistical analyses were performed using GraphPad Prism
- 459 (GraphPad Software, La Jolla, CA, USA).

460

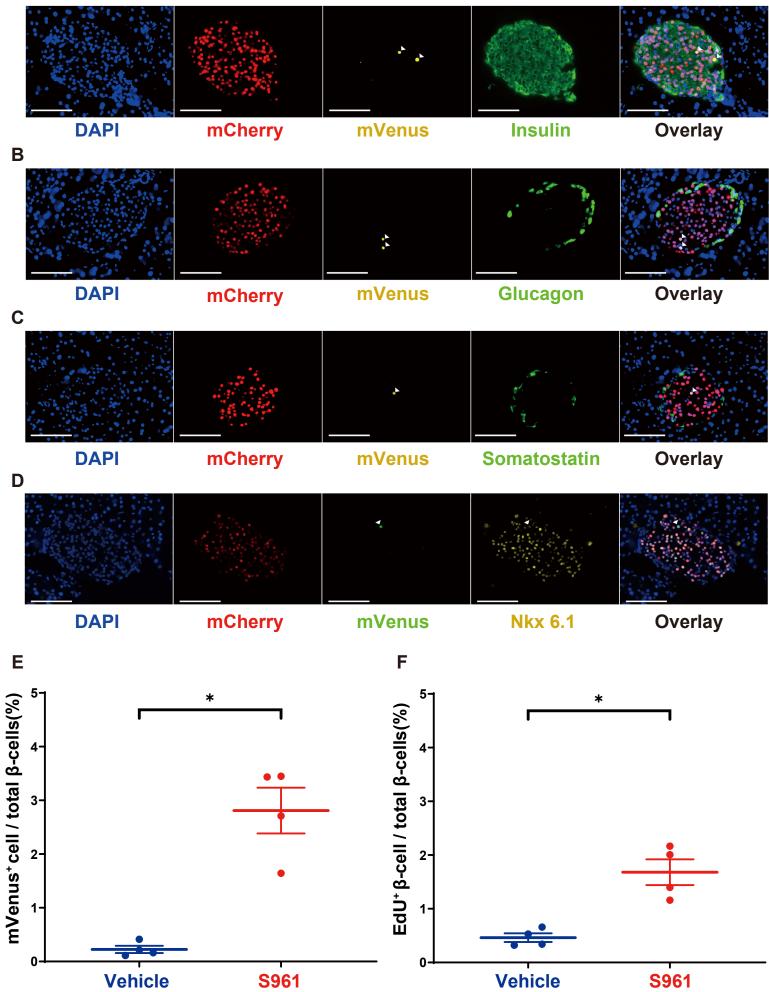
461 Supplemental Information

- 462 **Figure S1.** Experimental setup of intravital pancreas imaging by two-photon microscopy,
- 463 Related to STAR Methods section.
- 464
- 465 **Movie S1.** 3D Imaging of Islets in RIP-Cre;Fucci2aR mice, Related to Figure 3
- 466 The movie shows how 3D images of islets were edited and analyzed using Imaris software.

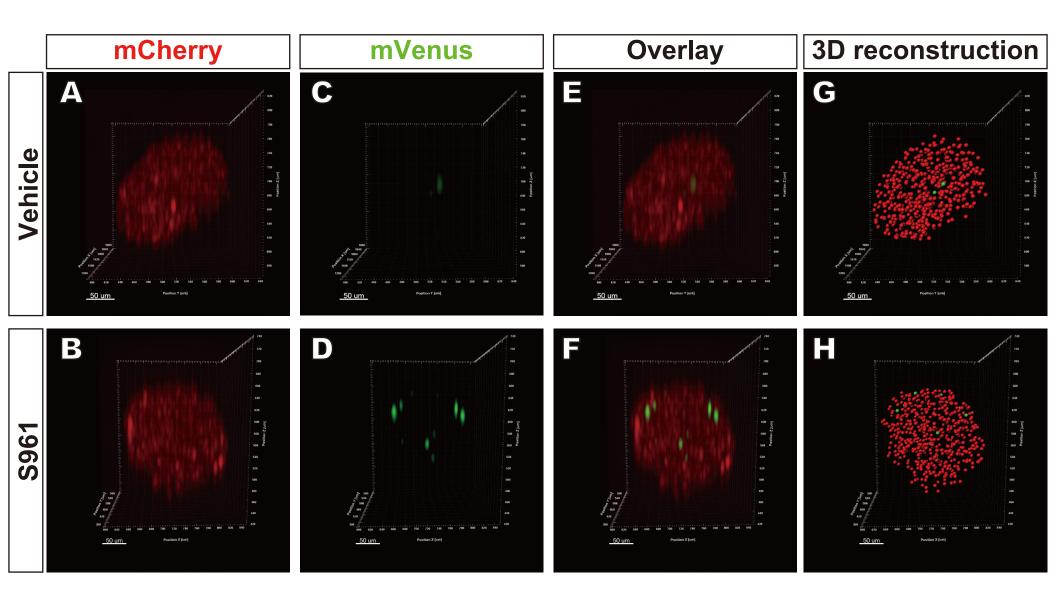

467

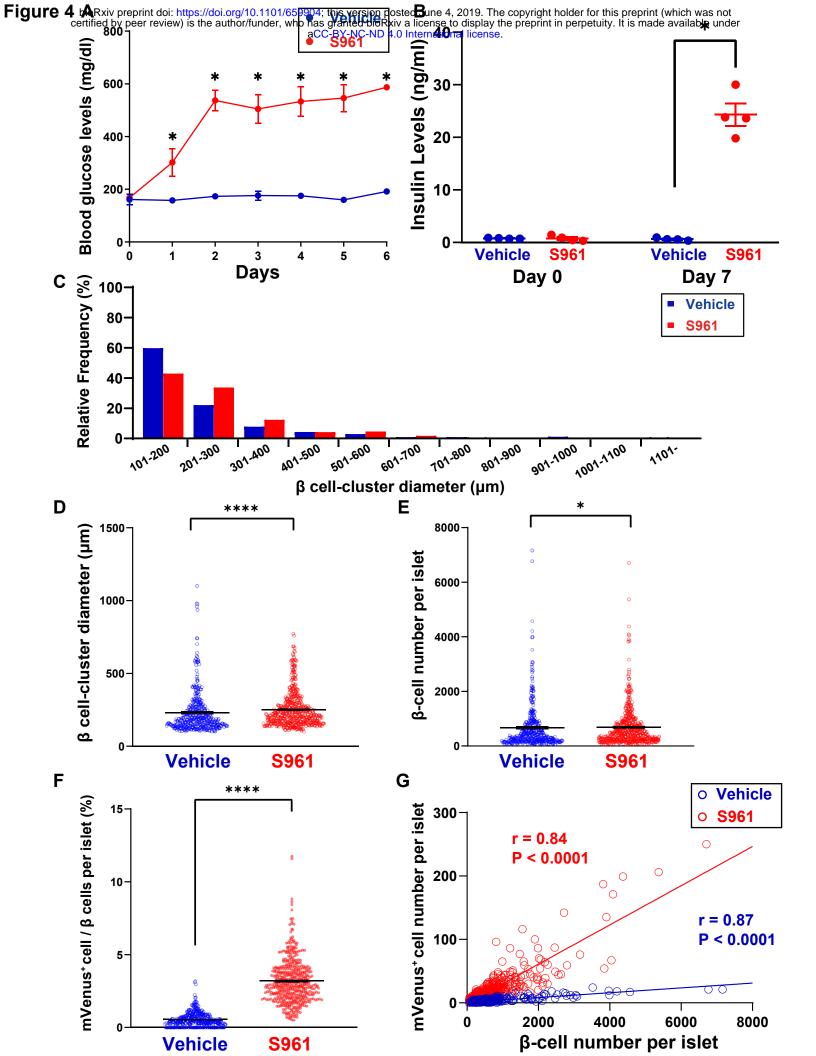
468 Movie S2. In vivo imaging of an islet in a RIP-Cre;Fucci2aR mouse, Related to Figure 3

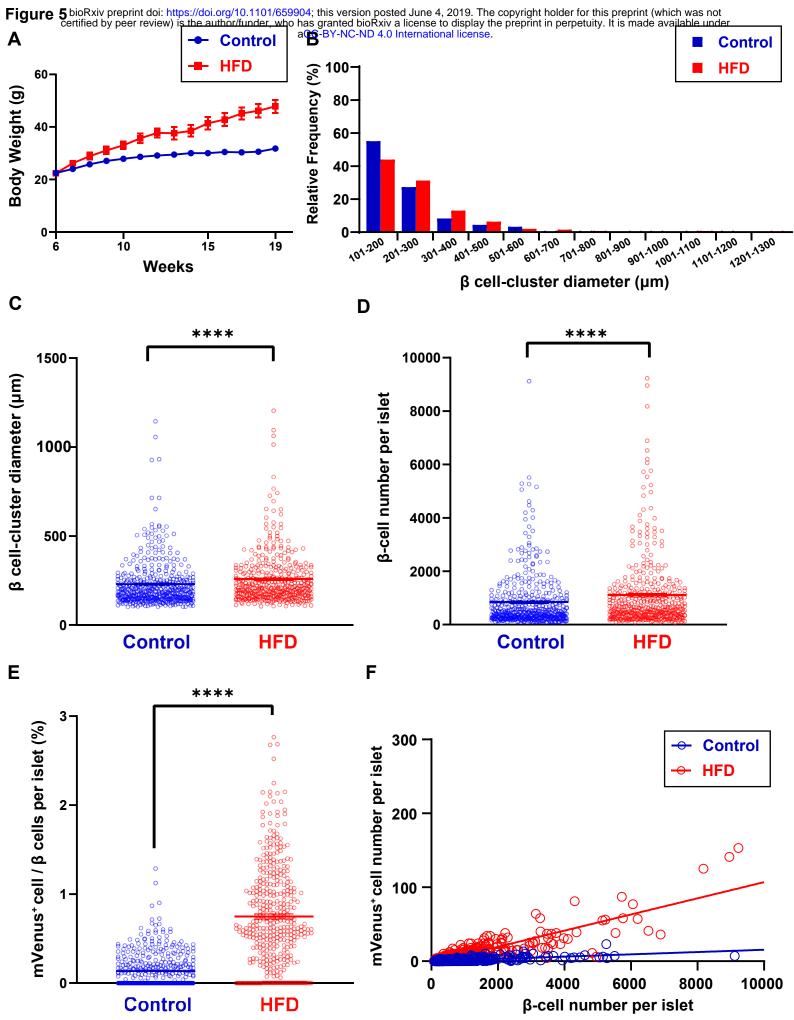
469	The movie shows the G1-S transitions in two β cells, which are also automatically detected
470	using the cell-tracking tool in Imaris. Scale bars, 50 μ m. Time is shown in hours:minutes.
471	
472	References
473	Alonso, L.C., Yokoe, T., Zhang, P., Scott, D.K., Kim, S.K., O'Donnell, C.P., and Garcia-
474	Ocaña, A. (2007). Glucose infusion in mice: a new model to induce beta-cell replication.
475	Diabetes 56, 1792–1801.
476	Cox, A. R., Barrandon, O., Cai, E.P., Rios, J.S., Chavez, J., Bonnyman, C.W., Lam, C.J., Yi,
477	P., Melton, D.A., and Kushner, J.A. (2016). Resolving discrepant findings on ANGPTL8
478	in β -cell proliferation: a collaborative approach to resolving the betatrophin controversy.
479	PLoS One 11, e0159276.
480	de Casteele, M.V., Cai, Y., Leuckx, G., and Heimberg, H. (2013). Mouse beta cell
481	proliferation is inhibited by thymidine analogue labelling. Diabetologia 56, 2647–2650.
482	Gusarova, V., Alexa, C.A., Na, E., Stevis, P.E., Xin, Y., Bonner-Weir, S., Cohen, J.C.,
483	Hobbs, H.H., Murphy, A.J., Yancopoulos, G.D., and Gromada, J. (2014).
484	ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159, 691-
485	696.
486	Herrera, PL., Orci, L., and Vassalli, JD. (1998). Two transgenic approaches to define the
487	cell lineages in endocrine pancreas development, Mol. Cell. Endocrinol. 140, 45-50.
488	Jiao, Y., Lay, J.L., Yu, M., Naji, A., and Kaestner, K.H. (2014). Elevated mouse hepatic
489	betatrophin expression does not increase human β -cell replication in the transplant
490	setting. Diabetes 63, 1283–1288.
491	Kubota, S. I., Takahashi, K., Nishida, J., Morishita, Y., Ehata, S., Tainaka, K., Miyazono, K.,
492	and Ueda, H.R. (2017). Whole-body profiling of cancer metastasis with single-cell
493	resolution. Cell Rep. 20, 236–250.
	20


494 Mort, R.L., Ford, M.J., Sakaue-Sawano, A., Lindstrom, N.O., Casadio, A., Do	uglas, A.T.,
---	--------------

- 495 Keighren, M.A., Hohenstein, P., Miyawaki, A., and Jackson, I.J. (2014). Fucci2a: A
- 496 bicistronic cell cycle reporter that allows Cre mediated tissue specific expression in
- 497 mice. Cell Cycle *13*, 2681–2696.
- 498 Okamoto, H., Cavino, K., Na, E., Krumm, E., Kim, S.Y., Cheng, X., Murphy, A.J.,
- 499 Yancopoulos, G.D., and Gromada, J. (2017). Glucagon receptor inhibition normalizes
- blood glucose in severe insulin-resistant mice. Proc. Natl. Acad. Sci. U S A *114*, 2753–
 2758.
- 502 Porat, S., Weinberg-Corem, N., Tornovsky-Babaey, S., Schyr-Ben-Haroush, R., Hija, A.,
- 503 Stolovich-Rain, M., Dadon, D., Granot, Z., Ben-Hur, V., White, P., Girard, C.A., Karni,
- 504 R., Kaestner, K.H., Ashcroft, F.M., Magnuson, M.A., Saada, A., Grimsby, J., Glaser, B.,
- and Dor, Y. (2011). Control of pancreatic beta cell regeneration by glucose metabolism.
- 506 Cell Metabol. *13*, 440–449.
- 507 Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H.,
- 508 Kashiwagi, S., Fukami, K., Miyata, T., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H.,
- and Miyawaki, A. (2008). Visualizing spatiotemporal dynamics of multicellular cell-
- 510 cycle progression. Cell *132*, 487–498.




В


D

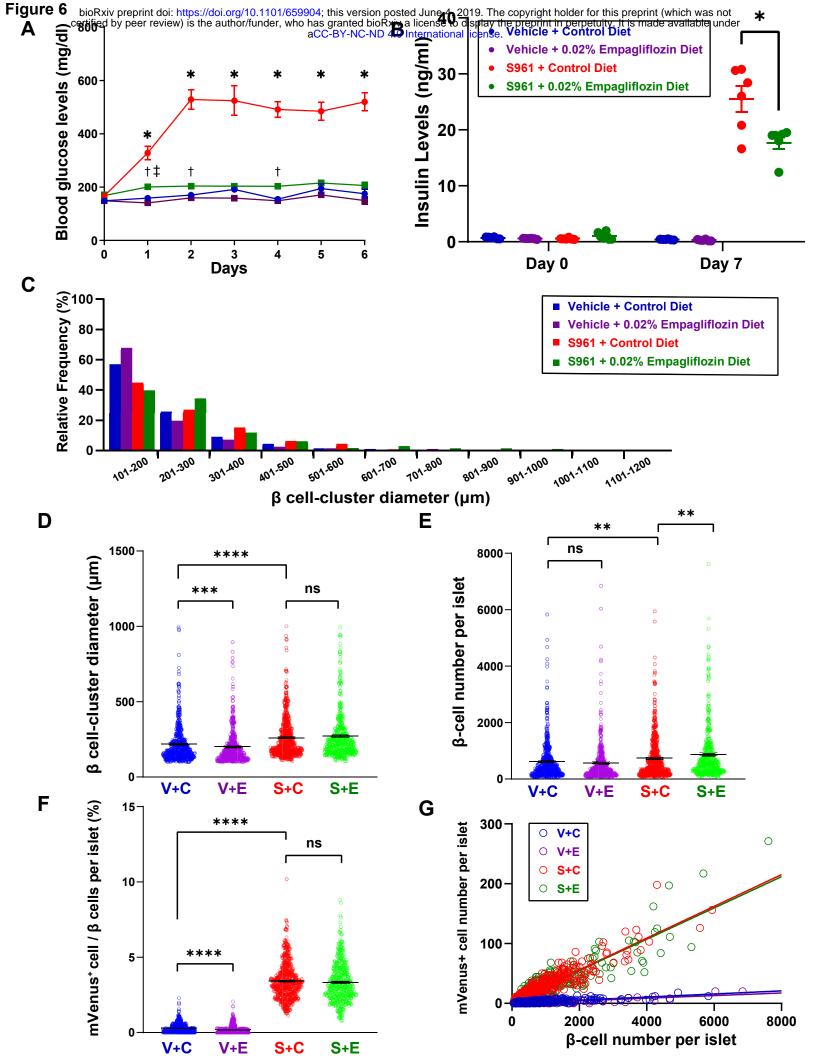


Figure 3

